Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence
Abstract
:1. Introduction
2. Nonparametric Forward Bootstrap Prediction
2.1. Bootstrap Algorithm for Point Prediction and QPI
Algorithm 1 Bootstrap prediction of with fitted residuals | |
Step 1 | With data , construct the estimators and with Equation (6). |
Step 2 | Compute fitted residuals based on Equation (7), and let . Let denote the empirical distribution of the centered residuals for . |
Step 3 | Generate i.i.d. from . Then, construct bootstrap pseudo-values , iteratively, i.e.,
For example, and . |
Step 4 | Repeating Step 3 M times, we obtain pseudo-value replicates of that we denote by . Then, - and -optimal predictors can be approximated by and the , respectively. Furthermore, a % QPI can be built as , where L and U denote the and sample quantiles of M values . |
Algorithm 2 Bootstrap prediction of with predictive residuals | |
Step 1 | The same as Step 1 of Algorithm 1. |
Step 2 | Compute predictive residuals based on Equation (11). Let denote the empirical distribution of the centered predictive residuals . |
Steps 3–4 | Replace by in Algorithm 1. All the rest are the same. |
2.2. Bootstrap Algorithm for PPI
Algorithm 3 Bootstrap PPI of with fitted residuals | |
Step 1 | With data , construct the estimators and by using Equation (6). Furthermore, compute fitted residuals based on Equation (7). Denote the empirical distribution of centered residuals by by . |
Step 2 | Construct the or prediction using Algorithm 1. |
Step 3 | (a) Resample (with replacement) the residuals from to create pseudo-errors and . |
(b) Let , where I is generated as a discrete random variable uniformly distributed on the values . Then, create bootstrap pseudo-data in a recursive manner from the formula
(c) Based on the bootstrap data , re-estimate the regression and variance functions according to Equation (6) and obtain and ; we use the same bandwidth h as the original estimator . (d) Guided by the idea of the forward bootstrap, re-define the latest value of to match the original, i.e., re-define . (e) With the estimators and , the bootstrap data , and the pseudo-errors , use Equation (12) to recursively generate the future bootstrap data . (f) With bootstrap data and the estimators and , utilize Algorithm 1 to compute the optimal bootstrap prediction, which is denoted by ; to generate bootstrap innovations, we still use . (g) Determine the bootstrap predictive root: . | |
Step 4 | Repeat Step 3 B times; the B bootstrap root replicates are collected in the form of an empirical distribution whose -quantile is denoted by . The equal-tailed prediction interval for centered at is then estimated by |
Algorithm 4 Bootstrap PPI of with predictive residuals | |
Step 1 | With data , construct the estimators and by using Equation (6). Furthermore, compute predictive residuals based on Equation (11). Denote the empirical distribution of centered residuals by . |
Steps 2–4 | The same as in Algorithm 3, but change the residual distribution from to , and change the application of Algorithm 1 to Algorithm 2. |
3. Asymptotic Properties
3.1. On Point Prediction and QPI
- A1
- for all and some ;
- A2
- for all and some ;
- A3
- is positive everywhere.
- A4
- The regression function is twice continuously differentiable with bounded derivatives, and we denote its Lipschitz continuous constant as ;
- A5
- The volatility function is twice continuously differentiable with bounded derivatives, and we denote its Lipschitz continuous constant as . Moreover, for all , there is with , where is the initial point of the time series;
- A6
- For and , ;
- A7
- For the innovation distribution, is twice continuously differentiable; , and are bounded; and ;
- A8
- The kernel function is a compactly supported and symmetric probability density on and has a bounded derivative.
