Multivariate Time Series Change-Point Detection with a Novel Pearson-like Scaled Bregman Divergence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Density Ratio Estimation Methods
- Non-negativity: with equality if and only if ;
- Symmetry: ;
- Triangle inequality: for all probability distributions .
2.2. Pearson-like Scaled Bregman Divergence (PLsBD)
2.3. Kernel-Based Density Ratio Estimation
Algorithm 1 Pearson-like scaled Bregman divergence-based change-point detection |
|
Algorithm 2 High-dimensional PLsBD-based change-point detection with random sampling |
|
3. Results
3.1. Synthetic Data Analysis
3.2. High-Dimensional Microarray Data Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CPD | Change-point detection |
PLsBD | Pearson like scaled Bregman divergence |
RuLSIF | Relative unconstrained least-squares importance fitting |
INSPECT | Informative sparse projection for estimation of change points |
References
- Reeves, J.; Chen, J.; Wang, X.L.; Lund, R.; Lu, Q.Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 2007, 46, 900–915. [Google Scholar] [CrossRef]
- Plasse, J.; Adams, N.M. Multiple changepoint detection in categorical data streams. Stat. Comput. 2019, 29, 1109–1125. [Google Scholar] [CrossRef]
- Peel, L.; Clauset, A. Detecting change points in the large-scale structure of evolving networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Siddiqa, H.; Ali, S.; Shah, I. Most recent changepoint detection in censored panel data. Comput. Stat. 2021, 36, 515–540. [Google Scholar] [CrossRef]
- Moreno-Munoz, P.; Ramirez, D.; Artes-Rodriguez, A. Change-point detection in hierarchical circadian models. Pattern Recognit. 2021, 113, 107820. [Google Scholar] [CrossRef]
- Barnett, I.; Onnela, J.-P. Change-point detection in correlation networks. Sci. Rep. 2016, 6, 18893. [Google Scholar] [CrossRef]
- Wu, Q.-Z.; Cheng, H.-Y.; Jeng, B.-S. Motion detection via change-point detection for cumulative histograms of ratio images. Pattern Recognit. Lett. 2005, 26, 555–563. [Google Scholar] [CrossRef]
- Raghavan, V.; Veeravalli, V.V. Quickest change detection of a markov process across a sensor array. IEEE Trans. Inf. Theory 2010, 56, 1961–1981. [Google Scholar] [CrossRef]
- Hu, J. Cancer outlier detection based on likelihood ratio test. Bioinformatics 2008, 24, 2193–2199. [Google Scholar] [CrossRef] [PubMed]
- Gottardo, R. Bayesian robust inference for differential gene expression. Biometrics, 2006; 62, 10–18. [Google Scholar]
- Xiong, J.; Zhou, T. A kalman-filter based approach to identification of time-varying gene regulatory networks. PLoS ONE 2013, 8, e74571. [Google Scholar] [CrossRef]
- Dehning, J.; Zierenberg, J.; Spitzner, F.P.; Wibral, M.; Neto, J.P.; Wilczek, M.; Priesemann, V. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science 2020, 369, eabb9789. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Ji, Z.; Wang, B.; Liang, Y. Non-parametric change-point method for differential gene expression detection. PLoS ONE 2011, 6, e20060. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zou, S.; Xie, Y.; Veeravalli, V.V. Sequential (quickest) change detection: Classical results and new directions. IEEE J. Sel. Areas Inf. Theory 2021, 2, 494–514. [Google Scholar] [CrossRef]
- Jewell, S.W.; Hocking, T.D.; Fearnhead, P.; Witten, D.M. Fast nonconvex deconvolution of calcium imaging data. Biostatistics 2020, 21, 709–726. [Google Scholar] [CrossRef] [PubMed]
- Hocking, T.; Rigaill, G.; Bourque, G. Peakseg: Constrained optimal segmentation and supervised penalty learning for peak detection in count data. Int. Conf. Mach. Learn. 2015, 37, 324–332. [Google Scholar]
- Deldari, S.; Smith, D.; Xue, H.; Salim, F.D. Time series change point detection with self-supervised contrastive predictive coding. In Proceedings of the Web Conference, Ljubljana, Slovenia, 19–23 April 2021; pp. 3124–3135. [Google Scholar]
- Katser, I.; Kozitsin, V.; Lobachev, V.; Maksimov, I. Unsupervised offline changepoint detection ensembles. Appl. Sci. 2021, 11, 4280. [Google Scholar] [CrossRef]
- Adiga, S.; Tandon, R. Unsupervised change detection using dre-cusum. In Proceedings of the 2022 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 30 October–2 November 2022; pp. 1103–1110. [Google Scholar]
