Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies
Abstract
1. Introduction
2. Review Methodology and Data Extraction
3. Assessment of Methodological Characteristics
4. Discussion
5. Conclusions
6. Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iadecola, C.; Yaffe, K.; Biller, J.; Bratzke, L.C.; Faraci, F.M.; Gorelick, P.B.; Gulati, M.; Kamel, H.; Knopman, D.S.; Launer, L.J.; et al. Impact of Hypertension on Cognitive Function: A Scientific Statement from the American Heart Association. Hypertension 2016, 68, e67–e94. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Power, M.C.; Gottesman, R.F. Defining the Relationship between Hypertension, Cognitive Decline, and Dementia: A Review. Curr. Hypertens. Rep. 2017, 19, 24. [Google Scholar] [CrossRef]
- O’Brien, E.; Parati, G.; Stergiou, G.; Asmar, R.; Beilin, L.; Bilo, G.; Clement, D.; de la Sierra, A.; de Leeuw, P.; Dolan, E.; et al. European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring. J. Hypertens. 2013, 31, 1731–1768. [Google Scholar] [CrossRef]
- Hermida, R.C.; Fernández, J.R.; Ayala, D.E.; Mojón, A.; Alonso, I.; Smolensky, M. Circadian Rhythm of Double (Rate-Pressure) Product in Healthy Normotensive Young Subjects. Chronobiol. Int. 2001, 18, 475–489. [Google Scholar] [CrossRef]
- Gavriilaki, M.; Anyfanti, P.; Mastrogiannis, K.; Gavriilaki, E.; Lazaridis, A.; Kimiskidis, V.; Gkaliagkousi, E. Association between Ambulatory Blood Pressure Monitoring Patterns with Cognitive Function and Risk of Dementia: A Systematic Review and Meta-analysis. Aging Clin. Exp. Res. 2023, 35, 745–761. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.C. Cerebral Hemodynamics and Vascular Risk Factors: Setting the Stage for Alzheimer’s Disease. J. Alzheimers Dis. 2012, 32, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Cani, I.; Sambati, L.; Bartiromo, F.; Asioli, G.M.; Baiardi, S.; Belotti, L.M.B.; Giannini, G.; Guaraldi, P.; Quadalti, C.; Romano, L.; et al. Cognitive Profile in Idiopathic Autonomic Failure: Relation with White Matter Hyperintensities and Neurofilament Levels. Ann. Clin. Transl. Neurol. 2022, 9, 864–876. [Google Scholar] [CrossRef]
- Daniela, M.; Grigoras, C.; Cuciureanu, D.; Constantinescu, V. The Circadian Rhythm of Arterial Blood Pressure in Alzheimer’s Disease and Vascular Dementia. Acta Neurol. Belg. 2023, 123, 129–137. [Google Scholar] [CrossRef]
- Ghazi, L.; Yaffe, K.; Tamura, M.K.; Rahman, M.; Hsu, C.; Anderson, A.H.; Cohen, J.B.; Fischer, M.J.; Miller, E.R.; Navaneethan, S.D.; et al. Association of 24-Hour Ambulatory Blood Pressure Patterns with Cognitive Function and Physical Functioning in CKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 455–464. [Google Scholar] [CrossRef]
- Shim, Y.S.; Shin, H.-E. Impact of the Ambulatory Blood Pressure Monitoring Profile on Cognitive and Imaging Findings of Cerebral Small-Vessel Disease in Older Adults with Cognitive Complaints. J. Hum. Hypertens. 2022, 36, 14–23. [Google Scholar] [CrossRef]
- Tan, X.; Sundström, J.; Lind, L.; Franzon, K.; Kilander, L.; Benedict, C. Reverse Dipping of Systolic Blood Pressure Is Associated with Increased Dementia Risk in Older Men: A Longitudinal Study over 24 Years. Hypertension 2021, 77, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Sun, Y.; Wang, S.; Feng, F.; Zhang, D.; Li, H. Nocturnal Blood Pressure Rise as a Predictor of Cognitive Impairment among the Elderly: A Retrospective Cohort Study. BMC Geriatr. 2021, 21, 462. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-F.; Chang-Quan, H.; You, C.; Wang, Z.-R.; Hui, W.; Liu, Q.-X.; Si-Qing, H. The Circadian Rhythm of Arterial Blood Pressure in Alzheimer Disease (AD) Patients without Hypertension. Blood Press. 2013, 22, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Cicconetti, P.; Ciotti, V.; Monteforte, G.; Moisè, A.; Chiarotti, F.; Piccirillo, G.; Cacciafesta, M. Circadian Blood Pressure Pattern and Cognitive Function in Newly Diagnosed Older Hypertensives. Blood Press. 2003, 12, 168–174. [Google Scholar] [CrossRef]
