An Analysis of the Impact of Injury Severity on Incident Clearance Time on Urban Interstates Using a Bivariate Random-Parameter Probit Model
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Data
Data Preparation
5. Results and Discussions
5.1. Model Comparison
5.2. Injury Severity Factors
5.3. Incident Duration Factors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hallenbeck, M.E.; Ishimaru, J.; Nee, J. Measurement of Recurring versus Non-Recurring Congestion. Dept Transp. 2003. [Google Scholar]
- Owens, N.; Armstrong, A.; Sullivan, P.; Mitchell, C.; Newton, D.; Brewster, R.; Trego, T. Traffic Incident Management Handbook; National Academy of Sciences: Washington, DC, USA, 2010. [Google Scholar]
- Blincoe, L.; Miller, T.R.; Wang, J.-S.; Swedler, D.; Coughlin, T.; Lawrence, B.; Guo, F.; Klauer, S.; Dingus, T. The Economic and Societal Impact of Motor Vehicle Crashes, 2019; National Highway Traffic Safety Administration: Washington, DC, USA, 2022.
- NTIMC. Safe, Quick Clearance: National Unified Goal (NUG) for Traffic Incident Management; National Traffic Incident Management Coalition: Washington, DC, USA, 2006. [Google Scholar]
- O’laughlin, J.; Smith, A. Incident Management Operations: Top Five Issues. Traffic Incident Management A Road Map to the Future. In Proceedings of the TRB Annual Meeting 2002, Irvine, CA, USA, 11 March 2002. [Google Scholar]
- U.S. Fire Administration. Fire Administration Traffic Incident Management Systems; Federal Emergency Management Agency: Washington, DC, USA, 2012.
- Dowling, R.G.; Parks, K.L.; Nevers, B.; Josselyn, J.; Gayle, S. Incorporating Travel-Time Reliability into the Congestion Manage-Ment Process: A Primer; Federal Highway Administration: Washington, DC, USA, 2015.
- FHWA. Travel Time Reliability: Making It There On Time, All The Time; Federal Highway Administration: Washington, DC, USA, 2017.
- Alkaabi, A.M.S.; Dissanayake, D.; Bird, R. Analyzing Clearance Time of Urban Traffic Accidents in Abu Dhabi, United Arab Emirates, with Hazard-Based Duration Modeling Method. Transp. Res. Rec. 2011, 2229, 46–54. [Google Scholar] [CrossRef]
- Chung, Y. Development of an Accident Duration Prediction Model on the Korean Freeway Systems. Accid. Anal. Prev. 2010, 42, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.; Mannering, F. An Exploratory Hazard-Based Analysis of Highway Incident Duration. Transp. Res. Part Policy Pract. 2000, 34, 85–102. [Google Scholar] [CrossRef]
- Ozbay, K.; Noyan, N. Estimation of Incident Clearance Times Using Bayesian Networks Approach. Accid. Anal. Prev. 2006, 38, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-T.; Fazio, J. Influential Factors in Freeway Crash Response and Clearance Times by Emergency Management Services in Peak Periods. Traffic Inj. Prev. 2005, 6, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Ma, X.; Wang, Y.; Wang, Y. Exploring the Influential Factors in Incident Clearance Time: Disentangling Causation from Self-Selection Bias. Accid. Anal. Prev. 2015, 85, 58–65. [Google Scholar] [CrossRef]
- Golob, T.F.; Recker, W.W.; Leonard, J.D. An Analysis of the Severity and Incident Duration of Truck-Involved Freeway Accidents. Accid. Anal. Prev. 1987, 19, 375–395. [Google Scholar] [CrossRef]
- Hou, L.; Lao, Y.; Wang, Y.; Zhang, Z.; Zhang, Y.; Li, Z. Time-Varying Effects of Influential Factors on Incident Clearance Time Using a Non-Proportional Hazard-Based Model. Transp. Res. Part Policy Pract. 2014, 63, 12–24. [Google Scholar] [CrossRef]