3.2. On PPI with Homoscedastic Errors
3.3. On PPI with Heteroscedastic Errors
4. Simulations
4.1. Optimal Point Prediction
4.2. QPI and PPI
4.3. Simulation Results for Appendices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proofs
Appendix B. The Advantage of Applying Under-Smoothing Bandwidth for QPI with Finite Sample
Appendix C. The Effects of Applying Under-Smoothing or Over-Smoothing Bandwidth on PPI
Appendix D. The Comparison of Applying Under-Smoothing and Optimal Bandwidths on Estimating the Variance Function for Building PPI
References
- Politis, D.N. Financial time series. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 157–166. [Google Scholar] [CrossRef]
- Politis, D.N. Pertinent Prediction Intervals. In Model-Free Prediction and Regression; Springer: New York, NY, USA, 2015; pp. 43–45. [Google Scholar]
- Pemberton, J. Exact least squares multi-step prediction from nonlinear autoregressive models. J. Time Ser. Anal. 1987, 8, 443–448. [Google Scholar] [CrossRef]
- Lee, K.; Billings, S. A new direct approach of computing multi-step ahead predictions for non-linear models. Int. J. Control 2003, 76, 810–822. [Google Scholar] [CrossRef]
- Chen, R.; Yang, L.; Hafner, C. Nonparametric multistep-ahead prediction in time series analysis. J. R. Stat. Soc. Ser. Stat. Methodol. 2004, 66, 669–686. [Google Scholar] [CrossRef]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Politis, D.N.; Romano, J.P. A Circular Block-Resampling Procedure for Stationary Data. In Exploring the Limits of Bootstrap; LePage, R., Billard, L., Eds.; Wiley: New York, NY, USA, 1992; pp. 263–270. [Google Scholar]
- Politis, D.N.; Romano, J.P. The stationary bootstrap. J. Am. Stat. Assoc. 1994, 89, 1303–1313. [Google Scholar] [CrossRef]
- Politis, D.N. The Impact of Bootstrap Methods on Time Series Analysis. Stat. Sci. 2003, 18, 219–230. [Google Scholar] [CrossRef]
- Kreiss, J.P.; Paparoditis, E. Bootstrap for Time Series: Theory and Methods; Springer: Heidelberg, Germany, 2023. [Google Scholar]
- Franke, J.; Neumann, M.H. Bootstrapping neural networks. Neural Comput. 2000, 12, 1929–1949. [Google Scholar] [CrossRef]
- Michelucci, U.; Venturini, F. Estimating neural network’s performance with bootstrap: A tutorial. Mach. Learn. Knowl. Extr. 2021, 3, 357–373. [Google Scholar] [CrossRef]
- Thombs, L.A.; Schucany, W.R. Bootstrap prediction intervals for autoregression. J. Am. Stat. Assoc. 1990, 85, 486–492. [Google Scholar] [CrossRef]
- Pascual, L.; Romo, J.; Ruiz, E. Bootstrap predictive inference for ARIMA processes. J. Time Ser. Anal. 2004, 25, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Pascual, L.; Romo, J.; Ruiz, E. Bootstrap prediction for returns and volatilities in GARCH models. Comput. Stat. Data Anal. 2006, 50, 2293–2312. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Politis, D.N. Bootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions. J. Stat. Plan. Inference 2016, 177, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Politis, D.N. Bootstrap Prediction Inference of Non-linear Autoregressive Models. arXiv 2023, arXiv:2306.04126. [Google Scholar]
- Politis, D.N. Model-free model-fitting and predictive distributions. Test 2013, 22, 183–221. [Google Scholar] [CrossRef] [Green Version]
- Manzan, S.; Zerom, D. A bootstrap-based non-parametric forecast density. Int. J. Forecast. 2008, 24, 535–550. [Google Scholar] [CrossRef]
- Giordano, F.; La Rocca, M.; Perna, C. Forecasting nonlinear time series with neural network sieve bootstrap. Comput. Stat. Data Anal. 2007, 51, 3871–3884. [Google Scholar] [CrossRef]
- Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A.F. Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Netw. 2011, 22, 1341–1356. [Google Scholar] [CrossRef]
- Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 2017, 6402–6413. [Google Scholar]
- Chen, J.; Politis, D.N. Optimal multi-step-ahead prediction of ARCH/GARCH models and NoVaS transformation. Econometrics 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Karmakar, S. Model-free time-aggregated predictions for econometric datasets. Forecasting 2021, 3, 920–933. [Google Scholar] [CrossRef]
- Wu, K.; Karmakar, S. A model-free approach to do long-term volatility forecasting and its variants. Financ. Innov. 2023, 9, 59. [Google Scholar] [CrossRef]
- Wang, Y.; Politis, D.N. Model-free Bootstrap and Conformal Prediction in Regression: Conditionality, Conjecture Testing, and Pertinent Prediction Intervals. arXiv 2021, arXiv:2109.12156. [Google Scholar]
- Franke, J.; Kreiss, J.P.; Mammen, E. Bootstrap of kernel smoothing in nonlinear time series. Bernoulli 2002, 8, 1–37. [Google Scholar]
- Politis, D.N. Studentization vs. Variance Stabilization: A Simple Way Out of an Old Dilemma. 2022. Available online: https://mathweb.ucsd.edu/~politis/PAPER/DGP_Aug_11.pdf (accessed on 18 July 2023).