- Cicconetti, P.; Ciotti, V.; Tafaro, L.; Priami, C.; Chiarotti, F.; Costarella, M.; Piccirillo, G.; Cacciafesta, M. Event-Related Brain Potentials in Elderly Dippers and Nondippers with Recently Diagnosed Hypertension. Hypertens. Res. 2004, 27, 581–588. [Google Scholar] [CrossRef]
- Gregory, M. Investigating the Relationship between Vascular Health, Gait, and Cognition in Community-Dwelling Older Adults Without Dementia. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2016. [Google Scholar]
- Guo, H.; Tabara, Y.; Igase, M.; Yamamoto, M.; Ochi, N.; Kido, T.; Uetani, E.; Taguchi, K.; Miki, T.; Kohara, K. Abnormal Nocturnal Blood Pressure Profile Is Associated with Mild Cognitive Impairment in the Elderly: The J-SHIPP Study. Hypertens. Res. 2010, 33, 32–36. [Google Scholar] [CrossRef]
- Kececi Savan, D.; Cengiz, M.; Yavuzer, H.; Yavuzer, S.; Sulu, C.; Doventas, A.; Beger, T. Relation of Ambulatory Blood Pressure Measurement and Cognitive Functions in Hypertensive Elderly Patients. Aging Clin. Exp. Res. 2016, 28, 699–704. [Google Scholar] [CrossRef]
- Kim, J.E.; Shin, J.S.; Jeong, J.H.; Choi, K.G.; Park, K.D.; Kim, S. Relationships between 24-Hour Blood Pressures, Subcortical Ischemic Lesions, and Cognitive Impairment. J. Clin. Neurol. 2009, 5, 139. [Google Scholar] [CrossRef]
- Komori, T.; Eguchi, K.; Saito, T.; Nishimura, Y.; Hoshide, S.; Kario, K. Riser Blood Pressure Pattern Is Associated with Mild Cognitive Impairment in Heart Failure Patients. Am. J. Hypertens. 2016, 29, 194–201. [Google Scholar] [CrossRef]
- Li, X.-F.; Cui, L.-M.; Sun, D.-K.; Wang, H.-T.; Liu, W.-G. The Correlation between Cognitive Impairment and Ambulatory Blood Pressure in Patients with Cerebral Small Vessel Disease. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 52–56. [Google Scholar]
- Mahmoud, K.S.; Ismail, T.T.; Saad, M.; Mohsen, L.A.; Ibrahiem, M.A.; Fadeel, N.A.A.; Sotouhy, A. Values of Ambulatory Blood Pressure Monitoring for Prediction of Cognitive Function Impairment in Elderly Hypertensive Patients. Egypt. Heart J. 2015, 67, 7–12. [Google Scholar] [CrossRef]
- Ohya, Y.; Ohtsubo, T.; Tsuchihashi, T.; Eto, K.; Sadanaga, T.; Nagao, T.; Abe, I.; Fujishima, M. Altered Diurnal Variation of Blood Pressure in Elderly Subjects with Decreased Activity of Daily Living and Impaired Cognitive Function. Hypertens. Res. 2001, 24, 655–661. [Google Scholar] [CrossRef]
- Okuno, J.; Yanagi, H.; Tomura, S. Cognitive Impairment and Nocturnal Blood Pressure Fall in Treated Elderly Hypertensives. Environ. Health Prev. Med. 2003, 8, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Paganini-Hill, A.; Bryant, N.; Corrada, M.M.; Greenia, D.E.; Fletcher, E.; Singh, B.; Floriolli, D.; Kawas, C.H.; Fisher, M.J. Blood Pressure Circadian Variation, Cognition and Brain Imaging in 90+ Year-Olds. Front. Aging Neurosci. 2019, 11, 54. [Google Scholar] [CrossRef]
- Sierra, C.; Salamero, M.; Domenech, M.; Camafort, M.; Coca, A. Circadian Blood Pressure Pattern and Cognitive Function in Middle-Aged Essential Hypertensive Patients. Rev. Española De Cardiol. (Engl. Ed.) 2015, 68, 157–158. [Google Scholar] [CrossRef]
