Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies
Abstract
:1. Introduction
2. Review Methodology and Data Extraction
3. Assessment of Methodological Characteristics
4. Discussion
5. Conclusions
6. Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iadecola, C.; Yaffe, K.; Biller, J.; Bratzke, L.C.; Faraci, F.M.; Gorelick, P.B.; Gulati, M.; Kamel, H.; Knopman, D.S.; Launer, L.J.; et al. Impact of Hypertension on Cognitive Function: A Scientific Statement from the American Heart Association. Hypertension 2016, 68, e67–e94. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Power, M.C.; Gottesman, R.F. Defining the Relationship between Hypertension, Cognitive Decline, and Dementia: A Review. Curr. Hypertens. Rep. 2017, 19, 24. [Google Scholar] [CrossRef]
- O’Brien, E.; Parati, G.; Stergiou, G.; Asmar, R.; Beilin, L.; Bilo, G.; Clement, D.; de la Sierra, A.; de Leeuw, P.; Dolan, E.; et al. European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring. J. Hypertens. 2013, 31, 1731–1768. [Google Scholar] [CrossRef]
- Hermida, R.C.; Fernández, J.R.; Ayala, D.E.; Mojón, A.; Alonso, I.; Smolensky, M. Circadian Rhythm of Double (Rate-Pressure) Product in Healthy Normotensive Young Subjects. Chronobiol. Int. 2001, 18, 475–489. [Google Scholar] [CrossRef]
- Gavriilaki, M.; Anyfanti, P.; Mastrogiannis, K.; Gavriilaki, E.; Lazaridis, A.; Kimiskidis, V.; Gkaliagkousi, E. Association between Ambulatory Blood Pressure Monitoring Patterns with Cognitive Function and Risk of Dementia: A Systematic Review and Meta-analysis. Aging Clin. Exp. Res. 2023, 35, 745–761. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.C. Cerebral Hemodynamics and Vascular Risk Factors: Setting the Stage for Alzheimer’s Disease. J. Alzheimers Dis. 2012, 32, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Cani, I.; Sambati, L.; Bartiromo, F.; Asioli, G.M.; Baiardi, S.; Belotti, L.M.B.; Giannini, G.; Guaraldi, P.; Quadalti, C.; Romano, L.; et al. Cognitive Profile in Idiopathic Autonomic Failure: Relation with White Matter Hyperintensities and Neurofilament Levels. Ann. Clin. Transl. Neurol. 2022, 9, 864–876. [Google Scholar] [CrossRef]
- Daniela, M.; Grigoras, C.; Cuciureanu, D.; Constantinescu, V. The Circadian Rhythm of Arterial Blood Pressure in Alzheimer’s Disease and Vascular Dementia. Acta Neurol. Belg. 2023, 123, 129–137. [Google Scholar] [CrossRef]
- Ghazi, L.; Yaffe, K.; Tamura, M.K.; Rahman, M.; Hsu, C.; Anderson, A.H.; Cohen, J.B.; Fischer, M.J.; Miller, E.R.; Navaneethan, S.D.; et al. Association of 24-Hour Ambulatory Blood Pressure Patterns with Cognitive Function and Physical Functioning in CKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 455–464. [Google Scholar] [CrossRef]
- Shim, Y.S.; Shin, H.-E. Impact of the Ambulatory Blood Pressure Monitoring Profile on Cognitive and Imaging Findings of Cerebral Small-Vessel Disease in Older Adults with Cognitive Complaints. J. Hum. Hypertens. 2022, 36, 14–23. [Google Scholar] [CrossRef]
- Tan, X.; Sundström, J.; Lind, L.; Franzon, K.; Kilander, L.; Benedict, C. Reverse Dipping of Systolic Blood Pressure Is Associated with Increased Dementia Risk in Older Men: A Longitudinal Study over 24 Years. Hypertension 2021, 77, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Sun, Y.; Wang, S.; Feng, F.; Zhang, D.; Li, H. Nocturnal Blood Pressure Rise as a Predictor of Cognitive Impairment among the Elderly: A Retrospective Cohort Study. BMC Geriatr. 2021, 21, 462. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-F.; Chang-Quan, H.; You, C.; Wang, Z.-R.; Hui, W.; Liu, Q.-X.; Si-Qing, H. The Circadian Rhythm of Arterial Blood Pressure in Alzheimer Disease (AD) Patients without Hypertension. Blood Press. 2013, 22, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Cicconetti, P.; Ciotti, V.; Monteforte, G.; Moisè, A.; Chiarotti, F.; Piccirillo, G.; Cacciafesta, M. Circadian Blood Pressure Pattern and Cognitive Function in Newly Diagnosed Older Hypertensives. Blood Press. 2003, 12, 168–174. [Google Scholar] [CrossRef]
