New Methods for Multivariate Normal Moments
Abstract
1. Introduction
2. Methods
3. The Step Down Rule and the Method of Successive Specialisation
4. Bivariate Moments of Soper [8] and Isserlis [6]
5. Successive Generalisation Using Quasi-Differential Operators
6. The Multinomial Method
7. Trivariate Moments
8. Moments of Dimension 4
9. Moments of
10. Discussion
11. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornish, E.A.; Fisher, R.A. Moments and cumulants in the specification of distributions. Rev. L’Inst. Int. Stat. 1937, 5, 307–320, Erratum in Collect. Pap. R.A. Fish. 1937, 4. [Google Scholar] [CrossRef]
- Withers, C.S. Asymptotic expansions for distributions and quantiles with power series cumulants. Jnl. Roy. Statist. Soc. B 1984, 46, 389–396. [Google Scholar] [CrossRef]
- Bhattacharya, R.N.; Ranga Rao, R. Normal Approximation and Asymptotic Expansions; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Withers, C.S.; Nadarajah, S. The dual multivariate Charlier and Edgeworth expansions. Stat. Probab. Lett. 2014, 87, 76–85. [Google Scholar] [CrossRef]
- Withers, C.S. 5th order multivariate Edgeworth expansions for parametric estimates. Mathematics 2024, 12, 905. [Google Scholar] [CrossRef]
- Isserlis, L. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 1918, 12, 134–139. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Relations between multivariate moments and cumulants via Bell polynomials. Util. Math. 2013, 91, 365–376. [Google Scholar]
- Withers, C.S.; Nadarajah, S. Moments and cumulants for the complex Wishart. J. Multivar. Anal. 2012, 112, 242–247. [Google Scholar] [CrossRef]
- Stuart, A.; Ord, K. Kendall’s Advanced Theory of Statistics, 5th ed.; Griffin: London, UK, 1987; Volume 1. [Google Scholar]
- Soper, H.E. On the probable error of the correlation coefficient to a second approximation. Biometrika 1913, 9, 91–115. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics; Reidel: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Jinadasa, K.G.; Tracy, D.S. Higher order moments of random vectors using matrix derivatives. Stoch. Anal. Appl. 1986, 4, 399–407. [Google Scholar] [CrossRef]
- Tracy, D.S.; Sultan, S.A. Higher order moments of multivariate normal distribution using matrix differentiation. Stoch. Anal. Appl. 1993, 11, 337–348. [Google Scholar] [CrossRef]
- Holmquist, B. Moments and cumulants of the multivariate normal distribution. Stoch. Anal. Appl. 1988, 6, 273–278. [Google Scholar] [CrossRef]
- Simon, B. The P(Φ)2 Euclidian (Quantum) Field Theory; Princeton Series in Physics; Princeton University Press: Princeton, NJ, USA, 1974. [Google Scholar]
- Wooding, R.A. The multivariate distribution of complex normal variables. Biometrika 1956, 53, 212–215. [Google Scholar] [CrossRef]
- Goodman, N.R. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Ann. Math. Stat. 1963, 34, 152–177. [Google Scholar] [CrossRef]
- Phillips, K. R functions to symbolically compute the central moments of the multivariate normal distribution. J. Stat. Softw. 2010, 33, 1–14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Withers, C.S. New Methods for Multivariate Normal Moments. Stats 2025, 8, 46. https://doi.org/10.3390/stats8020046
Withers CS. New Methods for Multivariate Normal Moments. Stats. 2025; 8(2):46. https://doi.org/10.3390/stats8020046
Chicago/Turabian StyleWithers, Christopher Stroude. 2025. "New Methods for Multivariate Normal Moments" Stats 8, no. 2: 46. https://doi.org/10.3390/stats8020046
APA StyleWithers, C. S. (2025). New Methods for Multivariate Normal Moments. Stats, 8(2), 46. https://doi.org/10.3390/stats8020046