- Suzuki, R.; Meguro, M.; Meguro, K. Sleep Disturbance Is Associated with Decreased Daily Activity and Impaired Nocturnal Reduction of Blood Pressure in Dementia Patients. Arch. Gerontol. Geriatr. 2011, 53, 323–327. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Bombelli, M.; Facchetti, R.; Mancia, G.; Grassi, G. Relationships between Residual Blood Pressure Variability and Cognitive Function in the General Population of the PAMELA Study. J. Clin. Hypertens. 2019, 21, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Shimo, Y.; Yamashiro, K.; Ogawa, T.; Nishioka, K.; Oyama, G.; Umemura, A.; Hattori, N. Association between Abnormal Nocturnal Blood Pressure Profile and Dementia in Parkinson’s Disease. Park. Relat. Disord. 2018, 46, 24–29. [Google Scholar] [CrossRef]
- White, W.B.; Jalil, F.; Wakefield, D.B.; Kaplan, R.F.; Bohannon, R.W.; Hall, C.B.; Moscufo, N.; Fellows, D.; Guttmann, C.R.G.; Wolfson, L. Relationships among Clinic, Home, and Ambulatory Blood Pressures with Small Vessel Disease of the Brain and Functional Status in Older People with Hypertension. Am. Heart J. 2018, 205, 21–30. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Akiguchi, I.; Oiwa, K.; Hayashi, M.; Ohara, T.; Ozasa, K. The Relationship between 24-Hour Blood Pressure Readings, Subcortical Ischemic Lesions and Vascular Dementia. Cerebrovasc. Dis. 2005, 19, 302–308. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ohara, T.; Nagakane, Y.; Tanaka, E.; Morii, F.; Koizumi, T.; Akiguchi, I. Chronic Kidney Disease, 24-h Blood Pressure and Small Vessel Diseases Are Independently Associated with Cognitive Impairment in Lacunar Infarct Patients. Hypertens. Res. 2011, 34, 1276–1282. [Google Scholar] [CrossRef]
- Yaneva-Sirakova, T.; Tarnovska-Kadreva, R.; Traykov, L.; Vassilev, D. [PP.17.16] Correlation of Dipping Status to Mild Cognitive Impairment in Hypertensive Patients. J. Hypertens. 2016, 34, e226. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Akiguchi, I.; Oiwa, K.; Hayashi, M.; Kasai, T.; Ozasa, K. Twenty-Four–Hour Blood Pressure and Mri as Predictive Factors for Different Outcomes in Patients with Lacunar Infarct. Stroke 2002, 33, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Lackland, D.T. Racial Differences in Hypertension: Implications for High Blood Pressure Management. Am. J. Med. Sci. 2014, 348, 135–138. [Google Scholar] [CrossRef]
- De Reuck, J.; Deramecourt, V.; Cordonnier, C.; Leys, D.; Pasquier, F.; Maurage, C.-A. Prevalence of Small Cerebral Bleeds in Patients with a Neurodegenerative Dementia: A Neuropathological Study. J. Neurol. Sci. 2011, 300, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.; Stanton, A.; Thijs, L.; Hinedi, K.; Atkins, N.; McClory, S.; Hond, E.D.; McCormack, P.; Staessen, J.A.; O’Brien, E. Superiority of Ambulatory over Clinic Blood Pressure Measurement in Predicting Mortality. Hypertension 2005, 46, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; Sineiro, E.; et al. Asleep Blood Pressure: Significant Prognostic Marker of Vascular Risk and Therapeutic Target for Prevention. Eur. Heart J. 2018, 39, 4159–4171. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Smolensky, M.H.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; et al. Cardiovascular Disease Risk Stratification by the Framigham Score Is Markedly Improved by Ambulatory Compared with Office Blood Pressure. Rev. Española De Cardiol. (Engl. Ed.) 2021, 74, 953–961. [Google Scholar] [CrossRef]