- Cicconetti, P.; Ciotti, V.; Tafaro, L.; Priami, C.; Chiarotti, F.; Costarella, M.; Piccirillo, G.; Cacciafesta, M. Event-Related Brain Potentials in Elderly Dippers and Nondippers with Recently Diagnosed Hypertension. Hypertens. Res. 2004, 27, 581–588. [Google Scholar] [CrossRef]
- Gregory, M. Investigating the Relationship between Vascular Health, Gait, and Cognition in Community-Dwelling Older Adults Without Dementia. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2016. [Google Scholar]
- Guo, H.; Tabara, Y.; Igase, M.; Yamamoto, M.; Ochi, N.; Kido, T.; Uetani, E.; Taguchi, K.; Miki, T.; Kohara, K. Abnormal Nocturnal Blood Pressure Profile Is Associated with Mild Cognitive Impairment in the Elderly: The J-SHIPP Study. Hypertens. Res. 2010, 33, 32–36. [Google Scholar] [CrossRef]
- Kececi Savan, D.; Cengiz, M.; Yavuzer, H.; Yavuzer, S.; Sulu, C.; Doventas, A.; Beger, T. Relation of Ambulatory Blood Pressure Measurement and Cognitive Functions in Hypertensive Elderly Patients. Aging Clin. Exp. Res. 2016, 28, 699–704. [Google Scholar] [CrossRef]
- Kim, J.E.; Shin, J.S.; Jeong, J.H.; Choi, K.G.; Park, K.D.; Kim, S. Relationships between 24-Hour Blood Pressures, Subcortical Ischemic Lesions, and Cognitive Impairment. J. Clin. Neurol. 2009, 5, 139. [Google Scholar] [CrossRef]
- Komori, T.; Eguchi, K.; Saito, T.; Nishimura, Y.; Hoshide, S.; Kario, K. Riser Blood Pressure Pattern Is Associated with Mild Cognitive Impairment in Heart Failure Patients. Am. J. Hypertens. 2016, 29, 194–201. [Google Scholar] [CrossRef]
- Li, X.-F.; Cui, L.-M.; Sun, D.-K.; Wang, H.-T.; Liu, W.-G. The Correlation between Cognitive Impairment and Ambulatory Blood Pressure in Patients with Cerebral Small Vessel Disease. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 52–56. [Google Scholar]
- Mahmoud, K.S.; Ismail, T.T.; Saad, M.; Mohsen, L.A.; Ibrahiem, M.A.; Fadeel, N.A.A.; Sotouhy, A. Values of Ambulatory Blood Pressure Monitoring for Prediction of Cognitive Function Impairment in Elderly Hypertensive Patients. Egypt. Heart J. 2015, 67, 7–12. [Google Scholar] [CrossRef]
- Ohya, Y.; Ohtsubo, T.; Tsuchihashi, T.; Eto, K.; Sadanaga, T.; Nagao, T.; Abe, I.; Fujishima, M. Altered Diurnal Variation of Blood Pressure in Elderly Subjects with Decreased Activity of Daily Living and Impaired Cognitive Function. Hypertens. Res. 2001, 24, 655–661. [Google Scholar] [CrossRef]
- Okuno, J.; Yanagi, H.; Tomura, S. Cognitive Impairment and Nocturnal Blood Pressure Fall in Treated Elderly Hypertensives. Environ. Health Prev. Med. 2003, 8, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Paganini-Hill, A.; Bryant, N.; Corrada, M.M.; Greenia, D.E.; Fletcher, E.; Singh, B.; Floriolli, D.; Kawas, C.H.; Fisher, M.J. Blood Pressure Circadian Variation, Cognition and Brain Imaging in 90+ Year-Olds. Front. Aging Neurosci. 2019, 11, 54. [Google Scholar] [CrossRef]
- Sierra, C.; Salamero, M.; Domenech, M.; Camafort, M.; Coca, A. Circadian Blood Pressure Pattern and Cognitive Function in Middle-Aged Essential Hypertensive Patients. Rev. Española De Cardiol. (Engl. Ed.) 2015, 68, 157–158. [Google Scholar] [CrossRef]
