A Mixture Model for Survival Data with Both Latent and Non-Latent Cure Fractions
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Formulation
2.2. Likelihood Function
2.3. Regression Model
3. Results and Discussions
3.1. Simulation Study
Algorithm 1: Obtaining the survival time of the proposed model |
|
3.2. An Illustrative Example
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, M.H.; Ibrahim, J.G.; Sinha, D. A new Bayesian model for survival data with a surviving fraction. J. Am. Stat. Assoc. 1999, 94, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Berkson, J.; Gage, R.P. Survival curve for cancer patients following treatment. J. Am. Stat. Assoc. 1952, 47, 501–515. [Google Scholar] [CrossRef]
- Yakovlev, A.Y.; Tsodikov, A.D. Stochastic Models of Tumor Latency and Their Biostatistical Applications; World Scientific: Singapore, 1996. [Google Scholar]
- Oliveira, M.R.; Moreira, F.; Louzada, F. The zero-inflated promotion cure rate model applied to financial data on time-to-default. Cogent Econ. Financ. 2017, 5, 1395950. [Google Scholar] [CrossRef]
- Chen, T.; Du, P. Promotion time cure rate model with nonparametric form of covariate effects. Stat. Med. 2018, 37, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Gómez, Y.M.; Gallardo, D.I.; Bourguignon, M.; Bertolli, E.; Calsavara, V.F. A general class of promotion time cure rate models with a new biological interpretation. Lifetime Data Anal. 2023, 29, 66–86. [Google Scholar] [CrossRef] [PubMed]
- Leão, J.; Leiva, V.; Saulo, H.; Tomazella, V. Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data. Stat. Med. 2018, 37, 4421–4440. [Google Scholar] [CrossRef] [PubMed]
- Cancho, V.G.; Barriga, G.; Leão, J.; Saulo, H. Survival model induced by discrete frailty for modeling of lifetime data with long-term survivors and change-point. Commun. Stat.-Theory Methods 2021, 50, 1161–1172. [Google Scholar] [CrossRef]
- Maller, R.A.; Zhou, X. Survival Analysis with Long-Term Survivors; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Rodrigues, J.; Cancho, V.G.; de Castro, M.; Louzada-Neto, F. On the unification of long-term survival models. Stat. Probab. Lett. 2009, 79, 753–759. [Google Scholar] [CrossRef]
- Larson, M.G.; Dinse, G.E. A Mixture Model for the Regression Analysis of Competing Risks Data. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1985, 34, 201–2011. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 1 September 2025).