- ABC-H Investigators; Roush, G.C.; Fagard, R.H.; Salles, G.F.; Pierdomenico, S.D.; Reboldi, G.; Verdecchia, P.; Eguchi, K.; Kario, K.; Hoshide, S.; et al. Prognostic Impact from Clinic, Daytime, and Night-Time Systolic Blood Pressure in Nine Cohorts of 13,844 Patients with Hypertension. J. Hypertens. 2014, 32, 2332–2340; discussion 2340. [Google Scholar] [CrossRef]
- Staplin, N.; de la Sierra, A.; Ruilope, L.M.; Emberson, J.R.; Vinyoles, E.; Gorostidi, M.; Ruiz-Hurtado, G.; Segura, J.; Baigent, C.; Williams, B. Relationship between Clinic and Ambulatory Blood Pressure and Mortality: An Observational Cohort Study in 59,124 Patients. Lancet 2023, 401, 2041–2050. [Google Scholar] [CrossRef]
- Hermida, R.C.; Smolensky, M.H.; Ayala, D.E.; Portaluppi, F. Ambulatory Blood Pressure Monitoring (ABPM) as the Reference Standard for Diagnosis of Hypertension and Assessment of Vascular Risk in Adults. Chronobiol. Int. 2015, 32, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Fontao, M.J.; Mojón, A.; Fernández, J.R. Ambulatory Blood Pressure Monitoring: Importance of Sampling Rate and Duration—48 versus 24 Hours—on the Accurate Assessment of Cardiovascular Risk. Chronobiol. Int. 2013, 30, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Calvo, C.; Ayala, D.E.; Fernández, J.R.; Ruilope, L.M.; López, J.E. Evaluation of the Extent and Duration of the “ABPM Effect” in Hypertensive Patients. J. Am. Coll. Cardiol. 2002, 40, 710–717. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; Sineiro, E.; et al. Asleep (Not Night-Time) Blood Pressure as Prognostic Marker of Cardiovascular Risk. Eur. Heart J. 2019, 40, 789. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fernández, J.R.; Calvo, C. Comparison of the Efficacy of Morning versus Evening Administration of Telmisartan in Essential Hypertension. Hypertension 2007, 50, 715–722. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Calvo, C.; López, J.E.; Mojón, A.; Fontao, M.J.; Soler, R.; Fernández, J.R. Effects of Time of Day of Treatment on Ambulatory Blood Pressure Pattern of Patients with Resistant Hypertension. Hypertension 2005, 46, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Calvo, C.; Portaluppi, F.; Smolensky, M.H. Chronotherapy of Hypertension: Administration-Time-Dependent Effects of Treatment on the Circadian Pattern of Blood Pressure. Adv. Drug Deliv. Rev. 2007, 59, 923–939. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Hermida, R.C.; Ayala, D.E.; Tiseo, R.; Portaluppi, F. Administration–Time-Dependent Effects of Blood Pressure-Lowering Medications: Basis for the Chronotherapy of Hypertension. Blood Press. Monit. 2010, 15, 173–180. [Google Scholar] [CrossRef]
- Hermida, R.C.; Calvo, C.; Ayala, D.E.; Domínguez, M.J.; Covelo, M.; Fernández, J.R.; Mojón, A.; López, J.E. Administration Time–Dependent Effects of Valsartan on Ambulatory Blood Pressure in Hypertensive Subjects. Hypertension 2003, 42, 283–290. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojon, A.; Fernández, J.R. Influence of Time of Day of Blood Pressure–Lowering Treatment on Cardiovascular Risk in Hypertensive Patients with Type 2 Diabetes. Diabetes Care 2011, 34, 1270–1276. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojon, A.; Fernandez, J.R. Bedtime Dosing of Antihypertensive Medications Reduces Cardiovascular Risk in CKD. J. Am. Soc. Nephrol. 2011, 22, 2313–2321. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Domínguez-Sardiña, M.; Otero, A.; Moya, A.; Ríos, M.T.; Sineiro, E.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L. Bedtime Hypertension Treatment Improves Cardiovascular Risk Reduction: The Hygia Chronotherapy Trial. Eur. Heart J. 2020, 41, 4565–4576. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Fernández, J.R. Influence of Circadian Time of Hypertension Treatment on Cardiovascular Risk: Results of the MAPEC Study. Chronobiol. Int. 2010, 27, 1629–1651. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, R.L.; Lazar, N.A. The ASA Statement on P-Values: Context, Process, and Purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