- Suzuki, R.; Meguro, M.; Meguro, K. Sleep Disturbance Is Associated with Decreased Daily Activity and Impaired Nocturnal Reduction of Blood Pressure in Dementia Patients. Arch. Gerontol. Geriatr. 2011, 53, 323–327. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Bombelli, M.; Facchetti, R.; Mancia, G.; Grassi, G. Relationships between Residual Blood Pressure Variability and Cognitive Function in the General Population of the PAMELA Study. J. Clin. Hypertens. 2019, 21, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Shimo, Y.; Yamashiro, K.; Ogawa, T.; Nishioka, K.; Oyama, G.; Umemura, A.; Hattori, N. Association between Abnormal Nocturnal Blood Pressure Profile and Dementia in Parkinson’s Disease. Park. Relat. Disord. 2018, 46, 24–29. [Google Scholar] [CrossRef]
- White, W.B.; Jalil, F.; Wakefield, D.B.; Kaplan, R.F.; Bohannon, R.W.; Hall, C.B.; Moscufo, N.; Fellows, D.; Guttmann, C.R.G.; Wolfson, L. Relationships among Clinic, Home, and Ambulatory Blood Pressures with Small Vessel Disease of the Brain and Functional Status in Older People with Hypertension. Am. Heart J. 2018, 205, 21–30. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Akiguchi, I.; Oiwa, K.; Hayashi, M.; Ohara, T.; Ozasa, K. The Relationship between 24-Hour Blood Pressure Readings, Subcortical Ischemic Lesions and Vascular Dementia. Cerebrovasc. Dis. 2005, 19, 302–308. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ohara, T.; Nagakane, Y.; Tanaka, E.; Morii, F.; Koizumi, T.; Akiguchi, I. Chronic Kidney Disease, 24-h Blood Pressure and Small Vessel Diseases Are Independently Associated with Cognitive Impairment in Lacunar Infarct Patients. Hypertens. Res. 2011, 34, 1276–1282. [Google Scholar] [CrossRef]
- Yaneva-Sirakova, T.; Tarnovska-Kadreva, R.; Traykov, L.; Vassilev, D. [PP.17.16] Correlation of Dipping Status to Mild Cognitive Impairment in Hypertensive Patients. J. Hypertens. 2016, 34, e226. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Akiguchi, I.; Oiwa, K.; Hayashi, M.; Kasai, T.; Ozasa, K. Twenty-Four–Hour Blood Pressure and Mri as Predictive Factors for Different Outcomes in Patients with Lacunar Infarct. Stroke 2002, 33, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Lackland, D.T. Racial Differences in Hypertension: Implications for High Blood Pressure Management. Am. J. Med. Sci. 2014, 348, 135–138. [Google Scholar] [CrossRef]
- De Reuck, J.; Deramecourt, V.; Cordonnier, C.; Leys, D.; Pasquier, F.; Maurage, C.-A. Prevalence of Small Cerebral Bleeds in Patients with a Neurodegenerative Dementia: A Neuropathological Study. J. Neurol. Sci. 2011, 300, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.; Stanton, A.; Thijs, L.; Hinedi, K.; Atkins, N.; McClory, S.; Hond, E.D.; McCormack, P.; Staessen, J.A.; O’Brien, E. Superiority of Ambulatory over Clinic Blood Pressure Measurement in Predicting Mortality. Hypertension 2005, 46, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; Sineiro, E.; et al. Asleep Blood Pressure: Significant Prognostic Marker of Vascular Risk and Therapeutic Target for Prevention. Eur. Heart J. 2018, 39, 4159–4171. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Smolensky, M.H.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; et al. Cardiovascular Disease Risk Stratification by the Framigham Score Is Markedly Improved by Ambulatory Compared with Office Blood Pressure. Rev. Española De Cardiol. (Engl. Ed.) 2021, 74, 953–961. [Google Scholar] [CrossRef]