- Dirick, G.C.L.; Baesens, B. Time to default in credit scoring using survival analysis: A benchmark study. J. Oper. Res. Soc. 2017, 68, 652–665. [Google Scholar] [CrossRef]
Scenario | ||||||||
---|---|---|---|---|---|---|---|---|
1.0 | −3.0 | 1.0 | 0.5 | 2.0 | 5.0 | |||
1.0 | −2.0 | 1.0 | 0.5 | 2.0 | 5.0 | |||
1.5 | −0.5 | 1.0 | 0.5 | 2.0 | 5.0 | |||
3.0 | −1.0 | 1.0 | 0.5 | 2.0 | 5.0 | |||
0.5 | −1.0 | 1.0 | 0.5 | 2.0 | 5.0 |
Cens. Per. | Par. | Scen. | n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50 | 100 | 200 | 500 | |||||||||||
Average | MSE | CP | Average | MSE | CP | Average | MSE | CP | Average | MSE | CP | |||
1.3710 | 1.8469 | 0.9880 | 1.2491 | 1.2125 | 0.9960 | 1.1354 | 0.3518 | 0.9710 | 1.0540 | 0.1083 | 0.9580 | |||
1.2335 | 0.9216 | 0.9940 | 1.1100 | 0.3526 | 0.9670 | 1.0693 | 0.1221 | 0.9780 | 1.0257 | 0.0398 | 0.9620 | |||
1.6732 | 0.5973 | 0.9580 | 1.5933 | 0.2629 | 0.9470 | 1.5620 | 0.1094 | 0.9690 | 1.5260 | 0.0394 | 0.9580 | |||
3.4201 | 5.4567 | 0.9790 | 3.2404 | 1.7302 | 0.9680 | 3.1478 | 0.7116 | 0.9760 | 3.0662 | 0.2258 | 0.9740 | |||
0.5795 | 0.1021 | 0.9620 | 0.5305 | 0.0383 | 0.9520 | 0.5102 | 0.0158 | 0.9660 | 0.5045 | 0.0062 | 0.9440 | |||
−3.3681 | 6.5650 | 0.9340 | −3.1403 | 0.5361 | 0.9750 | −3.0952 | 0.2522 | 0.9730 | −3.0424 | 0.0866 | 0.9550 | |||
−2.1772 | 0.7581 | 0.9660 | −2.0766 | 0.1884 | 0.9750 | −2.0472 | 0.1121 | 0.9480 | −2.0179 | 0.0408 | 0.9490 | |||
−0.5182 | 0.1624 | 0.9680 | −0.5022 | 0.0797 | 0.9580 | −0.5099 | 0.0403 | 0.9600 | −0.5064 | 0.0159 | 0.9650 | |||
−1.0742 | 0.2131 | 0.9720 | −1.025 | 0.0960 | 0.9610 | −1.0296 | 0.0515 | 0.9560 | −1.0145 | 0.0212 | 0.9530 | |||
−1.0555 | 0.1929 | 0.9820 | −1.0109 | 0.0906 | 0.9660 | −1.0209 | 0.0480 | 0.9560 | −1.0013 | 0.0198 | 0.9590 | |||
0.9545 | 4.2504 | 0.9920 | 1.0208 | 0.6388 | 0.9860 | 1.0219 | 0.3278 | 0.9700 | 1.0152 | 0.1103 | 0.9700 | |||
1.1378 | 1.0018 | 0.9770 | 1.0401 | 0.2696 | 0.9750 | 1.0289 | 0.1562 | 0.9540 | 1.0101 | 0.0599 | 0.9530 | |||
1.0426 | 0.3891 | 0.9630 | 1.0202 | 0.1912 | 0.9580 | 1.0273 | 0.0954 | 0.9490 | 1.0164 | 0.0368 | 0.9420 | |||
1.0947 | 0.4374 | 0.9590 | 1.0325 | 0.2171 | 0.9500 | 1.0354 | 0.0997 | 0.9470 | 1.0191 | 0.0407 | 0.9400 | |||
1.0430 | 0.3964 | 0.9660 | 1.0093 | 0.1981 | 0.9520 | 1.0390 | 0.0924 | 0.9540 | 1.0056 | 0.0379 | 0.9470 | |||
0.5596 | 0.5837 | 0.9810 | 0.5609 | 0.2174 | 0.9600 | 0.5144 | 0.0737 | 0.9580 | 0.5186 | 0.0304 | 0.9480 | |||