- Bradley, R.C. Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2005, 2, 107–144. [Google Scholar] [CrossRef] [Green Version]
- Franke, J.; Neumann, M.H.; Stockis, J.P. Bootstrapping nonparametric estimators of the volatility function. J. Econom. 2004, 118, 189–218. [Google Scholar] [CrossRef]
- Min, C.; Hongzhi, A. The probabilistic properties of the nonlinear autoregressive model with conditional heteroskedasticity. Acta Math. Appl. Sin. 1999, 15, 9–17. [Google Scholar] [CrossRef]
- Franke, J.; Kreiss, J.P.; Mammen, E.; Neumann, M.H. Properties of the nonparametric autoregressive bootstrap. J. Time Ser. Anal. 2002, 23, 555–585. [Google Scholar] [CrossRef] [Green Version]
Model: | ||||||
---|---|---|---|---|---|---|
Prediction step | 1 | 2 | 3 | 4 | 5 | |
-Bootstrap | 1.1088 | 1.5223 | 1.6088 | 1.5886 | 1.6282 | |
-Bootstrap | 1.1123 | 1.5290 | 1.6212 | 1.6011 | 1.6385 | |
-Oracle | 1.0181 | 1.4521 | 1.5529 | 1.5273 | 1.5731 | |
-Oracle | 1.0198 | 1.4540 | 1.5554 | 1.5305 | 1.5734 | |
-Bootstrap | 1.0142 | 1.4006 | 1.5380 | 1.5956 | 1.6102 | |
-Bootstrap | 1.0134 | 1.4041 | 1.5426 | 1.6024 | 1.6171 | |
-Oracle | 0.9790 | 1.3671 | 1.4982 | 1.5556 | 1.5791 | |
-Oracle | 0.9793 | 1.3681 | 1.4999 | 1.5568 | 1.5791 |
Model: | ||||||
---|---|---|---|---|---|---|
Prediction step | 1 | 2 | 3 | 4 | 5 | |
-Bootstrap | 6.7286 | 7.6087 | 7.8202 | 7.3395 | 7.6966 | |
-Bootstrap | 7.1093 | 7.9908 | 8.2598 | 7.6761 | 7.9988 | |
-Oracle | 6.2972 | 7.3608 | 7.6953 | 7.1766 | 7.5157 | |
-Oracle | 6.6937 | 7.6540 | 8.0064 | 7.3889 | 7.7174 | |
-Bootstrap | 6.2457 | 7.1662 | 7.5042 | 7.6227 | 7.1980 | |
-Bootstrap | 6.6355 | 7.4942 | 7.7964 | 7.9285 | 7.5006 | |
-Oracle | 5.9531 | 7.0244 | 7.3823 | 7.4382 | 7.0738 | |
-Oracle | 6.3519 | 7.2785 | 7.5810 | 7.6443 | 7.2600 |
Model: | ||||||
---|---|---|---|---|---|---|
Prediction step | 1 | 2 | 3 | 4 | 5 | |
-Bootstrap | 0.9447 | 1.1306 | 1.2373 | 1.2091 | 1.2714 | |
-Bootstrap | 0.9461 | 1.1374 | 1.2396 | 1.2127 | 1.2731 | |
-Oracle | 0.8454 | 1.0726 | 1.1832 | 1.1722 | 1.2186 | |
-Oracle | 0.8457 | 1.0730 | 1.1841 | 1.1737 | 1.2183 | |
-Bootstrap | 0.8798 | 1.1539 | 1.2600 | 1.2901 | 1.2717 | |
-Bootstrap | 0.8833 | 1.1600 | 1.2649 | 1.2949 | 1.2749 | |
