Short-Term Prediction in an Emergency Healthcare Unit: Comparison Between ARIMA, ANN, and Logistic Map Models
Abstract
1. Introduction
2. Materials and Methods
3. Background: Related Studies on Prediction in Healthcare Service
4. Results
4.1. Data
4.2. ARIMA
4.3. ANN
4.4. Logistic Map
4.5. Result Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Forecasting methods | |
ANN | artificial neural network |
ARIMA | autoregressive integrated moving average |
ARMA | autoregressive moving average |
ARMAX | autoregressive moving average with exogenous inputs |
ES | exponential smoothing |
EV | explained variation |
FL | fuzzy logic |
GA | genetic algorithm |
HWSM | Holt-Winters seasonal multiplicative |
LR, NLR | linear, nonlinear regression |
ML | machine-learning |
MLFS | machine-learning feature selection |
MLNB | machine-learning naive Bayes |
MSARIMA | multivariate autoregressive integrated moving average |
SARIMA | seasonal autoregressive integrated moving average |
SARIMAX | seasonal autoregressive integrated moving average with exogenous inputs |
STLF | short-term load forecasting |
SVM | support vector machine |
SVR | support vector regression |
WMA | weighted moving average |
Quality measures | |
DS | direction of symmetry |
FSE | forecasting standard error |
MAD | mean absolute deviation |
MAE | mean absolute error |
MAPE | mean absolute percentage error |
MASE | mean absolute scale error |
MSE | mean quadratic error |
R2: coefficient of determination | |
RAE | relative absolute error |
RMAE | relative mean absolute error |
RMAP | relative mean absolute performance |
RMSE | root mean square error |
References
- Ordu, M.; Demir, E.; Tofallis, C. A comprehensive modelling framework to forecast the demand for all hospital services. Int. J. Health Plan. Manag. 2019, 34, 1257–1271. [Google Scholar] [CrossRef]
- Chaves, L.A.; Andrade, E.I.G.; Santos, A.D.F.D. Configuration of Health Care Networks in the SUS: Analysis Based on Primary and Hospital Care Components. Ciênc. Saúde Colet. 2024, 29, e18392022. [Google Scholar] [CrossRef]
- Ordu, M.; Demir, E.; Tofallis, C. A decision support system for demand and capacity modelling of an accident and emergency department. Health Syst. 2019, 9, 31–56. [Google Scholar] [CrossRef]
- Carvalho-Silva, M.; Monteiro, M.; Sá-Soares, F.; Nóbrega, S. Assessment of forecasting models for patients arrival at emergency department. Oper. Res. Health Care 2018, 18, 112–118. [Google Scholar] [CrossRef]
- Afilal, M.; Yalaoui, F.; Dugardin, F.; Amodeo, L.; Laplanche, D.; Blua, B. Emergency department flow: A new practical patients classification and forecasting daily attendance. IFAC-PapersOnLine 2016, 49, 721–726. [Google Scholar] [CrossRef]
- Vaccaro, A.; Getz, C.; Cohen, B.; Cole, B.; Donnally Iii, C. Practice management during the COVID-19 pandemic. J. Am. Acad. Orthop. Surg. 2020, 28, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.; Korzenowski, A.; Alvarado, M.; Sperafico, J.; Ackermann, A.; Mareth, T.; Scavarda, A. A systematic review on lean applications’ in emergency departments. Healthcare 2021, 9, 763. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Gijo, E.; Jnanesh, N. Productivity and performance improvement in the medical records department of a hospital: An application of lean six sigma. Int. J. Product. Perform. Manag. 2016, 65, 98–125. [Google Scholar] [CrossRef]
- Brentan, B.; Luvizotto, E., Jr.; Herrera, M.; Izquierdo, J.; Pérez-García, R. Hybrid regression model for near real-time urban water demand forecasting. J. Comput. Appl. Math. 2017, 309, 532–541. [Google Scholar] [CrossRef]
- Fortsch, S.; Khapalova, E. Reducing uncertainty in demand for blood. Oper. Res. Health Care 2016, 9, 16–28. [Google Scholar] [CrossRef]