0.5572 | 0.3123 | 0.9760 | 0.5318 | 0.0973 | 0.9540 | 0.5134 | 0.0433 | 0.9540 | 0.5133 | 0.0158 | 0.9540 | |||
0.5473 | 0.1935 | 0.9650 | 0.5380 | 0.0622 | 0.9530 | 0.5261 | 0.0295 | 0.9490 | 0.5107 | 0.0103 | 0.9510 | |||
0.5666 | 0.2074 | 0.9710 | 0.5275 | 0.0672 | 0.9450 | 0.5227 | 0.0299 | 0.9550 | 0.5107 | 0.0110 | 0.9530 | |||
0.5556 | 0.1980 | 0.9710 | 0.5400 | 0.0607 | 0.9660 | 0.5205 | 0.0313 | 0.9480 | 0.5107 | 0.0105 | 0.9530 | |||
2.0725 | 0.0653 | 0.9470 | 2.0363 | 0.0283 | 0.9540 | 2.0172 | 0.0156 | 0.9370 | 2.0061 | 0.0053 | 0.9450 | |||
2.0763 | 0.0722 | 0.9460 | 2.0469 | 0.0331 | 0.9490 | 2.0235 | 0.0172 | 0.9510 | 2.0075 | 0.0061 | 0.9500 | |||
2.1217 | 0.1284 | 0.9320 | 2.0664 | 0.0568 | 0.9410 | 2.0349 | 0.0267 | 0.9370 | 2.0172 | 0.0093 | 0.9500 | |||
2.1047 | 0.0975 | 0.9350 | 2.0543 | 0.0459 | 0.9420 | 2.0312 | 0.021 | 0.9500 | 2.0121 | 0.0080 | 0.9500 | |||
2.1186 | 0.1076 | 0.9340 | 2.0651 | 0.0447 | 0.9450 | 2.0308 | 0.0203 | 0.9470 | 2.0126 | 0.0078 | 0.9610 | |||
5.0184 | 0.1564 | 0.9400 | 5.0157 | 0.0728 | 0.9490 | 5.0084 | 0.0391 | 0.9450 | 5.0048 | 0.0146 | 0.9580 | |||
5.0175 | 0.1547 | 0.9480 | 5.0218 | 0.0793 | 0.9510 | 5.0135 | 0.0421 | 0.9490 | 5.0087 | 0.0162 | 0.9560 | |||
5.0137 | 0.2481 | 0.9410 | 5.0318 | 0.1307 | 0.9530 | 5.0133 | 0.0607 | 0.9510 | 5.0088 | 0.0274 | 0.9500 | |||
5.0272 | 0.2071 | 0.9480 | 5.0150 | 0.1125 | 0.9460 | 5.0173 | 0.0513 | 0.9550 | 5.0040 | 0.0225 | 0.9470 | |||
5.0245 | 0.1903 | 0.9500 | 5.0297 | 0.0989 | 0.9520 | 5.0147 | 0.0522 | 0.9460 | 5.0084 | 0.0218 | 0.9540 | |||
1.2154 | 1.5844 | 0.9970 | 1.1788 | 0.9440 | 0.9940 | 1.1843 | 0.6120 | 0.9820 | 1.0666 | 0.1404 | 0.9630 | |||
1.2099 | 0.8959 | 0.9940 | 1.1414 | 0.4058 | 0.9750 | 1.0744 | 0.1500 | 0.9720 | 1.0351 | 0.0488 | 0.9690 | |||
1.6926 | 0.6867 | 0.9810 | 1.6120 | 0.2889 | 0.9540 | 1.5597 | 0.1193 | 0.9660 | 1.5353 | 0.0459 | 0.9550 | |||
3.3084 | 4.3520 | 0.9740 | 3.2556 | 2.1547 | 0.9740 | 3.1729 | 0.8767 | 0.9750 | 3.0969 | 0.2928 | 0.9710 | |||
0.5911 | 0.1344 | 0.9640 | 0.5345 | 0.0414 | 0.9580 | 0.5121 | 0.0162 | 0.9580 | 0.5062 | 0.0068 | 0.9450 | |||
−3.2250 | 6.5393 | 0.9450 | −3.1851 | 1.3014 | 0.9700 | −3.1135 | 0.3746 | 0.9690 | −3.0493 | 0.1088 | 0.9590 | |||
−2.1176 | 0.6513 | 0.9690 | −2.1042 | 0.2759 | 0.9720 | −2.0558 | 0.1312 | 0.9540 | −2.0192 | 0.0482 | 0.9530 | |||
−0.5378 | 0.1959 | 0.9640 | −0.5133 | 0.0925 | 0.9580 | −0.5138 | 0.0455 | 0.9620 | −0.5096 | 0.0181 | 0.9640 | |||