- ABC-H Investigators; Roush, G.C.; Fagard, R.H.; Salles, G.F.; Pierdomenico, S.D.; Reboldi, G.; Verdecchia, P.; Eguchi, K.; Kario, K.; Hoshide, S.; et al. Prognostic Impact from Clinic, Daytime, and Night-Time Systolic Blood Pressure in Nine Cohorts of 13,844 Patients with Hypertension. J. Hypertens. 2014, 32, 2332–2340; discussion 2340. [Google Scholar] [CrossRef]
- Staplin, N.; de la Sierra, A.; Ruilope, L.M.; Emberson, J.R.; Vinyoles, E.; Gorostidi, M.; Ruiz-Hurtado, G.; Segura, J.; Baigent, C.; Williams, B. Relationship between Clinic and Ambulatory Blood Pressure and Mortality: An Observational Cohort Study in 59,124 Patients. Lancet 2023, 401, 2041–2050. [Google Scholar] [CrossRef]
- Hermida, R.C.; Smolensky, M.H.; Ayala, D.E.; Portaluppi, F. Ambulatory Blood Pressure Monitoring (ABPM) as the Reference Standard for Diagnosis of Hypertension and Assessment of Vascular Risk in Adults. Chronobiol. Int. 2015, 32, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Fontao, M.J.; Mojón, A.; Fernández, J.R. Ambulatory Blood Pressure Monitoring: Importance of Sampling Rate and Duration—48 versus 24 Hours—on the Accurate Assessment of Cardiovascular Risk. Chronobiol. Int. 2013, 30, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Calvo, C.; Ayala, D.E.; Fernández, J.R.; Ruilope, L.M.; López, J.E. Evaluation of the Extent and Duration of the “ABPM Effect” in Hypertensive Patients. J. Am. Coll. Cardiol. 2002, 40, 710–717. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; Sineiro, E.; et al. Asleep (Not Night-Time) Blood Pressure as Prognostic Marker of Cardiovascular Risk. Eur. Heart J. 2019, 40, 789. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fernández, J.R.; Calvo, C. Comparison of the Efficacy of Morning versus Evening Administration of Telmisartan in Essential Hypertension. Hypertension 2007, 50, 715–722. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Calvo, C.; López, J.E.; Mojón, A.; Fontao, M.J.; Soler, R.; Fernández, J.R. Effects of Time of Day of Treatment on Ambulatory Blood Pressure Pattern of Patients with Resistant Hypertension. Hypertension 2005, 46, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Calvo, C.; Portaluppi, F.; Smolensky, M.H. Chronotherapy of Hypertension: Administration-Time-Dependent Effects of Treatment on the Circadian Pattern of Blood Pressure. Adv. Drug Deliv. Rev. 2007, 59, 923–939. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Hermida, R.C.; Ayala, D.E.; Tiseo, R.; Portaluppi, F. Administration–Time-Dependent Effects of Blood Pressure-Lowering Medications: Basis for the Chronotherapy of Hypertension. Blood Press. Monit. 2010, 15, 173–180. [Google Scholar] [CrossRef]
- Hermida, R.C.; Calvo, C.; Ayala, D.E.; Domínguez, M.J.; Covelo, M.; Fernández, J.R.; Mojón, A.; López, J.E. Administration Time–Dependent Effects of Valsartan on Ambulatory Blood Pressure in Hypertensive Subjects. Hypertension 2003, 42, 283–290. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojon, A.; Fernández, J.R. Influence of Time of Day of Blood Pressure–Lowering Treatment on Cardiovascular Risk in Hypertensive Patients with Type 2 Diabetes. Diabetes Care 2011, 34, 1270–1276. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojon, A.; Fernandez, J.R. Bedtime Dosing of Antihypertensive Medications Reduces Cardiovascular Risk in CKD. J. Am. Soc. Nephrol. 2011, 22, 2313–2321. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Domínguez-Sardiña, M.; Otero, A.; Moya, A.; Ríos, M.T.; Sineiro, E.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L. Bedtime Hypertension Treatment Improves Cardiovascular Risk Reduction: The Hygia Chronotherapy Trial. Eur. Heart J. 2020, 41, 4565–4576. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Fernández, J.R. Influence of Circadian Time of Hypertension Treatment on Cardiovascular Risk: Results of the MAPEC Study. Chronobiol. Int. 2010, 27, 1629–1651. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, R.L.; Lazar, N.A. The ASA Statement on P-Values: Context, Process, and Purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