- Gopakumar, S.; Tran, T.; Luo, W.; Phung, D.; Venkatesh, S. Forecasting daily patient outflow from a ward having no real-time clinical data. JMIR Med. Inform. 2016, 4, e25. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, R. Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and nonlinear time series forecast techniques. Energy 2018, 161, 821–831. [Google Scholar] [CrossRef]
- Gul, M.; Guneri, A.F. Planning the future of emergency departments: Forecasting ED patient arrivals by using regression and neural network models. Int. J. Ind. Eng. 2016, 23, 137–154. [Google Scholar]
- Ackermann, A.; Sellitto, M. Demand forecasting methods: A review of the literature. Innovar 2022, 32, 83–99. (In Portuguese) [Google Scholar] [CrossRef]
- Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Sellitto, M.; Balugani, E.; Lolli, F. Spare parts replacement policy based on chaotic models. IFAC-PapersOnLine 2018, 51, 945–950. [Google Scholar] [CrossRef]
- Tongal, H.; Berndtsson, R. Impact of complexity on daily and multi-step forecasting of streamflow with chaotic, stochastic, and black-box models. Stoch. Environ. Res. Risk Assess. 2017, 31, 661–682. [Google Scholar] [CrossRef]
- Jamil, M.; Zeeshan, M. A comparative analysis of Ann and chaotic approach-based wind speed prediction in India. Neural Comput. Appl. 2019, 31, 6807–6819. [Google Scholar] [CrossRef]
- Capeáns, R.; Sabuco, J.; Sanjuán, M.; Yorke, J. Partially controlling transient chaos in the Lorenz equations. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2017, 375, 20160211. [Google Scholar]
- Cortez, C.; Saydam, S.; Coulton, J.; Sammut, C. Alternative techniques for forecasting mineral commodity prices. Int. J. Min. Sci. Technol. 2018, 28, 309–322. [Google Scholar] [CrossRef]
- Cortez, C.; Hitch, M.; Sammut, C.; Coulton, J.; Shishko, R.; Saydam, S. Determining the embedding parameters governing long-term dynamics of copper prices. Chaos Solitons Fractals 2018, 111, 186–197. [Google Scholar] [CrossRef]
- Tarasova, V.; Tarasov, V. Logistic map with memory from economic model. Chaos Solitons Fractals 2017, 95, 84–91. [Google Scholar] [CrossRef]
- Capeáns, R.; Sabuco, J.; Sanjuán, M. Parametric partial control of chaotic systems. Nonlinear Dyn. 2016, 86, 869–876. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Schaefer, J.; Siluk, J.; Carvalho, P.; Pinheiro, J.; Schneider, P. Management Challenges and Opportunities for Energy Cloud Development and Diffusion. Energies 2020, 13, 4048. [Google Scholar] [CrossRef]
- Medeiros, D.; Hahn-Goldberg, S.; Aleman, D.; O’Connor, E. Planning capacity for mental health and addiction services in the emergency department: A discrete-event simulation approach. J. Healthc. Eng. 2019, 2019, 8973515. [Google Scholar] [CrossRef]
- Morbey, R.A.; Charlett, A.; Lake, I.; Mapstone, J.; Pebody, R.; Sedgwick, J.; Smith, G.E.; Elliot, A.J. Can syndromic surveillance help forecast winter hospital bed pressures in England? PLoS ONE 2020, 15, e0228804. [Google Scholar] [CrossRef]
- Benbelkacem, S.; Kadri, F.; Atmani, B.; Chaabane, S. Machine learning for emergency department management. Int. J. Inf. Syst. Serv. Sect. 2019, 11, 19–36. [Google Scholar] [CrossRef]
- Jilani, T.; Housley, G.; Figueredo, G.; Tang, P.; Hatton, J.; Shaw, D. Short and long term predictions of hospital emergency department attendances. Int. J. Med. Inform. 2019, 129, 167–174. [Google Scholar] [CrossRef]
- Klute, B.; Homb, A.; Chen, W.; Stelpflug, A. Predicting outpatient appointment demand using machine learning and traditional methods. J. Med. Syst. 2019, 43, 288. [Google Scholar] [CrossRef]
- Vollmer, M.A.; Glampson, B.; Mellan, T.; Mishra, S.; Mercuri, L.; Costello, C.; Klaber, R.; Cooke, G.; Flaxman, S.; Bhatt, S. A unified machine learning approach to time series forecasting applied to demand at emergency departments. BMC Emerg. Med. 2021, 21, 9. [Google Scholar] [CrossRef]
- Whitt, W.; Zhang, X. Forecasting arrivals and occupancy levels in an emergency department. Oper. Res. Health Care 2019, 21, 1–18. [Google Scholar] [CrossRef]