−1.0401 | 0.2475 | 0.9650 | −1.0198 | 0.1115 | 0.9490 | −1.0231 | 0.0568 | 0.9540 | −1.0089 | 0.0215 | 0.9570 | |||
−1.0707 | 0.2742 | 0.9810 | −1.0300 | 0.1091 | 0.9630 | −1.017 | 0.0563 | 0.9630 | −1.0091 | 0.0235 | 0.9570 | |||
0.9581 | 4.7612 | 0.9870 | 1.0900 | 1.4194 | 0.9860 | 1.0435 | 0.4529 | 0.9730 | 1.0066 | 0.1391 | 0.9720 | |||
1.0661 | 1.0329 | 0.9810 | 1.0544 | 0.3605 | 0.9690 | 1.0336 | 0.1756 | 0.9660 | 1.0103 | 0.0673 | 0.9510 | |||
1.0818 | 0.4512 | 0.9510 | 1.0378 | 0.2198 | 0.9520 | 1.0309 | 0.1042 | 0.9440 | 1.0199 | 0.0403 | 0.9540 | |||
1.0739 | 0.4803 | 0.9560 | 1.0396 | 0.2389 | 0.9520 | 1.0231 | 0.1100 | 0.9480 | 1.0146 | 0.0425 | 0.9560 | |||
1.0751 | 0.5271 | 0.9660 | 1.0301 | 0.2334 | 0.9590 | 1.0290 | 0.1079 | 0.9550 | 1.0101 | 0.0432 | 0.9560 | |||
0.5797 | 0.9074 | 0.9760 | 0.5615 | 0.2597 | 0.9630 | 0.5217 | 0.0918 | 0.9540 | 0.5121 | 0.0371 | 0.9560 | |||
0.5767 | 0.3737 | 0.9740 | 0.5536 | 0.1230 | 0.9510 | 0.5154 | 0.0466 | 0.9620 | 0.5176 | 0.0182 | 0.9490 | |||
0.5850 | 0.2265 | 0.9670 | 0.5439 | 0.0717 | 0.9600 | 0.5257 | 0.0328 | 0.9510 | 0.5115 | 0.0117 | 0.9590 | |||
0.5957 | 0.2584 | 0.9620 | 0.5392 | 0.0746 | 0.9560 | 0.5286 | 0.0330 | 0.9590 | 0.5087 | 0.0119 | 0.9570 | |||
0.6122 | 0.2545 | 0.9730 | 0.5385 | 0.0751 | 0.9620 | 0.5273 | 0.0347 | 0.9560 | 0.5143 | 0.0124 | 0.9590 | |||
2.0870 | 0.0716 | 0.9510 | 2.0410 | 0.0330 | 0.9560 | 2.0185 | 0.0168 | 0.9380 | 2.0052 | 0.0062 | 0.9490 | |||
2.0886 | 0.0884 | 0.9390 | 2.0458 | 0.0383 | 0.9490 | 2.0224 | 0.0196 | 0.9460 | 2.0068 | 0.0074 | 0.9470 | |||
2.1321 | 0.1642 | 0.9200 | 2.0728 | 0.0671 | 0.9400 | 2.0414 | 0.0309 | 0.9420 | 2.0170 | 0.0112 | 0.9550 | |||
2.1300 | 0.1407 | 0.9190 | 2.0577 | 0.0526 | 0.9430 | 2.0280 | 0.0248 | 0.9420 | 2.0141 | 0.0100 | 0.9520 | |||
2.1333 | 0.1357 | 0.9240 | 2.0682 | 0.0529 | 0.9390 | 2.0377 | 0.0252 | 0.9500 | 2.0145 | 0.0093 | 0.9490 | |||
4.9806 | 0.1624 | 0.9400 | 5.0018 | 0.0836 | 0.9490 | 5.0068 | 0.0422 | 0.9580 | 5.0029 | 0.0165 | 0.9550 | |||
4.9976 | 0.1936 | 0.9400 | 5.0233 | 0.1021 | 0.9430 | 5.0153 | 0.0497 | 0.9540 | 5.0097 | 0.0192 | 0.9530 | |||
5.0235 | 0.2918 | 0.9430 | 5.0168 | 0.1504 | 0.9580 | 5.0196 | 0.0782 | 0.9400 | 5.0178 | 0.0337 | 0.9470 | |||
5.0132 | 0.2472 | 0.9340 | 5.0125 | 0.1197 | 0.9550 | 5.0122 | 0.0648 | 0.9500 | 5.0043 | 0.0254 | 0.9530 | |||
5.0442 | 0.2466 | 0.9450 | 5.0295 | 0.1313 | 0.9400 | 5.0155 | 0.0628 | 0.9510 | 5.0100 | 0.0275 | 0.9480 | |||