- Pang, J.; Krathaus, A.; Benedyk, I.; Ahmed, S.S.; Anastasopoulos, P.C. A Temporal Instability Analysis of Environmental Factors Affecting Accident Occurrences during Snow Events: The Random Parameters Hazard-Based Duration Model with Means and Variances Heterogeneity. Anal. Methods Accid. Res. 2022, 34, 100215. [Google Scholar] [CrossRef]
- Tavassoli Hojati, A.; Ferreira, L.; Washington, S.; Charles, P. Hazard Based Models for Freeway Traffic Incident Duration. Accid. Anal. Prev. 2013, 52, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Washington, S.; Karlaftis, M.G.; Mannering, F.; Anastasopoulos, P. Statistical and Econometric Methods for Transportation Data Analysis; CRC Press: Boca Raton, FL, USA, 2020; ISBN 0-429-52075-1. [Google Scholar]
- Zong, F.; Zhang, H.; Xu, H.; Zhu, X.; Wang, L. Predicting Severity and Duration of Road Traffic Accident. Math. Probl. Eng. 2013, 2013, e547904. [Google Scholar] [CrossRef]
- Arellano, M. Unobserved Heterogeneity. In Panel Data Econometrics; Arellano, M., Ed.; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Baltagi, B.H.; Baltagi, B.H. Econometric Analysis of Panel Data; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Aidoo, E.N.; Ackaah, W.; Appiah, S.K.; Appiah, E.K.; Addae, J.; Alhassan, H. A Bivariate Probit Analysis of Child Passenger’s Sitting Behaviour and Restraint Use in Motor Vehicle. Accid. Anal. Prev. 2019, 129, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhou, J.; Wu, Y.; Chen, J. Evaluation of Factors Affecting E-Bike Involved Crash and E-Bike License Plate Use in China Using a Bivariate Probit Model. J. Adv. Transp. 2017, 2017, e2142659. [Google Scholar] [CrossRef]
- Lee, J.; Mao, S.; Abdel-Aty, M.; Fu, W. Use of Bivariate Random-Parameter Probit Model to Analyze the Injury Severity of Highway Traffic Crashes Involving School-Age Children. Transp. Res. Rec. 2021, 2675, 530–537. [Google Scholar] [CrossRef]
- Tarko, A.; Azam, M.S. Pedestrian Injury Analysis with Consideration of the Selectivity Bias in Linked Police-Hospital Data. Accid. Anal. Prev. 2011, 43, 1689–1695. [Google Scholar] [CrossRef] [PubMed]
- Greene, W.H.; Hensher, D.A. Ordered Choices and Heterogeneity in Attribute Processing. J. Transp. Econ. Policy 2010, 44, 331–364. [Google Scholar]
- Anastasopoulos, P.C.; Mannering, F.L. An Empirical Assessment of Fixed and Random Parameter Logit Models Using Crash-and Non-Crash-Specific Injury Data. Accid. Anal. Prev. 2011, 43, 1140–1147. [Google Scholar] [CrossRef]
- Lee, J.; Mannering, F. Impact of Roadside Features on the Frequency and Severity of Run-off-Roadway Accidents: An Empirical Analysis. Accid. Anal. Prev. 2002, 34, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Mannering, F.L.; Shankar, V.; Bhat, C.R. Unobserved Heterogeneity and the Statistical Analysis of Highway Accident Data. Anal. Methods Accid. Res. 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Russo, B.J.; Savolainen, P.T.; Schneider, W.H.; Anastasopoulos, P.C. Comparison of Factors Affecting Injury Severity in Angle Collisions by Fault Status Using a Random Parameters Bivariate Ordered Probit Model. Anal. Methods Accid. Res. 2014, 2, 21–29. [Google Scholar] [CrossRef]
- Louisiana DOTD Crash1: Louisiana Highway Crash List. Available online: http://www8.dotd.la.gov/crash1/ (accessed on 5 March 2023).
