Improper Priors via Expectation Measures
Abstract
1. Introduction
1.1. Expectation Theory
1.2. Terminology and Notation
1.3. Organization of the Paper
2. Methods
2.1. Observations and Expectations
2.2. Expectations as s-Finite Measures
2.3. Point Processes
- For all , the function is a s-finite measure.
- For all bounded sets , the random variable is a count variable.
2.4. Poisson Distributions and Poisson Point Processes
- For all , the random variable is Poisson distributed with a mean value .
- If and are disjoint, then the random variables and are independent.
2.5. Measures and Kernels Associated with Statistical Models
2.6. Minimax Redundancy and Jeffreys’ Prior
2.7. Haar Measures
3. Results
3.1. Normalization and Conditioning for Expectation Measures
- 1.
- Observe a multiset of points as an instance of a point process.
- 2.
- Select a random point from the observed multiset.
3.2. Conditioning for Improrer Prior Measures
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, A. Improper Priors. Available online: https://andrewcharlesjones.github.io/journal/improper-priors.html (accessed on 29 August 2025).
- Akaike, H. The interpretation of improper prior distributions as limits of data dependent proper prior distributions. J. R. Stat. Soc. 1980, 42, 46–52. [Google Scholar] [CrossRef]
- Bioche, C.; Druilhet, P. Approximation of improper priors. Bernoulli 2016, 22, 1709–1728. [Google Scholar] [CrossRef]
- Harremoës, P. Probability via Expectation Measures. Entropy 2025, 27, 102. [Google Scholar] [CrossRef]
- Mellick, S. Point Processes on Locally Compact Groups and Their Cost. Ph.D. Thesis, Alfréd Rényi Institute of Mathematics, Budapest, Hungary, 2019. [Google Scholar]
- Abért, M.; Mellick, S. Point processes, cost, and the growth of rank in locally compact groups. Isr. J. Math. 2022, 251, 48–155. [Google Scholar] [CrossRef]
- Dash, S.; Staton, S. A Monad for Probabilistic Point Processes. arXiv 2021, arXiv:2101.10479. [Google Scholar] [CrossRef]
- Jacobs, B. From Multisets over Distributions to Distributions over Multisets. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, New York, NY, USA, 29 June–2 July 2021; LICS’21. pp. 1–13. [Google Scholar] [CrossRef]
- Everitt, B.S. The Cambridge Dictionary of Statistics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Whittle, P. Probability via Expectation, 3rd ed.; Springer texts in statistics; Springer: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Ross, S. A first Course in Probability, 8th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Hogg, R.; Tannis, E.; Zimmerman, D. Probability and Statistical Inference; Pearson Education Inc.: Harlow, UK, 2013. [Google Scholar]
- Adhikari, A.; Pitman, J. Probability for Data Science; Lecture notes; Berkeley, 2025; Available online: https://data140.org/textbook/content/README.html (accessed on 27 August 2025).
- Shiryaev, A.N. Probability; Springer: New York, NY, USA, 1996. [Google Scholar]
- Stark, H.; Woods, J.W. Probability and Random Processes with Applications to Signal Processing, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions, 4th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- nLab Authors. Conditional Expectation. Revision 28. 2025. Available online: https://ncatlab.org/nlab/show/conditional+expectation/28 (accessed on 26 September 2025).
- Velhinho, J. Topics of Measure Theory on Infinite Dimensional Spaces. Mathematics 2017, 5, 44. [Google Scholar] [CrossRef]
- O’Hagan, A. Kendall’s Advanced Theory of Statistics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2010; Volume 2B. [Google Scholar]
- Wu, Q.; Vos, P. Chapter 6—Inference and Prediction; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Rényi, A. On a new axiomatic theory of probability. Acta Math. Acad. Sci. Hung. 1955, 6, 185–335. [Google Scholar] [CrossRef]
- Rényi, A. Probability Theory; North-Holland: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Vákár, M.; Ong, L. On s-Finite Measures and Kernels. Working Paper, Utricht University. 2018. Available online: http://arxiv.org/abs/arXiv:1810.01837 (accessed on 26 September 2025).
- Lawvere. The Category of Probabilistic Mappings; Unpublished Lecture Notes; 1962; Available online: https://ncatlab.org/nlab/files/lawvereprobability1962.pdf (accessed on 10 October 2024).
- Giry, M. A categorical approach to probability theory. In Categorical Aspects of Topology and Analysis; Banaschewski, B., Ed.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 68–85. [Google Scholar]
- Janssen, S. Markov Jump Processes. Lecture Notes, Mathematisches Institut der Universität München, 2020. Preparatory Notes for a Chapter on Spatial Birth and Death Processes in a Course on Point Processes and Gibbs Measures (LMU, Winter 2019/20). Available online: https://www.mathematik.uni-muenchen.de/~jansen/jump-processes.pdf (accessed on 26 September 2025).
- Staton, S. Commutative Semantics for Probabilistic Programming. In Programming Languages and Systems; Yang, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 855–879. [Google Scholar]
- Affeldt, R.; Cohen, C.; Saito, A. Semantics of Probabilistic Programs using s-Finite Kernels in Coq. In Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, New York, NY, USA, 16–17 January 2023; CPP 2023. pp. 3–16. [Google Scholar] [CrossRef]
- Hirata, M.; Minamide, Y. S-Finite Measure Monad on Quasi-Borel Spaces. Arch. Form. Proofs 2025. Available online: https://www.isa-afp.org/entries/S_Finite_Measure_Monad.html (accessed on 24 September 2025).