-Oracle | 0.8103 | 1.0991 | 1.2227 | 1.2680 | 1.2509 | |
-Oracle | 0.8107 | 1.1000 | 1.2239 | 1.2684 | 1.2511 |
Model 1: | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CVR for each step | LEN for each step | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
QPI-f | 0.936 | 0.935 | 0.931 | 0.928 | 0.925 | 3.80 | 4.38 | 4.52 | 4.55 | 4.57 |
QPI-p | 0.943 | 0.944 | 0.939 | 0.935 | 0.937 | 3.94 | 4.54 | 4.69 | 4.73 | 4.74 |
QPI-f-u | 0.936 | 0.941 | 0.940 | 0.937 | 0.937 | 3.80 | 4.51 | 4.69 | 4.76 | 4.77 |
QPI-p-u | 0.942 | 0.949 | 0.949 | 0.945 | 0.949 | 3.95 | 4.68 | 4.86 | 4.92 | 4.94 |
-PPI-f-u | 0.940 | 0.944 | 0.944 | 0.940 | 0.939 | 3.94 | 4.59 | 4.76 | 4.81 | 4.83 |
-PPI-p-u | 0.947 | 0.954 | 0.951 | 0.947 | 0.947 | 4.09 | 4.75 | 4.92 | 4.98 | 5.00 |
-PPI-f-u | 0.942 | 0.945 | 0.944 | 0.940 | 0.941 | 3.95 | 4.61 | 4.77 | 4.83 | 4.84 |
-PPI-p-u | 0.948 | 0.954 | 0.952 | 0.948 | 0.949 | 4.10 | 4.77 | 4.94 | 4.99 | 5.01 |
SPI | 0.951 | 0.948 | 0.950 | 0.944 | 0.946 | 3.88 | 4.58 | 4.77 | 4.82 | 4.84 |
QPI-f | 0.921 | 0.918 | 0.912 | 0.913 | 0.909 | 3.74 | 4.28 | 4.40 | 4.44 | 4.45 |
QPI-p | 0.940 | 0.935 | 0.931 | 0.931 | 0.928 | 3.99 | 4.54 | 4.67 | 4.71 | 4.72 |
QPI-f-u | 0.916 | 0.928 | 0.931 | 0.930 | 0.927 | 3.74 | 4.46 | 4.63 | 4.69 | 4.71 |
QPI-p-u | 0.937 | 0.943 | 0.943 | 0.944 | 0.943 | 3.99 | 4.72 | 4.89 | 4.95 | 4.97 |
-PPI-f-u | 0.931 | 0.934 | 0.935 | 0.934 | 0.931 | 3.97 | 4.58 | 4.73 | 4.78 | 4.80 |
-PPI-p-u | 0.949 | 0.948 | 0.947 | 0.944 | 0.947 | 4.22 | 4.84 | 4.99 | 5.04 | 5.07 |
-PPI-f-u | 0.931 | 0.936 | 0.934 | 0.933 | 0.934 | 3.98 | 4.60 | 4.75 | 4.79 | 4.82 |
-PPI-p-u | 0.949 | 0.948 | 0.949 | 0.944 | 0.948 | 4.23 | 4.86 | 5.01 | 5.06 | 5.09 |
SPI | 0.951 | 0.941 | 0.946 | 0.942 | 0.944 | 3.89 | 4.58 | 4.76 | 4.82 | 4.84 |
QPI-f | 0.891 | 0.898 | 0.899 | 0.890 | 0.887 | 3.64 | 4.14 | 4.25 | 4.29 | 4.30 |
QPI-p | 0.923 | 0.926 | 0.931 | 0.924 | 0.917 | 4.04 | 4.56 | 4.67 | 4.71 | 4.72 |
QPI-f-u | 0.884 | 0.916 | 0.921 | 0.918 | 0.907 | 3.64 | 4.37 | 4.54 | 4.60 | 4.62 |
QPI-p-u | 0.914 | 0.939 | 0.940 | 0.939 | 0.934 | 4.03 | 4.79 | 4.95 | 5.00 | 5.02 |