- Dunn, W.M.; Latoski, S.P. Safe and Quick Clearance of Traffic Incidents; NCHRP Synthesis; Transportation Research Board of the National Academics: Washington, DC, USA, 2003. [Google Scholar]
- Econometric Software, Inc. NLOGIT: Superior Statistical Analysis Software; Econometric Software, Inc.: Plainview, NY, USA, 2023. [Google Scholar]
- Chen, C.; Zhang, G.; Tarefder, R.; Ma, J.; Wei, H.; Guan, H. A Multinomial Logit Model-Bayesian Network Hybrid Approach for Driver Injury Severity Analyses in Rear-End Crashes. Accid. Anal. Prev. 2015, 80, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, G.; Tian, Z.; Bogus, S.M.; Yang, Y. Hierarchical Bayesian Random Intercept Model-Based Cross-Level Interaction Decomposition for Truck Driver Injury Severity Investigations. Accid. Anal. Prev. 2015, 85, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.F.; Carsten, O. Driver Age and Crash Involvement. Am. J. Public Health 1989, 79, 326–327. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Huang, H.; Wang, J.; Tarefder, R.A. Examining Driver Injury Severity Outcomes in Rural Non-Interstate Roadway Crashes Using a Hierarchical Ordered Logit Model. Accid. Anal. Prev. 2016, 96, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, G.; Liu, X.C.; Ci, Y.; Huang, H.; Ma, J.; Chen, Y.; Guan, H. Driver Injury Severity Outcome Analysis in Rural Interstate Highway Crashes: A Two-Level Bayesian Logistic Regression Interpretation. Accid. Anal. Prev. 2016, 97, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Donnell, E.T.; Mason, J.M. Predicting the Severity of Median-Related Crashes in Pennsylvania by Using Logistic Regression. Transp. Res. Rec. 2004, 1897, 55–63. [Google Scholar] [CrossRef]
- Rahman, M.A.; Das, S.; Sun, X. Understanding the Drowsy Driving Crash Patterns from Correspondence Regression Analysis. J. Safety Res. 2023, 84, 167–181. [Google Scholar] [CrossRef]
- Alrejjal, A.; Moomen, M.; Ksaibati, K. Evaluating the Impact of Traffic Violations on Crash Injury Severity on Wyoming Interstates: An Investigation with a Random Parameters Model with Heterogeneity in Means Approach. J. Traffic Transp. Eng. Engl. Ed. 2022, 9, 654–665. [Google Scholar] [CrossRef]
- Chen, W.-H.; Jovanis, P.P. Method for Identifying Factors Contributing to Driver-Injury Severity in Traffic Crashes. Transp. Res. Rec. 2000, 1717, 1–9. [Google Scholar] [CrossRef]
- Brumbelow, M.L. Potential Benefits of Underride Guards in Large Truck Side Crashes. Traffic Inj. Prev. 2012, 13, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Teoh, E.R.; Carter, D.L.; Smith, S.; McCartt, A.T. Crash Risk Factors for Interstate Large Trucks in North Carolina. J. Safety Res. 2017, 62, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Champahom, T.; Jomnonkwao, S.; Watthanaklang, D.; Karoonsoontawong, A.; Chatpattananan, V.; Ratanavaraha, V. Applying Hierarchical Logistic Models to Compare Urban and Rural Roadway Modeling of Severity of Rear-End Vehicular Crashes. Accid. Anal. Prev. 2020, 141, 105537. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, G.; Yang, J.; Milton, J.C.; Alcántara, A. “Dely” An Explanatory Analysis of Driver Injury Severity in Rear-End Crashes Using a Decision Table/Naïve Bayes (DTNB) Hybrid Classifier. Accid. Anal. Prev. 2016, 90, 95–107. [Google Scholar] [CrossRef]
- Rahman, M.A.; Das, S.; Sun, X. Using Cluster Correspondence Analysis to Explore Rainy Weather Crashes in Louisiana. Transp. Res. Rec. 2022, 2676, 159–173. [Google Scholar] [CrossRef]
- Sun, X.; Hu, H.; Habib, E.; Magri, D. Quantifying Crash Risk under Inclement Weather with Radar Rainfall Data and Matched-Pair Method. J. Transp. Saf. Secur. 2011, 3, 1–14. [Google Scholar] [CrossRef]