- Jiang, S.; Chin, K.; Tsui, K. A universal deep learning approach for modeling the flow of patients under different severities. Comput. Methods Programs Biomed. 2018, 154, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Chin, K.; Wang, L.; Qu, G.; Tsui, K. Modified genetic algorithm-based feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department. Expert Syst. Appl. 2017, 82, 216–230. [Google Scholar] [CrossRef]
- Juang, W.; Huang, S.; Huang, F.; Cheng, P.; Wann, S. Application of time series analysis in modelling and forecasting emergency department visits in a medical Centre in Southern Taiwan. BMJ Open 2017, 7, e018628. [Google Scholar] [CrossRef] [PubMed]
- Brito, F.; Resende, E.; Rodrigues, A.; Junqueira, M.; Barreto, V.; Destro Filho, J. Demand forecast in the emergency department in Minas Gerais, Brazil. Biosci. J. 2019, 35, 1640–1650. [Google Scholar] [CrossRef]
- Luo, L.; Luo, L.; Zhang, X.; He, X. Hospital daily outpatient visits forecasting using a combinatorial model based on ARIMA and SES models. BMC Health Serv. Res. 2017, 17, 469. [Google Scholar] [CrossRef] [PubMed]
- Villani, M.; Earnest, A.; Nanayakkara, N.; Smith, K.; De Courten, B.; Zoungas, S. Time series modelling to forecast prehospital EMS demand for diabetic emergencies. BMC Health Serv. Res. 2017, 17, 332. [Google Scholar] [CrossRef]
- Afilal, M.; Yalaoui, F.; Dugardin, F.; Amodeo, L.; Laplanche, D.; Blua, B. Forecasting the emergency department patients flow. J. Med. Syst. 2016, 40, 175. [Google Scholar] [CrossRef]
- Calegari, R.; Fogliatto, F.; Lucini, F.; Neyeloff, J.; Kuchenbecker, R.; Schaan, B. Forecasting daily volume and acuity of patients in the emergency department. Comput. Math. Methods Med. 2016, 2016, 3863268. [Google Scholar] [CrossRef]
- Davis, S.; Fard, N. Theoretical bounds and approximation of the probability mass function of future hospital bed demand. Health Care Manag. Sci. 2020, 23, 20–33. [Google Scholar] [CrossRef]
- El-Bouri, R.; Taylor, T.; Youssef, A.; Zhu, T.; Clifton, D.A. Machine learning in patient flow: A review. Prog. Biomed. Eng. 2021, 3, 022002. [Google Scholar] [CrossRef]
- Barros, O.; Weber, R.; Reveco, C. Demand analysis and capacity management for hospital emergencies using advanced forecasting models and stochastic simulation. Oper. Res. Perspect. 2021, 8, 100208. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.; Ji, M.; Xiang, W.; He, D. Medical service demand forecasting using a hybrid model based on ARIMA and self-adaptive filtering method. BMC Med. Inform. Decis. Mak. 2020, 20, 237. [Google Scholar] [CrossRef]
- Duarte, D.; Walshaw, C.; Ramesh, N. A comparison of time-series predictions for healthcare emergency department indicators and the impact of COVID-19. Appl. Sci. 2021, 11, 3561. [Google Scholar] [CrossRef]
- Martin, R.J.; Mousavi, R.; Saydam, C. Predicting emergency medical service call demand: A modern spatiotemporal machine learning approach. Oper. Res. Health Care 2021, 28, 100285. [Google Scholar] [CrossRef]
- Harrou, F.; Dairi, A.; Kadri, F.; Sun, Y. Forecasting emergency department overcrowding: A deep learning framework. Chaos Solitons Fractals 2020, 139, 110247. [Google Scholar] [CrossRef]
- Zhu, T.; Luo, L.; Zhang, X.; Shi, Y.; Shen, W. Time-series approaches for forecasting the number of hospital daily discharged inpatients. IEEE J. Biomed. Health Inform. 2015, 21, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.; Fransoo, J. Operations management research methodologies using quantitative modeling. Int. J. Oper. Prod. Manag. 2002, 22, 241–264. [Google Scholar] [CrossRef]
- Qiu, X.; Ren, Y.; Suganthan, P.; Amaratunga, G. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. J. 2017, 54, 246–255. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org. (accessed on 9 March 2021).
