Bayesian Inference for Multiple Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Von Mises Distribution
2.2. Synthetic Wind Data Used for Initial Test
2.3. NAME Wind Trajectories Based on Historic Meteorology Data
2.4. Bayesian Inference
2.4.1. Importance Sampling (IS)
2.4.2. Adaptive Importance Sampling (AIS)
2.4.3. Adaptive Multiple Importance Sampling (AMIS)
2.4.4. Effective Sample Size (ESS)
2.4.5. Implementation of AMIS
Algorithm 1 AMIS for multiple datasets. |
|
3. Results
3.1. Illustrative Simulations
3.1.1. Parameter Estimation Using IS and AIS for a Single Dataset
3.1.2. Parameter Estimation Using AMIS for Multiple Datasets
3.2. Application to NAME Wind Trajectories
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, N.; Berman, S.R.; Joubert, D.; Vialet-Chabrand, S.; Marcelis, L.F.M.; Kaiser, E. Variation of photosynthetic induction in major horticultural crops is mostly driven by differences in stomatal traits. Front. Plant Sci. 2022, 13, 860229. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, M.; Gabor, A.; Yang, M.; Cappelletti, V.; Windhager, J.; Rueda, O.M.; Charmpi, K.; Esmaeilishirazifard, E.; Bruna, A.; de Souza, N.; et al. Deciphering the signaling network of breast cancer improves drug sensitivity prediction. Cell Syst. 2021, 12, 401–418.e12. [Google Scholar] [CrossRef] [PubMed]
- Reeves, D.B.; Rolland, M.; Dearlove, B.L.; Li, Y.; Robb, M.L.; Schiffer, J.T.; Gilbert, P.; Cardozo-Ojeda, E.F.; Mayer, B.T. Timing HIV infection with a simple and accurate population viral dynamics model. J. R. Soc. Interface 2021, 18, 20210314. [Google Scholar] [CrossRef] [PubMed]
- Akanbi, O.D.; Bhuvanagiri, D.C.; Barcelos, E.I.; Nihar, A.; Gonzalez Hernandez, B.; Yarus, J.M.; French, R.H. Integrating multiscale geospatial analysis for monitoring crop growth, nutrient distribution, and hydrological dynamics in large-scale agricultural systems. J. Geovis. Spat. Anal. 2024, 8, 9. [Google Scholar] [CrossRef]
- Crump, R.E.; Huang, C.I.; Knock, E.S.; Spencer, S.E.F.; Brown, P.E.; Mwamba Miaka, E.; Shampa, C.; Keeling, M.J.; Rock, K.S. Quantifying epidemiological drivers of gambiense human African Trypanosomiasis across the Democratic Republic of Congo. PLoS Comput. Biol. 2021, 17, e1008532. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Desikan, R.; Dixit, N.M. Modeling how antibody responses may determine the efficacy of COVID-19 vaccines. Nat. Comput. Sci. 2022, 2, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Weiss, D.J.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.E.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Retkute, R.; Touloupou, P.; Basáñez, M.G.; Hollingsworth, T.D.; Spencer, S.E.F. Integrating geostatistical maps and infectious disease transmission models using adaptive multiple importance sampling. Ann. Appl. Stat. 2021, 15, 1980–1998. [Google Scholar] [CrossRef]
- Touloupou, P.; Retkute, R.; Hollingsworth, T.D.; Spencer, S.E. Statistical methods for linking geostatistical maps and transmission models: Application to lymphatic filariasis in East Africa. Spat. Spatio-Temporal Epidemiol. 2022, 41, 100391. [Google Scholar] [CrossRef]
- Romero-Severson, E.O.; Hengartner, N.; Meadors, G.; Ke, R. Change in global transmission rates of COVID-19 through May 6 2020. PLoS ONE 2020, 15, e0236776. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.H.; Wu, Y.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The Monte Carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Kahn, H.; Harris, T.E. Estimation of particle transmission by random sampling. Natl. Bur. Stand. Appl. Math. Ser. 1951, 12, 27–30. [Google Scholar]