- Jung, S.; Jang, K.; Yoon, Y.; Kang, S. Contributing Factors to Vehicle to Vehicle Crash Frequency and Severity under Rainfall. J. Safety Res. 2014, 50, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kopelias, P.; Papadimitriou, F.; Papandreou, K.; Prevedouros, P. Urban Freeway Crash Analysis: Geometric, Operational, and Weather Effects on Crash Number and Severity. Transp. Res. Rec. 2007, 2015, 123–131. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W. Analysis of Roadway and Environmental Factors Affecting Traffic Crash Severities. Transp. Res. Procedia 2017, 25, 2119–2125. [Google Scholar] [CrossRef]
- Khattak, Z.H.; Fontaine, M.D. A Bayesian Modeling Framework for Crash Severity Effects of Active Traffic Management Systems. Accid. Anal. Prev. 2020, 145, 105544. [Google Scholar] [CrossRef] [PubMed]
- Scott-Parker, B.; Bates, L. “They Assume like You Are Doing Something Wrong”: Young Drivers and Police. In Proceedings of the 28th International Congress of Applied Psychology, Paris, France, 8–13 July 2014. [Google Scholar]
- Tay, R. The Effectiveness of Enforcement and Publicity Campaigns on Serious Crashes Involving Young Male Drivers: Are Drink Driving and Speeding Similar? Accid. Anal. Prev. 2005, 37, 922–929. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, F.; Chen, T.; Sze, N.N. Incorporating Real-Time Weather Conditions into Analyzing Clearance Time of Freeway Accidents: A Grouped Random Parameters Hazard-Based Duration Model with Time-Varying Covariates. Anal. Methods Accid. Res. 2023, 38, 100267. [Google Scholar] [CrossRef]
- Karlaftis, M.G.; Latoski, S.P.; Richards, N.J.; Sinha, K.C. ITS Impacts on Safety and Traffic Management: An Investigation of Secondary Crash Causes. ITS J.—Intell. Transp. Syst. J. 1999, 5, 39–52. [Google Scholar] [CrossRef]
- Vadlamani, S.; Chen, E.; Ahn, S.; Washington, S. Identifying Large Truck Hot Spots Using Crash Counts and PDOEs. J. Transp. Eng. 2011, 137, 11–21. [Google Scholar] [CrossRef]
- Khattak, A.J.; Schneider, R.J.; Targa, F. Risk Factors in Large Truck Rollovers and Injury Severity: Analysis of Single-Vehicle Collisions. Transp. Res. Rec. 2003, 40, 1–22. [Google Scholar]
- Middleton, D.R. A Study of Selected Warning Devices for Reducing Truck Speeds; Texas A&M University: College Station, TX, USA, 1994. [Google Scholar]
- Valenti, G.; Lelli, M.; Cucina, D. A Comparative Study of Models for the Incident Duration Prediction. Eur. Transp. Res. Rev. 2010, 2, 103–111. [Google Scholar] [CrossRef]
- Laman, H.; Yasmin, S.; Eluru, N. Joint Modeling of Traffic Incident Duration Components (Reporting, Response, and Clearance Time): A Copula-Based Approach. Transp. Res. Rec. 2018, 2672, 76–89. [Google Scholar] [CrossRef]
Variable Category | Type | Description | Mean | Standard Deviation |
---|---|---|---|---|
Response | ||||
ICT | Binary | Long clearance (ICT > 30 min) | 0.31 | 0.462 |
Crash severity | Binary | Injury crash | 0.30 | 0.456 |
Driver characteristics | ||||
Driver age | Binary | Young age (age ≤ 25 years) | 0.25 | 0.435 |
Middle age (age between 25 and 60 years) | 0.60 | 0.491 | ||
Old age (age > 60 years) | 0.18 | 0.384 | ||
Alcohol/drugs | Binary | Driver under the influence | 0.02 | 0.151 |
Hospitalization | Binary | Crash victim hospitalized | 0.13 | 0.332 |
Crash characteristics | ||||
Manner of collision | Categorical | Non-collision crash | 0.14 | 0.344 |
Rear-end crash | 0.51 | 0.500 | ||
Sideswipe crash | 0.21 | 0.410 | ||
Other (head-on, angle, turning) | 0.10 | 0.298 | ||
Vehicle type | Binary | Truck or bus | 0.06 | 0.235 |
Crash type | Binary | Multi-vehicle crash | 0.85 | 0.359 |
Rescue | Binary | Rescue involved | 0.07 | 0.254 |
Area designation | Categorical | Industrial district | 0.07 | 0.257 |