First Author (Year) | ABPM Duration (Sampling Intervals) | Dipping Definition | ABPM Quality Control | Sleep/Wake Classification | Effect Size Calculation | Report of Dropout or Completion% | Control for Confounding Variables | Control for Timing of BP a Medication |
---|---|---|---|---|---|---|---|---|
Cani I (2022) [7] | 24 h (Not specified) | SBP a and DBP a | No | Fixed time | No | No | No | No |
Chen HF (2013) [13] | 24 h (30 min) | SBP a or DBP a | No | Fixed time | No | No | No | N/A (no medication) |
Cicconetti P (2003) [14] | 24 h (Day:15 min, Night: 20 min) | SBP a and DBP a | SBP a > 260 and <70, DBP a > 150 and <20 mmHg values excluded | Fixed time | No | No | No | N/A (no medication) |
Cicconetti P (2004) [15] | 24 h (Day: 15 min, Night: 20 min) | SBP a and DBP a | No | Fixed time | No | No | No | N/A (no medication) |
Daniela M (2023) [8] | 24 h (Day: 15 min, Night: 30 min) | SBP a | No | Fixed time | No | No | sex | No |
Ghazi L (2020) [9] | 24 h (Not specified) | SBP a | Excluded if <14 daytime readings or <6 nighttime readings | Fixed time | Yes (HR a) | No | clinic site, year, age, race, sex, education, marital status, income, smoking, alcohol use, illicit drug use, BMI a, use of antihypertensive medications, history of hypertension, diabetes mellitus, hyperlipidemia, anemia, C-reactive protein, urine protein-creatinine ratio, depression, stroke, GFR a | No |
Gregory MA (2016) [16] | 24 h (Day: 30 min, Night: 60 min) | SBP a | No | Fixed time | No | 93.5% completion | No | No |
Guo H (2010) [17] | 24 h (Day: 15 min, Night: 30 min) | SBP a | Excluded BP a readings beyond specified range | Fixed time | Yes (OR a) | No | age, sex, clinic SBP a, hypnotic treatment, type II diabetes, brachial-ankle pulse wave velocity, Apolipoprotein E ε4 allele | N/A (no medication) |
Kececi Savan D (2016) [18] | 24 h (Not specified) | MAP a | No | Fixed time | No | No | Stratified by sex | No |
Kim JE (2009) [19] | 24 h (60 min) | Not specified | No | Fixed time | Yes (OR a) | No | No | No |
Komori T (2016) [20] | 24 h (30 min) | SBP a | <20 valid awake readings and <6 valid sleep readings excluded after | Sleep diary | Yes (OR a) | 87% completion | Age, sex | No |
Li XF (2017) [21] | 24 h (Day: 30 min, Night: 60 min) | Not specified | omitted all presumed erroneous readings | Fixed time | Yes (Correlation) | No | No | No |
Mahmoud KS (2014) [22] | 24 h (Day: 30 min, Night: 60 min) | Not specified | No | Fixed time | Yes (Correlation) | No | No | No |
Ohya Y (2001) [23] | 24 h (30 min) | SBP a | Omitted all presumed erroneous readings | Fixed time | Yes (Correlation) | No | age, Barthel Index, hematocrit, previous stroke | N/A (no medication) |
Okuno J (2003) [24] | 24 h (Day: 30 min, Night: 60 min) | SBP a and DBP a, separately | No | Fixed time | Yes (OR a) | <1% not completion | age, sex, education level, diabetes mellitus, heart disease, hypercholesterolemia, current alcohol intake, current smoking, benzodiazepine use, BMI ≥ 25, antihypertensive drug use | No |