- Chen, J.; Gupta, A.K.; Gupta, A. Parametric Statistical Change-Point Analysis; Springer: Berlin/Heidelberg, Germany, 2000; Volume 192. [Google Scholar]
- Brodsky, E.; Darkhovsky, B.S. Nonparametric Methods in Change-Point Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 243. [Google Scholar]
- Cabrieto, J.; Tuerlinckx, F.; Kuppens, P.; Grassmann, M.; Ceulemans, E. Detecting correlation changes in multivariate time series: A comparison of four non-parametric change-point detection methods. Behav. Res. Methods 2017, 49, 988–1005. [Google Scholar] [CrossRef] [PubMed]
- Aminikhanghahi, S.; Wang, T.; Cook, D.J. Real-time change-point detection with application to smart home time series data. IEEE Trans. Knowl. Data Eng. 2018, 31, 1010–1023. [Google Scholar] [CrossRef] [PubMed]
- Page, E.S. Continuous inspection schemes. Biometrika 1954, 41, 100–115. [Google Scholar] [CrossRef]
- Wei, S.; Xie, Y. Online kernel cusum for change-point detection. arXiv 2022, arXiv:2211.15070. [Google Scholar]
- Shiryaev, A.N. On optimum methods in quickest detection problems. Theory Probab. Its Appl. 1963, 8, 22–46. [Google Scholar] [CrossRef]
- Wang, T.; Samworth, R.J. High dimensional change-point estimation via sparse projection. J. R. Stat. Soc. Ser. Stat. Methodol. 2018, 80, 57–83. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Y.; Gong, H. An integrative analysis of time-varying regulatory networks from high-dimensional data. IEEE Int. Conf. Big Data 2018, 21, 3798–3807. [Google Scholar]
- Li, S.; Xie, Y.; Dai, H.; Song, L. Scan b-statistic for kernel change-point detection. Seq. Anal. 2019, 38, 503–544. [Google Scholar] [CrossRef]
- Harchaoui, Z.; Moulines, E.; Bach, F. Kernel change-point analysis. Adv. Neural Inf. Process. Syst. 2008, 21. [Google Scholar]
- Chen, H. Sequential change-point detection based on nearest neighbors. Ann. Stat. 2019, 47, 1381–1407. [Google Scholar] [CrossRef]
- Sun, Z.; El-Laham, Y.; Vyetrenko, S. Neural Stochastic Differential Equations with Change Points: A Generative Adversarial Approach. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Republic of Korea, 14–19 April 2024; pp. 6965–6969. [Google Scholar]
- Du, H.; Duan, Z. Finder: A novel approach of change point detection for multivariate time series. Appl. Intell. 2022, 52, 2496–2509. [Google Scholar] [CrossRef]
- Keriven, N.; Garreau, D.; Poli, I. NEWMA: A new method for scalable model-free online change-point detection. IEEE Trans. Signal Process. 2020, 68, 3515–3528. [Google Scholar] [CrossRef]
- Xu, H.; Yigiter, A.; Chen, J. onlineBcp: An R package for online change point detection using a Bayesian approach. SoftwareX 2022, 17, 100999. [Google Scholar] [CrossRef]
- Tartakovsky, A.G.; Moustakides, G.V. State-of-the-art in bayesian changepoint detection. Seq. Anal. 2010, 29, 125–145. [Google Scholar] [CrossRef]
- Huang, J.; Gretton, A.; Borgwardt, K.; Schölkopf, B.; Smola, A. Correcting sample selection bias by unlabeled data. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2006; Volume 19. [Google Scholar]
- Masashi, S. Direct importance estimation with model selection and its application to covariate shift adaptation. In Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems (NIPS2007), Vancouver, BC, Canada, 3–6 December 2007. [Google Scholar]
- Bickel, S.; Brückner, M.; Scheffer, T. Discriminative learning under covariate shift. J. Mach. Learn. Res. 2009, 10, 2137–2155. [Google Scholar]
- Shreyas, S.; Comar, P.M.; Kaveri, S. Adversarial Density Ratio Estimation for Change Point Detection. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; pp. 4254–4258. [Google Scholar]
- Sugiyama, M.; Nakajima, S.; Kashima, H.; Buenau, P.; Kawanabe, M. Direct importance estimation with model selection and its application to covariate shift adaptation. Adv. Neural Inf. Process. Syst. 2007, 20, 1433–1440. [Google Scholar]
- Kanamori, T.; Hido, S.; Sugiyama, M. A least-squares approach to direct importance estimation. J. Mach. Learn. Res. 2009, 10, 1391–1445. [Google Scholar]
