A Note on the Robust Modification of the Ordered-Heterogeneity Test
Abstract
:1. Introduction
- OH1: ordering of the groups according to the sample means and test based on the expected ranks (1, 2, …, k);
- OH2: ordering of the groups according to the mean ranks and test based on the expected ranks (1, 2, …, k);
- OH3: ordering of the groups according to the sample means and test based on the maximum rank correlation out of the 2k−1 − 1 possible expected ranks;
- OH4: ordering of the groups according to the mean ranks and test based on the maximum rank correlation out of the 2k−1 − 1 possible expected ranks.
2. Materials and Methods
3. Results
3.1. Simulation Study
3.2. Example
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
df | degrees of freedom |
OH | ordered heterogeneity |
References
- Ruberg, S.J. Dose response studies. II. Analysis and interpretation. J. Biopharm. Stat. 1995, 5, 15–42. [Google Scholar] [CrossRef] [PubMed]
- Rice, W.R.; Gaines, S.D. Extending nondirectional heterogeneity tests to evaluate simply ordered alternative hypotheses. Proc. Natl. Acad. Sci. USA 1994, 91, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Rice, W.R.; Gaines, S.D. The ordered-heterogeneity family of tests. Biometrics 1994, 50, 746–752. [Google Scholar] [CrossRef]
- Neuhäuser, M.; Ruxton, G.D. The Statistical Analysis of Small Data Sets; Oxford University Press: Oxford, UK, 2024. [Google Scholar]
- Neuhäuser, M.; Hothorn, L.A. A robust modification of the ordered-heterogeneity test. J. Appl. Stat. 2006, 33, 721–727. [Google Scholar] [CrossRef]
- Bonnini, S.; Assegie, G.M.; Trzcinska, K. Review about the permutation approach in hypothesis testing. Mathematics 2024, 12, 2617. [Google Scholar] [CrossRef]
- Neuhäuser, M.; Ruxton, G.D. The choice between Pearson’s χ2 test and Fisher’s exact test for 2 × 2 tables. Pharm. Stat. 2025, 24, e70012. [Google Scholar] [CrossRef] [PubMed]
- Marozzi, M. Some remarks about the number of permutations one should consider to perform a permutation test. Statistica 2004, 64, 193–201. [Google Scholar]
- Jonckheere, A.R. A distribution-free k-sample test against ordered alternatives. Biometrika 1954, 41, 133–145. [Google Scholar] [CrossRef]
- Shan, G.; Young, D.; Kang, L. A new powerful nonparametric rank test for ordered alternative problem. PLoS ONE 2014, 9, e112924. [Google Scholar] [CrossRef] [PubMed]
- Cuzick, J. A Wilcoxon-type test for trend. Stat. Med. 1985, 4, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Shirley, E. A non-parametric equivalent of Williams’ test for contrasting increasing dose levels of a treatment. Biometrics 1977, 33, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Good, P.I. Permutation, Parametric and Bootstrap Tests of Hypotheses, 3rd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Lachin, J.M. Statistical considerations in the intent-to-treat principle. Control. Clin. Trials 2000, 21, 167–189. [Google Scholar] [CrossRef] [PubMed]
- Page, E.B. Ordered hypotheses for multiple treatments: A significance test for linear ranks. J. Am. Stat. Assoc. 1963, 58, 216–230. [Google Scholar] [CrossRef]
- Bonnini, S.; Borghese, M.; Giacalone, M. Simultaneous marginal homogeneity versus directional alternatives for multivariate binary data with application to circular economy assessment. Appl. Stoch. Models Bus. Ind. 2024, 40, 389–407. [Google Scholar] [CrossRef]