-PPI-f-u | 0.906 | 0.924 | 0.924 | 0.927 | 0.919 | 3.99 | 4.56 | 4.69 | 4.74 | 4.76 |
-PPI-p-u | 0.936 | 0.951 | 0.948 | 0.944 | 0.943 | 4.41 | 4.97 | 5.10 | 5.15 | 5.16 |
-PPI-f-u | 0.907 | 0.925 | 0.924 | 0.927 | 0.920 | 4.00 | 4.58 | 4.72 | 4.76 | 4.79 |
-PPI-p-u | 0.939 | 0.952 | 0.948 | 0.945 | 0.941 | 4.43 | 5.00 | 5.12 | 5.17 | 5.18 |
SPI | 0.947 | 0.949 | 0.944 | 0.947 | 0.942 | 3.88 | 4.58 | 4.76 | 4.81 | 4.84 |
Model 2: | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CVR for each step | LEN for each step | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
QPI-f | 0.913 | 0.918 | 0.916 | 0.924 | 0.924 | 3.30 | 3.93 | 4.07 | 4.11 | 4.12 |
QPI-p | 0.935 | 0.936 | 0.933 | 0.941 | 0.940 | 3.62 | 4.29 | 4.46 | 4.49 | 4.51 |
QPI-f-u | 0.904 | 0.934 | 0.935 | 0.943 | 0.944 | 3.34 | 4.25 | 4.50 | 4.55 | 4.57 |
QPI-p-u | 0.926 | 0.949 | 0.951 | 0.958 | 0.955 | 3.65 | 4.62 | 4.89 | 4.95 | 4.97 |
-PPI-f-opv | 0.909 | 0.938 | 0.937 | 0.948 | 0.946 | 3.51 | 4.38 | 4.60 | 4.65 | 4.67 |
-PPI-p-opv | 0.932 | 0.952 | 0.951 | 0.961 | 0.959 | 3.87 | 4.80 | 5.03 | 5.08 | 5.10 |
-PPI-f-opv | 0.912 | 0.939 | 0.937 | 0.949 | 0.946 | 3.53 | 4.38 | 4.59 | 4.64 | 4.66 |
-PPI-p-opv | 0.933 | 0.951 | 0.950 | 0.960 | 0.960 | 3.88 | 4.79 | 5.02 | 5.07 | 5.08 |
SPI | 0.948 | 0.948 | 0.940 | 0.950 | 0.946 | 3.37 | 4.11 | 4.32 | 4.38 | 4.40 |
QPI-f | 0.901 | 0.907 | 0.912 | 0.909 | 0.906 | 3.28 | 3.85 | 3.97 | 4.01 | 4.01 |
QPI-p | 0.933 | 0.931 | 0.938 | 0.933 | 0.938 | 3.82 | 4.41 | 4.55 | 4.58 | 4.59 |
QPI-f-u | 0.901 | 0.923 | 0.931 | 0.929 | 0.932 | 3.28 | 4.07 | 4.29 | 4.35 | 4.37 |
QPI-p-u | 0.931 | 0.943 | 0.950 | 0.950 | 0.947 | 3.82 | 4.64 | 4.85 | 4.90 | 4.93 |
-PPI-f-opv | 0.915 | 0.925 | 0.935 | 0.936 | 0.935 | 3.52 | 4.25 | 4.43 | 4.48 | 4.50 |
-PPI-p-opv | 0.941 | 0.948 | 0.954 | 0.955 | 0.954 | 4.17 | 4.90 | 5.07 | 5.11 | 5.13 |
-PPI-f-opv | 0.916 | 0.926 | 0.935 | 0.936 | 0.936 | 3.53 | 4.25 | 4.43 | 4.48 | 4.50 |
-PPI-p-opv | 0.941 | 0.947 | 0.954 | 0.952 | 0.955 | 4.17 | 4.90 | 5.07 | 5.12 | 5.13 |
SPI | 0.951 | 0.947 | 0.947 | 0.946 | 0.942 | 3.41 | 4.13 | 4.33 | 4.39 | 4.40 |
QPI-f | 0.844 | 0.874 | 0.884 | 0.883 | 0.888 | 3.09 | 3.68 | 3.83 | 3.87 | 3.89 |