- Yamada, M.; Suzuki, T.; Kanamori, T.; Hachiya, H.; Sugiyama, M. Relative density-ratio estimation for robust distribution comparison. Neural Comput. 2013, 25, 1324. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yamada, M.; Collier, N.; Sugiyama, M. Change-point detection in time-series data by relative density-ratio estimation. Neural Netw. 2013, 43, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change-point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef] [PubMed]
- Bregman, L.M. The relxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. Ussr Comput. Math. Phys. 1967, 7, 200–217. [Google Scholar] [CrossRef]
- Stummer, W.; Vajda, I. On Bregman distances and divergences of probability measures. IEEE Trans. Inf. Theory 2012, 58, 1277–1288. [Google Scholar] [CrossRef]
- Robinson, J.; Hartemink, A. Non-stationary dynamic bayesian networks. Adv. Neural Inf. Process. Syst. 2008, 21, 1369–1376. [Google Scholar]
- Lebre, S.; Becq, J.; Devaux, F.; Stumpf, M.P.; Lelandais, G. Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst. Biol. 2010, 4, 1–16. [Google Scholar] [CrossRef]
- Arbeitman, M.N.; Furlong, E.E.; Imam, F.; Johnson, E.; Null, B.H.; Baker, B.S.; Krasnow, M.A.; Scott, M.P.; Davis, R.W.; White, K.P. Gene expression during the life cycle of drosophila melanogaster. Science 2002, 297, 2270–2275. [Google Scholar] [CrossRef]
- Zhao, W.; Serpedin, E.; Dougherty, E.R. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 2006, 22, 2129–2135. [Google Scholar] [CrossRef] [PubMed]
- Dondelinger, F.; Lèbre, S.; Husmeier, D. Non-homogeneous dynamic bayesian networks with bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach. Learn. 2013, 90, 191–230. [Google Scholar] [CrossRef]
- Ahmed, A.; Xing, E.P. Recovering time-varying networks of dependencies in social and biological studies. Proc. Natl. Acad. Sci. USA 2009, 106, 11878–11883. [Google Scholar] [CrossRef] [PubMed]
- Schwaller, L.; Robin, S. Exact bayesian inference for off-line change-point detection in tree-structured graphical models. Stat. Comput. 2017, 27, 1331–1345. [Google Scholar] [CrossRef]
- Ozerova, A.M.; Gelfand, M.S. Recapitulation of the embryonic transcriptional program in holometabolous insect pupae. Sci. Rep. 2022, 12, 17570. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Landgrebe, E.; Shekhtman, E.; Udell, M. Online missing value imputation and change point detection with the gaussian copula. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 9199–9207. [Google Scholar]
- Zhao, Y.; Udell, M. Missing Value Imputation for Mixed Data via Gaussian Copula. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Virtual, 6–10 July 2020; pp. 636–646. [Google Scholar]
- Si, T.; Hopkins, Z.; Yanev, J.; Hou, J.; Gong, H. A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis. PLoS ONE 2023, 18, e0292792. [Google Scholar] [CrossRef]
- van Dijk, D.; Sharma, R.; Nainys, J.; Yim, K.; Kathail, P.; Carr, A.J.; Burdziak, C.; Moon, K.R.; Chaffer, C.L.; Pattabiraman, D.; et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 2018, 716, 716–729. [Google Scholar] [CrossRef]
- Huang, M.; Wang, J.; Torre, E.; Dueck, H.; Shaffer, S.; Bonasio, R.; Murray, J.I.; Raj, A.; Li, M.; Zhang, N.R. SAVER: Gene expression recovery for single-cell RNA sequencing. Nat. Methods 2018, 15, 539–542. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, T.; Wang, Y.; Zhang, L.; Richmond, E.; Ahn, T.-H.; Gong, H. Multivariate Time Series Change-Point Detection with a Novel Pearson-like Scaled Bregman Divergence. Stats 2024, 7, 462-480. https://doi.org/10.3390/stats7020028
Si T, Wang Y, Zhang L, Richmond E, Ahn T-H, Gong H. Multivariate Time Series Change-Point Detection with a Novel Pearson-like Scaled Bregman Divergence. Stats. 2024; 7(2):462-480. https://doi.org/10.3390/stats7020028
Chicago/Turabian StyleSi, Tong, Yunge Wang, Lingling Zhang, Evan Richmond, Tae-Hyuk Ahn, and Haijun Gong. 2024. "Multivariate Time Series Change-Point Detection with a Novel Pearson-like Scaled Bregman Divergence" Stats 7, no. 2: 462-480. https://doi.org/10.3390/stats7020028
APA StyleSi, T., Wang, Y., Zhang, L., Richmond, E., Ahn, T. -H., & Gong, H. (2024). Multivariate Time Series Change-Point Detection with a Novel Pearson-like Scaled Bregman Divergence. Stats, 7(2), 462-480. https://doi.org/10.3390/stats7020028