- Cappé, O.; Douc, R.; Guillin, A.; Marin, J.M.; Robert, C.P. Adaptive importance sampling in general mixture classes. Stat. Comput. 2008, 18, 447–459. [Google Scholar] [CrossRef]
- Veach, E.; Guibas, L.J. Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ’95, Los Angeles, CA, USA, 6–11 August 1995; ACM Press: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Cornuet, J.; Marin, J.; Mira, A.; Robert, C.P. Adaptive Multiple Importance Sampling. Scand. J. Stat. 2012, 39, 798–812. [Google Scholar] [CrossRef]
- Siren, J.; Marttinen, P.; Corander, J. Reconstructing Population Histories from Single Nucleotide Polymorphism Data. Mol. Biol. Evol. 2010, 28, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Sbert, M.; Havran, V. Adaptive multiple importance sampling for general functions. Vis. Comput. 2017, 33, 845–855. [Google Scholar] [CrossRef]
- Elvira, V.; Santamaria, I. Multiple Importance Sampling for Symbol Error Rate Estimation of Maximum-Likelihood Detectors in MIMO Channels. IEEE Trans. Signal Process. 2021, 69, 1200–1212. [Google Scholar] [CrossRef]
- Burgess, A.J.; Retkute, R.; Murchie, E.H. Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana. Front. Plant Sci. 2023, 14, 1116367. [Google Scholar] [CrossRef]
- Prusokiene, A.; Prusokas, A.; Retkute, R. Machine learning based lineage tree reconstruction improved with knowledge of higher level relationships between cells and genomic barcodes. NAR Genom. Bioinform. 2023, 5, lqad077. [Google Scholar] [CrossRef]
- Cheke, R.A.; Tratalos, J.A. Migration, patchiness, and population processes illustrated by two migrant pests. BioScience 2007, 57, 145–154. [Google Scholar] [CrossRef]
- Chapman, J.W.; Nesbit, R.L.; Burgin, L.E.; Reynolds, D.R.; Smith, A.D.; Middleton, D.R.; Hill, J.K. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 2010, 327, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Dingle, H. Migration to special habitats. In Migration; Oxford University Press: Oxford, UK, 2014; pp. 183–194. [Google Scholar]
- Rainey, R.C. Weather and the movements of locust swarms: A new hypothesis. Nature 1951, 168, 1057–1060. [Google Scholar] [CrossRef]
- Draper, J. The direction of desert locust migration. J. Anim. Ecol. 1980, 49, 959. [Google Scholar] [CrossRef]
- Pedgley, D.E. (Ed.) Desert Locust Forecasting Manual; Natural Resources Institute: Chatham, UK, 1981. [Google Scholar]
- Homberg, U. Sky compass orientation in desert locusts—Evidence from field and laboratory studies. Front. Behav. Neurosci. 2015, 9, 346. [Google Scholar] [CrossRef] [PubMed]
- Homberg, U.; Hensgen, R.; Jahn, S.; Pegel, U.; Takahashi, N.; Zittrell, F.; Pfeiffer, K. The sky compass network in the brain of the desert locust. J. Comp. Physiol. A 2022, 209, 641–662. [Google Scholar] [CrossRef]
- Mardia, K.V. Statistics of directional data. J. R. Stat. Soc. Ser. B (Methodol.) 1975, 37, 349–371. [Google Scholar] [CrossRef]
- Carta, J.A.; Bueno, C.; Ramírez, P. Statistical modelling of directional wind speeds using mixtures of von Mises distributions: Case study. Energy Convers. Manag. 2008, 49, 897–907. [Google Scholar] [CrossRef]
- Meyer, M.; Cox, J.A.; Hitchings, M.D.T.; Burgin, L.; Hort, M.C.; Hodson, D.P.; Gilligan, C.A. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nat. Plants 2017, 3, 780–786. [Google Scholar] [CrossRef]