QPI-p | 0.903 | 0.921 | 0.929 | 0.929 | 0.934 | 4.01 | 4.74 | 4.85 | 4.93 | 4.95 |
QPI-f-u | 0.845 | 0.892 | 0.907 | 0.910 | 0.910 | 3.09 | 3.93 | 4.15 | 4.23 | 4.26 |
QPI-p-u | 0.905 | 0.929 | 0.934 | 0.940 | 0.946 | 4.03 | 4.91 | 5.17 | 5.23 | 5.24 |
-PPI-f-opv | 0.871 | 0.905 | 0.917 | 0.918 | 0.922 | 3.45 | 4.19 | 4.38 | 4.46 | 4.47 |
-PPI-p-opv | 0.934 | 0.941 | 0.948 | 0.950 | 0.954 | 4.71 | 5.48 | 5.60 | 5.67 | 5.68 |
-PPI-f-opv | 0.873 | 0.907 | 0.920 | 0.919 | 0.923 | 3.46 | 4.20 | 4.40 | 4.47 | 4.48 |
-PPI-p-opv | 0.934 | 0.942 | 0.948 | 0.950 | 0.954 | 4.69 | 5.44 | 5.57 | 5.64 | 5.64 |
SPI | 0.942 | 0.946 | 0.948 | 0.939 | 0.950 | 3.39 | 4.11 | 4.33 | 4.38 | 4.40 |
Model 1: | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CVR for each step | LEN for each step | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
QPI-f | 0.950 | 0.940 | 0.948 | 0.947 | 0.939 | 3.86 | 4.50 | 4.66 | 4.70 | 4.71 |
QPI-f-u | 0.947 | 0.943 | 0.952 | 0.954 | 0.946 | 3.86 | 4.56 | 4.74 | 4.79 | 4.81 |
QPI-p | 0.949 | 0.938 | 0.951 | 0.951 | 0.943 | 3.91 | 4.54 | 4.71 | 4.75 | 4.76 |
QPI-p-u | 0.951 | 0.947 | 0.954 | 0.956 | 0.950 | 3.90 | 4.62 | 4.80 | 4.84 | 4.86 |
Model 1: | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CVR for each step | LEN for each step | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
-PPI-f-u | 0.943 | 0.940 | 0.945 | 0.943 | 0.948 | 3.88 | 4.54 | 4.71 | 4.77 | 4.78 |
-PPI-f-u | 0.942 | 0.941 | 0.946 | 0.947 | 0.949 | 3.89 | 4.55 | 4.72 | 4.78 | 4.80 |
-PPI-p-u | 0.946 | 0.949 | 0.947 | 0.952 | 0.954 | 3.96 | 4.63 | 4.79 | 4.85 | 4.8 |
-PPI-p-u | 0.946 | 0.950 | 0.947 | 0.951 | 0.954 | 3.97 | 4.64 | 4.81 | 4.86 | 4.88 |
-PPI-f-o | 0.942 | 0.926 | 0.916 | 0.915 | 0.923 | 3.86 | 4.26 | 4.33 | 4.34 | 4.35 |
-PPI-f-o | 0.943 | 0.925 | 0.921 | 0.918 | 0.922 | 3.87 | 4.27 | 4.34 | 4.36 | 4.36 |
-PPI-p-o | 0.948 | 0.929 | 0.927 | 0.927 | 0.925 | 3.94 | 4.34 | 4.42 | 4.43 | 4.43 |
-PPI-p-o | 0.949 | 0.931 | 0.928 | 0.925 | 0.924 | 3.95 | 4.35 | 4.43 | 4.44 | 4.44 |
SPI | 0.946 | 0.947 | 0.948 | 0.950 | 0.956 | 3.89 | 4.57 | 4.76 | 4.82 | 4.84 |
-PPI-f-u | 0.912 | 0.919 | 0.919 | 0.925 | 0.931 | 3.95 | 4.53 | 4.67 | 4.72 | 4.74 |
-PPI-f-u | 0.913 | 0.921 | 0.919 | 0.928 | 0.931 | 3.96 | 4.55 | 4.69 | 4.74 | 4.76 |