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice. OTexts, 2018. E-Book. Available online: https://otexts.com/fpp2/ (accessed on 20 October 2022).
- Maleki, A.; Nasseri, S.; Aminabad, M.S.; Hadi, M. Comparison of ARIMA and NNAR models for forecasting water treatment plant’s influent characteristics. KSCE J. Civ. Eng. 2018, 22, 3233–3245. [Google Scholar] [CrossRef]
- Cubilla-Montilla, M.; Ramírez, A.; Escudero, W.; Cruz, C. Analyzing and Forecasting Vessel Traffic Through the Panama Canal: A Comparative Study. Appl. Sci. 2025, 15, 8389. [Google Scholar] [CrossRef]
- Arvan, M.; Fahimnia, B.; Reisi, M.; Siemsen, E. Integrating human judgement into quantitative forecasting methods: A review. Omega 2019, 86, 237–252. [Google Scholar] [CrossRef]
- Sellitto, M.A.; Valladares, D.R.F.; Pastore, E.; Alfieri, A. Comparing competitive priorities of slow fashion and fast fashion operations of large retailers in an emerging economy. Glob. J. Flex. Syst. Manag. 2022, 23, 1–19. [Google Scholar] [CrossRef]
- Petropoulos, F.; Kourentzes, N.; Nikolopoulos, K.; Siemsen, E. Judgmental selection of forecasting models. J. Oper. Manag. 2018, 60, 34–46. [Google Scholar] [CrossRef]
Reference | Method | Independent Variables | Quality Measures |
---|---|---|---|
[26] | LR | Year | MAD |
[27] | LR | Day of the week and time of day. | |
[28] | MLNB, SVM | Month, day of the week, time of day. | MAE, RMSE, RAE |
[29] | FL, ARIMA, ANN | Month and day of the week. | MAPE, RMSE |
[30] | ML | Day of the month, day of the week, time of day. | FSE |
[31] | ML | Day of the month and day of the week. | MAE, MAPE |
[1] | ARIMA, ES, LR, STLF | Month of the year, holiday, day of the week, work shift, medical specialty, and demographics. | MASE |
[32] | SARIMAX | Temperature and holiday. | MSE |
[33,34] | GA, ANN, MLFS | Month of the year, day of the week, time of day, holidays, and climate features. | MAPE, RMSE |
[4,35,36] | ARIMA | Month, day of the week, and time of day. | MAPE |
[37] | SARIMA, ES | Day of the week. | MAPE |
[38] | SARIMA | Month, gender, type of diabetes, and type of emergency. | MAE, MSE, MAPE |
[5,39] | ARMA, ARIMA | Month of the year, week of the month, and day of the week. | RMAP, MAE, RMAE |
[40] | ES, HWMS, SARIMA, MSARIMA | Month, day of the week, temperature, rainfall, air speed, relative humidity, and hours of sunshine. | MAPE |
[41] | ARMA, ARIMA | Day of the week. | MAE |
[11] | ARIMA, ARMAX, NLR | Day of the week and available operational resources. | MAE, RMSE, MAPE |
[13] | ANN, NLR | Year, month, day of the week, holiday, and temperature. | , RMAE |
[42] | ANN | Year, month, and day of the week. | RMAE |
[43] | WMA, LR, ANN, SVR | Month, day of the month, day of the week, and time of day. | MSE, MAPE |
[44] | ARIMA, ANN | Month and day of the week. | MAE, RMSE, MAPE |
[45] | ARIMA, ANN, ML | Month and day of the week. | RMSE |