First Author (Year) | ABPM Duration (Sampling Intervals) | Dipping Definition | ABPM Quality Control | Sleep/Wake Classification | Effect Size Calculation | Report of Dropout or Completion% | Control for Confounding Variables | Control for Timing of BP a Medication |
---|---|---|---|---|---|---|---|---|
Cani I (2022) [7] | 24 h (Not specified) | SBP a and DBP a | No | Fixed time | No | No | No | No |
Chen HF (2013) [13] | 24 h (30 min) | SBP a or DBP a | No | Fixed time | No | No | No | N/A (no medication) |
Cicconetti P (2003) [14] | 24 h (Day:15 min, Night: 20 min) | SBP a and DBP a | SBP a > 260 and <70, DBP a > 150 and <20 mmHg values excluded | Fixed time | No | No | No | N/A (no medication) |
Cicconetti P (2004) [15] | 24 h (Day: 15 min, Night: 20 min) | SBP a and DBP a | No | Fixed time | No | No | No | N/A (no medication) |
Daniela M (2023) [8] | 24 h (Day: 15 min, Night: 30 min) | SBP a | No | Fixed time | No | No | sex | No |
Ghazi L (2020) [9] | 24 h (Not specified) | SBP a | Excluded if <14 daytime readings or <6 nighttime readings | Fixed time | Yes (HR a) | No | clinic site, year, age, race, sex, education, marital status, income, smoking, alcohol use, illicit drug use, BMI a, use of antihypertensive medications, history of hypertension, diabetes mellitus, hyperlipidemia, anemia, C-reactive protein, urine protein-creatinine ratio, depression, stroke, GFR a | No |
Gregory MA (2016) [16] | 24 h (Day: 30 min, Night: 60 min) | SBP a | No | Fixed time | No | 93.5% completion | No | No |
Guo H (2010) [17] | 24 h (Day: 15 min, Night: 30 min) | SBP a | Excluded BP a readings beyond specified range | Fixed time | Yes (OR a) | No | age, sex, clinic SBP a, hypnotic treatment, type II diabetes, brachial-ankle pulse wave velocity, Apolipoprotein E ε4 allele | N/A (no medication) |
Kececi Savan D (2016) [18] | 24 h (Not specified) | MAP a | No | Fixed time | No | No | Stratified by sex | No |
Kim JE (2009) [19] | 24 h (60 min) | Not specified | No | Fixed time | Yes (OR a) | No | No | No |
Komori T (2016) [20] | 24 h (30 min) | SBP a | <20 valid awake readings and <6 valid sleep readings excluded after | Sleep diary | Yes (OR a) | 87% completion | Age, sex | No |
Li XF (2017) [21] | 24 h (Day: 30 min, Night: 60 min) | Not specified | omitted all presumed erroneous readings | Fixed time | Yes (Correlation) | No | No | No |
Mahmoud KS (2014) [22] | 24 h (Day: 30 min, Night: 60 min) | Not specified | No | Fixed time | Yes (Correlation) | No | No | No |
Ohya Y (2001) [23] | 24 h (30 min) | SBP a | Omitted all presumed erroneous readings | Fixed time | Yes (Correlation) | No | age, Barthel Index, hematocrit, previous stroke | N/A (no medication) |
Okuno J (2003) [24] | 24 h (Day: 30 min, Night: 60 min) | SBP a and DBP a, separately | No | Fixed time | Yes (OR a) | <1% not completion | age, sex, education level, diabetes mellitus, heart disease, hypercholesterolemia, current alcohol intake, current smoking, benzodiazepine use, BMI ≥ 25, antihypertensive drug use | No |