-PPI-p-u | 0.943 | 0.945 | 0.942 | 0.946 | 0.950 | 4.38 | 4.95 | 5.08 | 5.12 | 5.14 |
-PPI-p-u | 0.944 | 0.946 | 0.943 | 0.948 | 0.950 | 4.39 | 4.98 | 5.10 | 5.15 | 5.16 |
-PPI-f-o | 0.911 | 0.880 | 0.869 | 0.869 | 0.873 | 3.78 | 3.93 | 3.96 | 3.97 | 3.97 |
-PPI-f-o | 0.912 | 0.882 | 0.868 | 0.868 | 0.871 | 3.79 | 3.95 | 3.98 | 3.98 | 3.98 |
-PPI-p-o | 0.940 | 0.918 | 0.903 | 0.908 | 0.910 | 4.20 | 4.37 | 4.40 | 4.41 | 4.42 |
-PPI-p-o | 0.941 | 0.919 | 0.902 | 0.909 | 0.909 | 4.22 | 4.39 | 4.42 | 4.43 | 4.43 |
SPI | 0.950 | 0.947 | 0.946 | 0.947 | 0.950 | 3.89 | 4.58 | 4.76 | 4.82 | 4.84 |
Model 1: | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CVR for each step | LEN for each step | |||||||||
-PPI-f-u | 0.871 | 0.896 | 0.921 | 0.915 | 0.923 | 3.50 | 4.24 | 4.41 | 4.48 | 4.52 |
-PPI-f-u | 0.877 | 0.901 | 0.919 | 0.918 | 0.925 | 3.52 | 4.24 | 4.42 | 4.49 | 4.53 |
-PPI-p-u | 0.925 | 0.939 | 0.946 | 0.946 | 0.946 | 4.82 | 5.47 | 5.63 | 5.71 | 5.81 |
-PPI-p-u | 0.927 | 0.935 | 0.945 | 0.949 | 0.949 | 4.80 | 5.39 | 5.51 | 5.65 | 5.75 |
-PPI-f-opv | 0.885 | 0.891 | 0.923 | 0.920 | 0.918 | 3.45 | 4.12 | 4.34 | 4.39 | 4.43 |
-PPI-f-opv | 0.885 | 0.893 | 0.927 | 0.919 | 0.917 | 3.47 | 4.14 | 4.36 | 4.41 | 4.45 |
-PPI-p-opv | 0.934 | 0.939 | 0.947 | 0.950 | 0.947 | 4.75 | 5.28 | 5.49 | 5.56 | 5.60 |
-PPI-p-opv | 0.940 | 0.940 | 0.946 | 0.951 | 0.943 | 4.72 | 5.21 | 5.40 | 5.45 | 5.55 |
SPI | 0.943 | 0.939 | 0.958 | 0.945 | 0.945 | 3.38 | 4.11 | 4.33 | 4.38 | 4.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politis, D.N.; Wu, K. Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence. Stats 2023, 6, 839-867. https://doi.org/10.3390/stats6030053
Politis DN, Wu K. Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence. Stats. 2023; 6(3):839-867. https://doi.org/10.3390/stats6030053
Chicago/Turabian StylePolitis, Dimitris N., and Kejin Wu. 2023. "Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence" Stats 6, no. 3: 839-867. https://doi.org/10.3390/stats6030053
APA StylePolitis, D. N., & Wu, K. (2023). Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence. Stats, 6(3), 839-867. https://doi.org/10.3390/stats6030053