- Bisschop, K.; Blankers, T.; Marien, J.; Mariën, J.; Wortel, M.T.; Egas, M.; Groot, A.T.; Visser, M.E.; Ellers, J. Population bottleneck has only marginal effect on fitness evolution and its repeatability in dioecious Caenorhabditis elegans. Evolution 2022, 76, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- ter Braak, C.J.F. Permutation versus bootstrap significance tests in multiple regression and ANOVA. In Bootstraping and Related Techniques; Jöckel, K.-H., Rothe, G., Sendler, W., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 79–85. [Google Scholar]
- Potter, D.M. A permutation test for inference in logistic regression with small- and moderate-sized data sets. Stat. Med. 2005, 24, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Pesarin, F. Multivariate Permutation Tests; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Pesarin, F.; Salmaso, L. Permutation Tests for Complex Data: Theory, Applications and Software; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Brunner, E.; Bathke, A.C.; Konietschke, F. Rank and Pseudo-Rank Procedures for Independent Observations in Factorial Designs; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Basso, D.; Pesarin, F.; Salmaso, L.; Solari, A. Permutation Tests for Stochastic Ordering and ANOVA; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Westfall, P.H.; Young, S.S. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Mehrotra, D.V. Improving the Brown-Forsythe solution to the generalized Behrens-Fisher problem. Commun. Stat.–Comput. Simul. 1997, 26, 1139–1145. [Google Scholar] [CrossRef]
- Hartung, J.; Argac, D.; Makambi, K.H. Small sample properties of tests on homogeneity in one-way ANOVA and meta-analysis. Stat. Pap. 2002, 43, 197–235. [Google Scholar] [CrossRef]
Profile () | Jonckheere | Shan et al. | OH1 | OH2 | OH3 | OH4 |
---|---|---|---|---|---|---|
Standard normal distribution | ||||||
0, 0, 0 | 0.052 | 0.052 | 0.053 | 0.053 | 0.052 | 0.052 |
0, 0, 1.2 | 0.78 | 0.81 | 0.47 | 0.47 | 0.82 | 0.82 |
0, 0.3, 1.2 | 0.80 | 0.81 | 0.67 | 0.67 | 0.79 | 0.79 |
0, 0.6, 1.2 | 0.80 | 0.81 | 0.75 | 0.74 | 0.78 | 0.78 |
0, 0.9, 1.2 | 0.80 | 0.81 | 0.67 | 0.67 | 0.79 | 0.79 |
0, 1.2, 1.2 | 0.78 | 0.81 | 0.47 | 0.47 | 0.82 | 0.82 |
Exponential distribution with mean 1 | ||||||
0, 0, 0 | 0.046 | 0.046 | 0.049 | 0.048 | 0.049 | 0.047 |
0, 0, 1.2 | 0.91 | 0.94 | 0.49 | 0.50 | 0.94 | 0.94 |
0, 0.3, 1.2 | 0.94 | 0.95 | 0.73 | 0.79 | 0.92 | 0.93 |
0, 0.6, 1.2 | 0.94 | 0.94 | 0.82 | 0.89 | 0.91 | 0.92 |
0, 0.9, 1.2 | 0.93 | 0.93 | 0.72 | 0.81 | 0.89 | 0.91 |
0, 1.2, 1.2 | 0.88 | 0.91 | 0.48 | 0.48 | 0.89 | 0.89 |
t distribution with df = 3 | ||||||
0, 0, 0 | 0.044 | 0.046 | 0.047 | 0.045 | 0.047 | 0.046 |
0, 0, 1.2 | 0.61 | 0.64 | 0.41 | 0.42 | 0.63 | 0.63 |
0, 0.3, 1.2 | 0.63 | 0.64 | 0.49 | 0.54 | 0.59 | 0.61 |
0, 0.6, 1.2 | 0.64 | 0.64 | 0.53 | 0.58 | 0.57 | 0.60 |
0, 0.9, 1.2 | 0.63 | 0.64 | 0.49 | 0.54 | 0.59 | 0.61 |
0, 1.2, 1.2 | 0.61 | 0.64 | 0.40 | 0.41 | 0.63 | 0.64 |
Profile () | Jonckheere | Shan et al. | OH1 | OH2 | OH3 | OH4 |
---|---|---|---|---|---|---|
Standard normal distribution | ||||||
0, 0, 0, 0 | 0.050 | 0.051 | 0.048 | 0.048 | 0.051 | 0.050 |
0, 0, 0, 1.2 | 0.73 | 0.77 | 0.47 | 0.47 | 0.74 | 0.74 |