[46] | ANN | Day of the week and time of day. | MAD, MAPE |
[47] | ML, VAE | Day of the week and time of day. | , RMSE, MAE, EV |
[48] | SARIMA, MSARIMA | Day of the week and time of day | MSE, MAPE, DS |
Execution | s(Execution) | Visits (Norm) | SE | RMSE |
---|---|---|---|---|
1 | 0.912 | 1.000 | 0.008 | 0.06 |
6 | 0.804 | 0.802 | 0.000 | |
11 | 0.830 | 0.821 | 0.000 | |
16 | 0.753 | 0.717 | 0.001 | |
21 | 0.882 | 0.877 | 0.000 | |
26 | 0.899 | 1.000 | 0.010 | |
31 | 0.899 | 0.981 | 0.007 | |
36 | 0.900 | 0.943 | 0.002 | |
41 | 0.898 | 0.906 | 0.000 |
Execution | s(Execution) | Visits (Norm) | SE | RMSE |
---|---|---|---|---|
1 | 0.372 | 0.309 | 0.004 | 0.09 |
6 | 0.328 | 0.291 | 0.001 | |
11 | 0.229 | 0.327 | 0.010 | |
16 | 0.939 | 1.000 | 0.004 | |
21 | 0.414 | 0.291 | 0.015 | |
26 | 0.620 | 0.709 | 0.008 | |
31 | 0.381 | 0.509 | 0.016 | |
36 | 0.384 | 0.455 | 0.005 | |
41 | 0.404 | 0.473 | 0.005 |
Specialty | Method | Horizon | MAE | RMSE | MAPE |
---|---|---|---|---|---|
General Practitioners | ARIMA | One day | 0.30 | 0.30 | 0.31% |
Seven days | 27.32 | 34.59 | 28.13% | ||
14 days | 24.65 | 30.34 | 25.38% | ||
30 days | 22.48 | 28.19 | 23.14% | ||
ANN | One day | 2.42 | 2.42 | 2.54% | |
Seven days | 24.34 | 26.45 | 25.03% | ||
14 days | 20.8 | 24.28 | 20.93% | ||
30 days | 17.63 | 20.43 | 17.17% | ||
Logistic Map | One day | 2.12 | 2.12 | 2.17% | |
Pediatricians | ARIMA | One day | 13.62 | 13.62 | 32.72% |
Seven days | 17.17 | 17.36 | 41.99% | ||
14 days | 14.67 | 15.82 | 35.90% | ||
30 days | 15.89 | 16.84 | 38.88% | ||
ANN | One day | 2.57 | 2.57 | 10.11% | |
Seven days | 1.95 | 2.62 | 7.47% | ||
14 days | 4.05 | 5.98 | 14.87% | ||
30 days | 6.24 | 8.78 | 22.12% | ||
Logistic Map | One day | 2.20 | 2.20 | 7.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ackermann, A.E.F.; Fani, V.; Bandinelli, R.; Sellitto, M.A. Short-Term Prediction in an Emergency Healthcare Unit: Comparison Between ARIMA, ANN, and Logistic Map Models. Forecasting 2025, 7, 52. https://doi.org/10.3390/forecast7030052
Ackermann AEF, Fani V, Bandinelli R, Sellitto MA. Short-Term Prediction in an Emergency Healthcare Unit: Comparison Between ARIMA, ANN, and Logistic Map Models. Forecasting. 2025; 7(3):52. https://doi.org/10.3390/forecast7030052
Chicago/Turabian StyleAckermann, Andres Eberhard Friedl, Virginia Fani, Romeo Bandinelli, and Miguel Afonso Sellitto. 2025. "Short-Term Prediction in an Emergency Healthcare Unit: Comparison Between ARIMA, ANN, and Logistic Map Models" Forecasting 7, no. 3: 52. https://doi.org/10.3390/forecast7030052
APA StyleAckermann, A. E. F., Fani, V., Bandinelli, R., & Sellitto, M. A. (2025). Short-Term Prediction in an Emergency Healthcare Unit: Comparison Between ARIMA, ANN, and Logistic Map Models. Forecasting, 7(3), 52. https://doi.org/10.3390/forecast7030052