1.1062 | 2.2105 | 0.9710 | 1.0792 | 1.1345 | 0.9690 | 1.1302 | 0.7752 | 0.9680 | 1.1337 | 0.3702 | 0.9680 | |||
1.1656 | 0.9523 | 0.9800 | 1.1667 | 0.7038 | 0.9710 | 1.1164 | 0.3507 | 0.9720 | 1.0660 | 0.1035 | 0.9650 | |||
1.7216 | 0.9721 | 0.9750 | 1.6745 | 0.6094 | 0.9630 | 1.5967 | 0.1942 | 0.9670 | 1.5572 | 0.0723 | 0.9600 | |||
3.0242 | 4.1212 | 0.9450 | 3.2559 | 3.8182 | 0.9670 | 3.2553 | 1.9640 | 0.9730 | 3.1657 | 0.7049 | 0.9730 | |||
0.6328 | 0.2201 | 0.9770 | 0.5271 | 0.0877 | 0.9660 | 0.5232 | 0.0240 | 0.9700 | 0.5100 | 0.0093 | 0.9410 | |||
−3.5985 | 16.9135 | 0.9000 | −3.2110 | 3.6533 | 0.9430 | −3.0845 | 0.5922 | 0.9590 | −3.0518 | 0.1701 | 0.9600 | |||
−2.1456 | 1.5666 | 0.9560 | −2.1176 | 0.7313 | 0.9510 | −2.0741 | 0.2218 | 0.9590 | −2.0260 | 0.0717 | 0.9510 | |||
−0.4919 | 0.3014 | 0.9500 | −0.5270 | 0.1350 | 0.9540 | −0.5131 | 0.0617 | 0.9610 | −0.5139 | 0.0243 | 0.9650 | |||
−0.9959 | 0.3337 | 0.9550 | −1.0086 | 0.1298 | 0.9620 | −1.0243 | 0.0709 | 0.9600 | −1.0120 | 0.0273 | 0.9600 | |||
−1.0756 | 0.4171 | 0.9670 | −1.0774 | 0.2440 | 0.9520 | −1.0309 | 0.1026 | 0.9650 | −1.0173 | 0.0414 | 0.9490 | |||
0.8974 | 11.2328 | 0.9760 | 1.0723 | 2.8033 | 0.9890 | 1.0637 | 0.6524 | 0.9720 | 1.0227 | 0.1880 | 0.9630 | |||
1.1742 | 3.3208 | 0.9840 | 1.0766 | 0.7790 | 0.9690 | 1.0575 | 0.2456 | 0.9630 | 1.0142 | 0.0896 | 0.9590 | |||
1.1063 | 0.6261 | 0.9580 | 1.0884 | 0.3041 | 0.9590 | 1.0245 | 0.1325 | 0.9580 | 1.0196 | 0.0486 | 0.9600 | |||
1.1503 | 0.6570 | 0.9560 | 1.0643 | 0.2656 | 0.9560 | 1.0447 | 0.1301 | 0.9550 | 1.0216 | 0.0485 | 0.9560 | |||
1.0921 | 0.6976 | 0.9810 | 1.0690 | 0.3869 | 0.9460 | 1.0390 | 0.1588 | 0.9560 | 1.0073 | 0.0582 | 0.9600 | |||
0.5918 | 1.5797 | 0.9240 | 0.6365 | 0.4378 | 0.9690 | 0.5353 | 0.1197 | 0.9640 | 0.5201 | 0.0481 | 0.9540 | |||
0.6477 | 0.6137 | 0.9820 | 0.5863 | 0.1824 | 0.9580 | 0.5210 | 0.0663 | 0.9540 | 0.5167 | 0.0221 | 0.9570 | |||
0.6290 | 0.3468 | 0.9690 | 0.5613 | 0.0981 | 0.9530 | 0.5260 | 0.0434 | 0.9460 | 0.5132 | 0.0146 | 0.9460 | |||
0.6152 | 0.3375 | 0.9680 | 0.5438 | 0.0950 | 0.9420 | 0.5253 | 0.0355 | 0.9640 | 0.5120 | 0.0139 | 0.9510 | |||
0.6265 | 0.4351 | 0.9830 | 0.5748 | 0.1286 | 0.9610 | 0.5335 | 0.0522 | 0.9490 | 0.5213 | 0.0176 | 0.9590 | |||
2.1724 | 0.1398 | 0.9240 | 2.0832 | 0.0569 | 0.9320 | 2.0336 | 0.0216 | 0.9530 | 2.0070 | 0.0086 | 0.9600 | |||
2.1652 | 0.1356 | 0.9300 | 2.0651 | 0.0616 | 0.9390 | 2.0326 | 0.0272 | 0.9450 | 2.0077 | 0.0104 | 0.9490 | |||