- Lieshout, M.V. Spatial Point Process Theory. In Handbook of Spatial Statistics; Handbooks of Modern Statistical Methods; Chapman and Hall/CRC: Boca Raton, FL, USA, 2010; Chapter 16. [Google Scholar]
- Kallenberg, O. Random Measures; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Last, G.; Penrose, M. Lectures on the Poisson Process; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- McCullagh, P. What is a statistical model? Ann. Stat. 2002, 30, 1225–1310. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Kass, R.E.; Wasserman, L.A. The Selection of Prior Distributions by Formal Rules. J. Am. Stat. Assoc. 1996, 91, 1343–1370. [Google Scholar] [CrossRef]
- Csiszár, I.; Shields, P. Information Theory and Statistics: A Tutorial; Foundations and Trends in Communications and Information Theory; Now Publishers Inc.: Hanover, MA, USA, 2004. [Google Scholar]
- Grünwald, P. The Minimum Description Length Principle; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Ryabko, B.Y. Comments on “A source matching approach to finding minimax codes”. IEEE Trans. Inform. Theory 1981, 27, 780–781. [Google Scholar] [CrossRef]
- Csiszar, I. Sanov Property, Generalized I-Projection and a Conditional Limit Theorem. Ann. Probab. 1984, 12, 768–793. [Google Scholar] [CrossRef]
- van Erven, T.; Harremoës, P. Rényi Divergence and Kullback-Leibler Divergence. IEEE Trans Inform. Theory 2014, 60, 3797–3820. [Google Scholar] [CrossRef]
- Jordan, M.I. Jeffres Prior. Lecture Notes. Available online: https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture6.pdf (accessed on 29 August 2025).
- Ewing, B. What Is an Improper Prior? Available online: https://improperprior.com/pages/what-is-an-improper-prior/index.html (accessed on 29 August 2025).
- Hedayati, F.; Bartlett, P. Exchangeability Characterizes Optimality of Sequential Normalized Maximum Likelihood and Bayesian Prediction with Jeffreys Prior. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, La Palma, Spain, 21–23 April 2012; Volume 22, pp. 504–510. [Google Scholar]
- Bartlett, P.; Grünwald, P.; Harremoës, P.; Hedayati, F.; Kotłowski, W. Horizon-Independent Optimal Prediction with Log-Loss in Exponential Families. In Proceedings of the 26th Annual Conference on Learning Theory, Princeton, NJ, USA, 12–14 June 2013; Shalev-Shwartz, S., Steinwart, I., Eds.; Proceedings of Machine Learning Research. Volume 30, pp. 639–661. Available online: http://arxiv.org/abs/1305.4324 (accessed on 26 September 2025).
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; North-Holland Series in Statistics and Probability; North-Holland: Amsterdam, The Netherlands, 1982; Volume 1. [Google Scholar]
- Haar, A. Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math. 1933, 34, 147–169. [Google Scholar] [CrossRef]
- Weil, A. L’intégration Dans les Groupes Topologiques et ses Applications; Herman: Paris, France, 1940; Volume 869. [Google Scholar]
- Dowd, C.J. Notes on Haar Measures on Lie Groups. Lecture notes, Berkeley. 2023. Available online: https://math.berkeley.edu/~cjdowd/haar1.pdf (accessed on 26 September 2025).
- Taraldsen, G.; Tufto, J.; Lindqvist, B.H. Improper prior and improper posterior. Scand. J. Stat. 2022, 49, 969–991. [Google Scholar] [CrossRef]
- Grünwald, P.; Harremoës, P. Finiteness of Redundancy, Regret, Shtarkov Sums, and Jeffreys Integrals in Exponential Families. In Proceedings of the International Symposium for Information Theory, Seoul, Republic of Korea, 28 June–3 July 2009; IEEE: Seoul, Republic of Korea, 2009; pp. 714–718. [Google Scholar] [CrossRef]
- Grünwald, P.; Harremoës, P. Regret and Jeffreys Integrals in Exp. Families. In Proceedings of the Thirtieth Symposium on Information Theory in the Benelux, Eindhoven, The Netherlands, 20–21 May 2009; Tjalkens, T., Willems, F., Eds.; Werkgemeenschap voor Informatie- en Communicatietheorie: Amsterdam, The Netherlands, 2009; p. 143. [Google Scholar]
Probability Theory | Expectation Theory |
---|---|
Probability | Expected value |
Outcome | Instance |
Sample space | Multiset monad |
P-value | E-Value |
Probability measure | Expectation measure |
Binomial distribution | Poisson distribution |
Density | Intensity |
Bernoulli random variable | Count variable |
Empirical distribution | Empirical measure |
KL-divergence | Information divergence |
Uniform distribution | Poisson point process |
Number of Eyes | Frequency |
---|---|
One eye | 10 |
Two eyes | 15 |
Three eyes | 15 |
Four eyes | 7 |
Five eyes | 8 |
Six eyes | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harremoës, P. Improper Priors via Expectation Measures. Stats 2025, 8, 93. https://doi.org/10.3390/stats8040093
Harremoës P. Improper Priors via Expectation Measures. Stats. 2025; 8(4):93. https://doi.org/10.3390/stats8040093
Chicago/Turabian StyleHarremoës, Peter. 2025. "Improper Priors via Expectation Measures" Stats 8, no. 4: 93. https://doi.org/10.3390/stats8040093
APA StyleHarremoës, P. (2025). Improper Priors via Expectation Measures. Stats, 8(4), 93. https://doi.org/10.3390/stats8040093