0, 0, 0.8, 1.2 | 0.90 | 0.90 | 0.85 | 0.85 | 0.90 | 0.90 |
0, 0, 1.2, 1.2 | 0.93 | 0.94 | 0.82 | 0.82 | 0.96 | 0.96 |
0, 0.4, 0.8, 1.2 | 0.85 | 0.85 | 0.82 | 0.81 | 0.81 | 0.81 |
0, 1.2, 1.2, 1.2 | 0.73 | 0.78 | 0.47 | 0.47 | 0.74 | 0.74 |
Exponential distribution with mean 1 | ||||||
0, 0, 0, 0 | 0.052 | 0.053 | 0.052 | 0.052 | 0.051 | 0.052 |
0, 0, 0, 1.2 | 0.87 | 0.92 | 0.49 | 0.50 | 0.89 | 0.89 |
0, 0, 0.8, 1.2 | 0.98 | 0.98 | 0.91 | 0.95 | 0.97 | 0.98 |
0, 0, 1.2, 1.2 | 0.98 | 0.99 | 0.86 | 0.87 | 0.98 | 0.99 |
0, 0.4, 0.8, 1.2 | 0.97 | 0.97 | 0.89 | 0.95 | 0.93 | 0.95 |
0, 1.2, 1.2, 1.2 | 0.83 | 0.88 | 0.49 | 0.49 | 0.83 | 0.83 |
t distribution with df = 3 | ||||||
0, 0, 0, 0 | 0.048 | 0.049 | 0.047 | 0.048 | 0.046 | 0.048 |
0, 0, 0, 1.2 | 0.56 | 0.59 | 0.39 | 0.41 | 0.54 | 0.56 |
0, 0, 0.8, 1.2 | 0.75 | 0.75 | 0.64 | 0.70 | 0.71 | 0.74 |
0, 0, 1.2, 1.2 | 0.79 | 0.81 | 0.68 | 0.72 | 0.80 | 0.83 |
0, 0.4, 0.8, 1.2 | 0.68 | 0.68 | 0.58 | 0.64 | 0.59 | 0.63 |
0, 1.2, 1.2, 1.2 | 0.56 | 0.60 | 0.39 | 0.40 | 0.54 | 0.56 |
Profile () | Jonckheere | Shan et al. | OH1 | OH2 | OH3 | OH4 |
---|---|---|---|---|---|---|
Standard normal distribution | ||||||
0, 0, 0, 0, 0 | 0.047 | 0.049 | 0.049 | 0.047 | 0.049 | 0.049 |
0, 0, 0, 0, 1.2 | 0.68 | 0.72 | 0.44 | 0.44 | 0.65 | 0.65 |
0, 0, 0, 1.2, 1.2 | 0.95 | 0.96 | 0.90 | 0.90 | 0.97 | 0.97 |
0, 0, 1.2, 1.2, 1.2 | 0.95 | 0.96 | 0.91 | 0.91 | 0.97 | 0.97 |
0, 1.2, 1.2, 1.2, 1.2 | 0.68 | 0.72 | 0.43 | 0.43 | 0.65 | 0.65 |
0, 0, 0.6, 1.2, 1.2 | 0.95 | 0.96 | 0.95 | 0.95 | 0.96 | 0.96 |
0, 0.3, 0.6. 0.9, 1.2 | 0.88 | 0.89 | 0.86 | 0.85 | 0.85 | 0.85 |
Exponential distribution with mean 1 | ||||||
0, 0, 0, 0, 0 | 0.051 | 0.052 | 0.051 | 0.049 | 0.053 | 0.050 |
0, 0, 0, 0, 1.2 | 0.83 | 0.88 | 0.48 | 0.48 | 0.80 | 0.80 |
0, 0, 0, 1.2, 1.2 | 0.99 | 0.995 | 0.93 | 0.94 | 0.99 | 0.997 |
0, 0, 1.2, 1.2, 1.2 | 0.99 | 0.99 | 0.92 | 0.93 | 0.99 | 0.99 |
0, 1.2, 1.2, 1.2, 1.2 | 0.79 | 0.84 | 0.46 | 0.46 | 0.75 | 0.74 |
0, 0, 0.6, 1.2, 1.2 | 0.99 | 0.995 | 0.98 | 0.99 | 0.99 | 0.99 |
0, 0.3, 0.6, 0.9, 1.2 | 0.99 | 0.98 | 0.93 | 0.97 | 0.94 | 0.97 |
t distribution with df = 3 | ||||||
0, 0, 0, 0, 0 | 0.046 | 0.046 | 0.049 | 0.048 | 0.049 | 0.049 |
0, 0, 0, 0, 1.2 | 0.53 | 0.55 | 0.37 | 0.37 | 0.49 | 0.50 |
0, 0, 0, 1.2, 1.2 | 0.87 | 0.86 | 0.76 | 0.81 | 0.82 | 0.87 |
0, 0, 1.2, 1.2, 1.2 | 0.84 | 0.86 | 0.76 | 0.82 | 0.82 | 0.87 |
0, 1.2, 1.2, 1.2, 1.2 | 0.53 | 0.56 | 0.37 | 0.38 | 0.49 | 0.50 |
0, 0, 0.6, 1.2, 1.2 | 0.86 | 0.86 | 0.77 | 0.84 | 0.80 | 0.84 |
0, 0.3, 0.6, 0.9, 1.2 | 0.74 | 0.74 | 0.64 | 0.70 | 0.64 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuhäuser, M.; Schmitt, S. A Note on the Robust Modification of the Ordered-Heterogeneity Test. Stats 2025, 8, 47. https://doi.org/10.3390/stats8020047
Neuhäuser M, Schmitt S. A Note on the Robust Modification of the Ordered-Heterogeneity Test. Stats. 2025; 8(2):47. https://doi.org/10.3390/stats8020047
Chicago/Turabian StyleNeuhäuser, Markus, and Sabrina Schmitt. 2025. "A Note on the Robust Modification of the Ordered-Heterogeneity Test" Stats 8, no. 2: 47. https://doi.org/10.3390/stats8020047
APA StyleNeuhäuser, M., & Schmitt, S. (2025). A Note on the Robust Modification of the Ordered-Heterogeneity Test. Stats, 8(2), 47. https://doi.org/10.3390/stats8020047