Business district | 0.29 | 0.452 | ||
Mixed district | 0.19 | 0.391 | ||
Open-area district | 0.24 | 0.426 | ||
Residential/school district | 0.20 | 0.398 | ||
Temporal characteristics | ||||
Day of week | Binary | Weekday | 0.74 | 0.440 |
Time of day | Categorical | AM peak | 0.14 | 0.348 |
Midday | 0.36 | 0.481 | ||
PM peak | 0.24 | 0.426 | ||
Night | 0.26 | 0.437 | ||
Environmental characteristics | ||||
Lighting conditions | Categorical | Daylight | 0.73 | 0.443 |
Dark | 0.24 | 0.424 | ||
Dusk or dawn | 0.03 | 0.167 | ||
Weather conditions | Categorical | Clear | 0.72 | 0.448 |
Rain | 0.12 | 0.328 | ||
Cloudy | 0.14 | 0.350 | ||
Other weather condition (hail, snow, etc.) | 0.01 | 0.111 | ||
Traffic/geometric characteristics | ||||
ADT/1000 | Continuous | Average daily traffic | 100.90 | 42.898 |
Length | Continuous | Segment length (miles) | 0.74 | 0.440 |
Variable | Injury Severity Model | Incident Clearance Model | ||||
---|---|---|---|---|---|---|
Coefficient | Standard Error | Z-Score | Coefficient | Standard Error | Z-Score | |
Constant | −0.992 | 0.0557 | −17.81 | −0.509 | 0.0720 | −7.07 |
Standard Deviation | 0.763 | 0.0226 | 33.74 | 0.116 | 0.0176 | 6.57 |
Driver Characteristics | ||||||
Alcohol and/or Drugs Used | 0.545 | 0.1050 | 5.17 | - | - | - |
Young Age | 0.042 | 0.0573 | 0.73 | 0.131 | 0.0451 | 2.90 |
Standard Deviation | 0.757 | 0.0418 | 18.10 | - | - | - |
Middle Age | 0.191 | 0.0453 | 4.21 | - | - | - |
Crash Characteristics | ||||||
Injury Crash | - | - | - | 1.001 | 0.0611 | 16.40 |
Standard Deviation | - | - | - | 1.988 | 0.0832 | 23.89 |
Truck-Involved Crash | 0.719 | 0.0820 | 8.77 | 0.668 | 0.0833 | 8.02 |
Non-Collision Crash | - | - | - | 0.187 | 0.0698 | 2.68 |
Standard Deviation | - | - | - | 1.116 | 0.0639 | 17.47 |
Rear-End Crash | 0.241 | 0.0383 | 6.30 | - | - | - |
Rescue Involved | 1.818 | 0.0727 | 25.02 | - | - | - |
Crash Victims Hospitalized | - | - | - | 1.200 | 0.0816 | 14.71 |
Multi-Vehicle Crash | - | - | - | −0.427 | 0.0642 | −6.65 |
Environmental Characteristics | ||||||
Rainy Weather Crash | 0.171 | 0.0533 | 3.21 | - | - | - |
Daylight Crash | −0.194 | 0.0501 | −3.87 | −0.185 | 0.0442 | −4.18 |
Area of Crash | ||||||
Business District | - | - | - | −0.163 | 0.0402 | −4.04 |
Temporal Characteristics | ||||||
Midday | −0.117 | 0.0433 | −2.70 | - | - | - |
Variable | Bivariate Fixed-Parameter Model | Bivariate Random-Parameter Model |
---|---|---|
Cross-equation correlation, p | 0.754 | 0.9808 |
Number of parameters | 27 | 25 |
Log-likelihood at convergence | −5722.33 | −5534.65 |
Akaike information criterion (AIC) | 11,498 | 11,119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; Moomen, M.; Khan, W.A.; Codjoe, J. An Analysis of the Impact of Injury Severity on Incident Clearance Time on Urban Interstates Using a Bivariate Random-Parameter Probit Model. Stats 2024, 7, 863-874. https://doi.org/10.3390/stats7030052
Rahman MA, Moomen M, Khan WA, Codjoe J. An Analysis of the Impact of Injury Severity on Incident Clearance Time on Urban Interstates Using a Bivariate Random-Parameter Probit Model. Stats. 2024; 7(3):863-874. https://doi.org/10.3390/stats7030052
Chicago/Turabian StyleRahman, M. Ashifur, Milhan Moomen, Waseem Akhtar Khan, and Julius Codjoe. 2024. "An Analysis of the Impact of Injury Severity on Incident Clearance Time on Urban Interstates Using a Bivariate Random-Parameter Probit Model" Stats 7, no. 3: 863-874. https://doi.org/10.3390/stats7030052
APA StyleRahman, M. A., Moomen, M., Khan, W. A., & Codjoe, J. (2024). An Analysis of the Impact of Injury Severity on Incident Clearance Time on Urban Interstates Using a Bivariate Random-Parameter Probit Model. Stats, 7(3), 863-874. https://doi.org/10.3390/stats7030052