- Meyer, M.; Thurston, W.; Smith, J.W.; Schumacher, A.; Millington, S.C.; Hodson, D.P.; Cressman, K.; Gilligan, C.A. Three-Dimensional Visualization of long-range atmospheric transport of crop pathogens and insect pests. Atmosphere 2023, 14, 910. [Google Scholar] [CrossRef]
- Jones, A.; Thomson, D.; Hort, M.; Devenish, B. The U.K. Met Office’s next-generation atmospheric dispersion model, NAME III. In Air Pollution Modeling and Its Application XVII; Springer: New York, NY, USA, 2007; pp. 580–589. [Google Scholar] [CrossRef]
- Burgin, L.E.; Gloster, J.; Sanders, C.; Mellor, P.S.; Gubbins, S.; Carpenter, S. Investigating incursions of bluetongue virus using a model of long-distance culicoides biting midge dispersal. Transbound. Emerg. Dis. 2012, 60, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Retkute, R.; Hinton, R.G.K.; Cressman, K.; Gilligan, C.A. Regional differences in control operations during the 2019–2021 desert locust upsurge. Agronomy 2021, 11, 2529. [Google Scholar] [CrossRef]
- Mardia, K.V.; Jupp, P.E. Directional Statistics; Wiley Series in Probability and Statistics; John Wiley & Sons: Chichester, UK, 1999. [Google Scholar]
- Papadakis, M.; Tsagris, M.; Dimitriadis, M.; Fafalios, S.; Tsamardinos, I.; Fasiolo, M.; Borboudakis, G.; Burkardt, J.; Zou, C.; Lakiotaki, K.; et al. Rfast: A Collection of Efficient and Extremely Fast R Functions, R package version 2.0.6; The Comprehensive R Archive Network, 2023; Available online: https://cran.r-project.org/ (accessed on 8 March 2024).
- Tsagris, M.; Papadakis, M. Taking R to its limits: 70+ tips. Peerj Prepr. 2018, 6, e26605v1. [Google Scholar] [CrossRef]
- Walters, D.; Baran, A.J.; Boutle, I.; Brooks, M.; Earnshaw, P.; Edwards, J.; Furtado, K.; Hill, P.; Lock, A.; Manners, J.; et al. The Met Office unified model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations. Geosci. Model Dev. 2019, 12, 1909–1963. [Google Scholar] [CrossRef]
- Robert, C.; Casella, G. Monte Carlo Statistical Methods, 2nd ed.; Springer Texts in Statistics; Springer: New York, NY, USA, 2005. [Google Scholar]
- Ripley, B.D. Stochastic Simulation; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar] [CrossRef]
- Paananen, T.; Piironen, J.; Bürkner, P.C.; Vehtari, A. Implicitly adaptive importance sampling. Stat. Comput. 2021, 31, 16. [Google Scholar] [CrossRef]
- Kish, L. Survey Sampling; John Wiley & Sons: Nashville, TN, USA, 1966. [Google Scholar]
- Elvira, V.; Martino, L.; Robert, C.P. Rethinking the Effective Sample Size. Int. Stat. Rev. 2022, 90, 525–550. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Weis, C.I.; Gohm, A.; Rotach, M.W.; Minda, T.T. Dynamics of gap winds in the Great Rift Valley, Ethiopia: Emphasis on strong winds at Lake Abaya. Weather Clim. Dyn. 2022, 3, 1003–1019. [Google Scholar] [CrossRef]
- Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Ullah Khan, S. The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 2015, 47, 98–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retkute, R.; Thurston, W.; Gilligan, C.A. Bayesian Inference for Multiple Datasets. Stats 2024, 7, 434-444. https://doi.org/10.3390/stats7020026
Retkute R, Thurston W, Gilligan CA. Bayesian Inference for Multiple Datasets. Stats. 2024; 7(2):434-444. https://doi.org/10.3390/stats7020026
Chicago/Turabian StyleRetkute, Renata, William Thurston, and Christopher A. Gilligan. 2024. "Bayesian Inference for Multiple Datasets" Stats 7, no. 2: 434-444. https://doi.org/10.3390/stats7020026
APA StyleRetkute, R., Thurston, W., & Gilligan, C. A. (2024). Bayesian Inference for Multiple Datasets. Stats, 7(2), 434-444. https://doi.org/10.3390/stats7020026