Paganini-Hill A (2019) [25] | 24 h (60 min) | SBP a and DBP a, separately | Omitted all presumed erroneous readings; <6 valid daytime or nighttime readings excluded | Fixed time | No | 81.2% completion | No | No |
Shim YS (2022) [10] | 24 h (Day: 30 min, Night: 60 min) | Not specified | No | Fixed time | Yes (Regression) | No | No | No |
Sierra C (2015) [26] | 24 h (Not specified) | SBP a | No | Not specified | No | No | No | N/A (no medication) |
Suzuki R (2011) [27] | 24 h (60 min) | Not specified | No | Fixed time | No | No | No | No |
Tadic M (2019) [28] | 24 h (20 min) | SBP a and DBP a, separately | Edited for artifact (no detail) | Not specified | No | No | No | No |
Tan X (2021) [11] | 24 h (Day: 20 or 30 min, Night: 20 or 60 min) | SBP a | Omitted all presumed erroneous readings | Fixed time | Yes (HR a) | No | BP a dipping status, age, BMI a, education, daytime SBP a, treatment of hypertension, diabetes, hyperlipidemia, physical activity level, smoking habit, living status | No |
Tanaka R (2018) [29] | 24 h (Day: 30 min, Night: 60 min) | Not specified | No | Fixed time | Yes (OR a) | 97.9% completion | age, sex, Hoehn and Yahr Scale, diabetes, history of stroke, cerebrovascular lesions, orthostatic hypotension | No |
White WB (2018) [30] | 24 h (Day: 15 min, Night: 30 min) | Not specified | >80% of programmed values; <2 h of missing data required | Fixed time | Regression coefficients | No | age, sex, LDL cholesterol, BMI a | No |
Xing Y (2021) [12] | 24 h (Day: 30 min, Night: 60 min) | SBP a | No | Fixed time | Yes (Correlation) | 71.7% completion | No | No |
Yamamoto Y (2002) [34] | 24 h (30 min) | SBP a,b | No | Fixed time | Yes (HR a) | No | age and sex | N/A (4-week washout) |
Yamamoto Y (2005) [31] | 24 h (30 min) | SBP a | No | Fixed time | Yes (OR a) | No | age, sex, PVH a, and nighttime SBP a | N/A (2–4 weeks washout) |
Yamamoto Y (2011) [32] | 24 h (30 min) | Not specified | No | Fixed time | Yes (OR a) | No | age, sex, 24 h SBP a, estimated GFR a, white matter lesion grade, lacunar infarct grade | N/A (>2 weeks washout) |
Yaneva-Sirakova T (2016) [33] | Not specified (Not specified) | Not specified | No | Not specified | No | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghayegh, S.; Hermida, R.C.; Smolensky, M.H.; Jimenez Gallardo, M.; Duran-Aniotz, C.; Slachevsky, A.; Behrens, M.I.; Aguillon, D.; Santamaria-Garcia, H.; García, A.M.; et al. Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies. Clocks & Sleep 2025, 7, 11. https://doi.org/10.3390/clockssleep7010011
Haghayegh S, Hermida RC, Smolensky MH, Jimenez Gallardo M, Duran-Aniotz C, Slachevsky A, Behrens MI, Aguillon D, Santamaria-Garcia H, García AM, et al. Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies. Clocks & Sleep. 2025; 7(1):11. https://doi.org/10.3390/clockssleep7010011
Chicago/Turabian StyleHaghayegh, Shahab, Ramon C. Hermida, Michael H. Smolensky, Mili Jimenez Gallardo, Claudia Duran-Aniotz, Andrea Slachevsky, Maria Isabel Behrens, David Aguillon, Hernando Santamaria-Garcia, Adolfo M. García, and et al. 2025. "Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies" Clocks & Sleep 7, no. 1: 11. https://doi.org/10.3390/clockssleep7010011
APA StyleHaghayegh, S., Hermida, R. C., Smolensky, M. H., Jimenez Gallardo, M., Duran-Aniotz, C., Slachevsky, A., Behrens, M. I., Aguillon, D., Santamaria-Garcia, H., García, A. M., Matallana, D., Ibáñez, A., & Hu, K. (2025). Critical Review of the Methodological Shortcoming of Ambulatory Blood Pressure Monitoring and Cognitive Function Studies. Clocks & Sleep, 7(1), 11. https://doi.org/10.3390/clockssleep7010011