Paganini-Hill A (2019) [25] | 24 h (60 min) | SBP a and DBP a, separately | Omitted all presumed erroneous readings; <6 valid daytime or nighttime readings excluded | Fixed time | No | 81.2% completion | No | No |
Shim YS (2022) [10] | 24 h (Day: 30 min, Night: 60 min) | Not specified | No | Fixed time | Yes (Regression) | No | No | No |
Sierra C (2015) [26] | 24 h (Not specified) | SBP a | No | Not specified | No | No | No | N/A (no medication) |
Suzuki R (2011) [27] | 24 h (60 min) | Not specified | No | Fixed time | No | No | No | No |
Tadic M (2019) [28] | 24 h (20 min) | SBP a and DBP a, separately | Edited for artifact (no detail) | Not specified | No | No | No | No |
Tan X (2021) [11] | 24 h (Day: 20 or 30 min, Night: 20 or 60 min) | SBP a | Omitted all presumed erroneous readings | Fixed time | Yes (HR a) | No | BP a dipping status, age, BMI a, education, daytime SBP a, treatment of hypertension, diabetes, hyperlipidemia, physical activity level, smoking habit, living status | No |
Tanaka R (2018) [29] | 24 h (Day: 30 min, Night: 60 min) | Not specified | No | Fixed time | Yes (OR a) | 97.9% completion | age, sex, Hoehn and Yahr Scale, diabetes, history of stroke, cerebrovascular lesions, orthostatic hypotension | No |
White WB (2018) [30] | 24 h (Day: 15 min, Night: 30 min) | Not specified | >80% of programmed values; <2 h of missing data required | Fixed time | Regression coefficients | No | age, sex, LDL cholesterol, BMI a | No |
Xing Y (2021) [12] | 24 h (Day: 30 min, Night: 60 min) | SBP a | No | Fixed time | Yes (Correlation) | 71.7% completion | No | No |
Yamamoto Y (2002) [34] | 24 h (30 min) | SBP a,b | No | Fixed time | Yes (HR a) | No | age and sex | N/A (4-week washout) |
Yamamoto Y (2005) [31] | 24 h (30 min) | SBP a | No | Fixed time | Yes (OR a) | No | age, sex, PVH a, and nighttime SBP a | N/A (2–4 weeks washout) |
Yamamoto Y (2011) [32] | 24 h (30 min) | Not specified | No | Fixed time | Yes (OR a) | No | age, sex, 24 h SBP a, estimated GFR a, white matter lesion grade, lacunar infarct grade | N/A (>2 weeks washout) |
Yaneva-Sirakova T (2016) [33] | Not specified (Not specified) | Not specified | No | Not specified | No | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghayegh, S.; Hermida, R.C.; Smolensky, M.H.; Jimenez Gallardo, M.; Duran-Aniotz, C.; Slachevsky, A.; Behrens, M.I.; Aguillon, D.; Santamaria-Garcia, H.; García, A.M.; et al. Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies. Clocks & Sleep 2025, 7, 11. https://doi.org/10.3390/clockssleep7010011
Haghayegh S, Hermida RC, Smolensky MH, Jimenez Gallardo M, Duran-Aniotz C, Slachevsky A, Behrens MI, Aguillon D, Santamaria-Garcia H, García AM, et al. Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies. Clocks & Sleep. 2025; 7(1):11. https://doi.org/10.3390/clockssleep7010011
Chicago/Turabian StyleHaghayegh, Shahab, Ramon C. Hermida, Michael H. Smolensky, Mili Jimenez Gallardo, Claudia Duran-Aniotz, Andrea Slachevsky, Maria Isabel Behrens, David Aguillon, Hernando Santamaria-Garcia, Adolfo M. García, and et al. 2025. "Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies" Clocks & Sleep 7, no. 1: 11. https://doi.org/10.3390/clockssleep7010011
APA StyleHaghayegh, S., Hermida, R. C., Smolensky, M. H., Jimenez Gallardo, M., Duran-Aniotz, C., Slachevsky, A., Behrens, M. I., Aguillon, D., Santamaria-Garcia, H., García, A. M., Matallana, D., Ibáñez, A., & Hu, K. (2025). Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies. Clocks & Sleep, 7(1), 11. https://doi.org/10.3390/clockssleep7010011