2.2008 | 0.2610 | 0.9090 | 2.0991 | 0.1030 | 0.9310 | 2.0518 | 0.0449 | 0.9470 | 2.0185 | 0.0179 | 0.9350 | |||
2.2064 | 0.2160 | 0.9220 | 2.0892 | 0.0823 | 0.9360 | 2.0391 | 0.0333 | 0.9580 | 2.0099 | 0.0142 | 0.9430 | |||
2.1610 | 0.1840 | 0.9240 | 2.0801 | 0.0813 | 0.9320 | 2.0427 | 0.0367 | 0.9480 | 2.0146 | 0.0134 | 0.9530 | |||
4.8033 | 0.2512 | 0.9100 | 4.9119 | 0.1367 | 0.9300 | 4.9648 | 0.0612 | 0.9510 | 4.9956 | 0.0264 | 0.9580 | |||
4.8668 | 0.2699 | 0.9260 | 4.9750 | 0.1591 | 0.9400 | 4.9998 | 0.0781 | 0.9560 | 5.0082 | 0.0334 | 0.9590 | |||
4.9333 | 0.4564 | 0.9290 | 5.0227 | 0.2816 | 0.9440 | 5.0163 | 0.1388 | 0.9450 | 5.0163 | 0.0650 | 0.9410 | |||
4.8761 | 0.3553 | 0.9280 | 4.9811 | 0.2026 | 0.9400 | 5.0069 | 0.1046 | 0.9480 | 5.0062 | 0.0436 | 0.9530 | |||
4.9788 | 0.4640 | 0.9290 | 5.0235 | 0.2677 | 0.9420 | 5.0125 | 0.1282 | 0.9510 | 5.0170 | 0.0575 | 0.9450 |
Covariates | Parameter | Estimate | Standard Error | 95% CI |
---|---|---|---|---|
Intercept | −4.040 | 1.002 | (−6.004; −2.076) | |
Credit limit | 0.209 | 0.104 | (0.005; 0.413) | |
Gender 1 | ||||
Male | 1.027 | 0.142 | (0.749; 1.305) | |
Social class 2 | ||||
B | 0.433 | 0.221 | (−0.001; 0.867) | |
C | 0.863 | 0.226 | (0.419; 1.306) | |
D | 0.765 | 0.224 | (0.326; 1.204) | |
E | 1.423 | 0.224 | (0.985; 1.861) | |
Marital status 3 | ||||
Married | 1.325 | 0.174 | (0.984; 1.666) | |
widowed/separated | 0.959 | 0.174 | (0.618; 1.301) | |
Age | 0.013 | 0.011 | (−0.009; 0.035) | |
3.386 | 0.312 | (2.827; 4.056) 4 | ||
1.283 | 0.043 | (1.202; 1.367) 4 | ||
9.956 | 0.378 | (9.243; 10.725) 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, E.Y.; Almeida, F.M.; Cardial, M.R.P. A Mixture Model for Survival Data with Both Latent and Non-Latent Cure Fractions. Stats 2025, 8, 82. https://doi.org/10.3390/stats8030082
Nakano EY, Almeida FM, Cardial MRP. A Mixture Model for Survival Data with Both Latent and Non-Latent Cure Fractions. Stats. 2025; 8(3):82. https://doi.org/10.3390/stats8030082
Chicago/Turabian StyleNakano, Eduardo Yoshio, Frederico Machado Almeida, and Marcílio Ramos Pereira Cardial. 2025. "A Mixture Model for Survival Data with Both Latent and Non-Latent Cure Fractions" Stats 8, no. 3: 82. https://doi.org/10.3390/stats8030082
APA StyleNakano, E. Y., Almeida, F. M., & Cardial, M. R. P. (2025). A Mixture Model for Survival Data with Both Latent and Non-Latent Cure Fractions. Stats, 8(3), 82. https://doi.org/10.3390/stats8030082