Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Methods
3.1.1. Definition of DMUs
3.1.2. Selection of Input and Output Variables
3.1.3. Selection of DEA Model
3.1.4. Bootstrapping
- (i)
- Determine each region’s initial DEA efficiency scores, , by solving Model (1).
- (ii)
- Generate a random sample with a replacement of size n from the non-parametric kernel density function used to estimate the distribution of the original point efficiency scores, .
- (iii)
- Create a pseudo-dataset for each region of the sample.
- (iv)
- To create new efficiency scores, , solve the DEA-BCC model for the new set of data.
- (v)
- Repeat steps (ii) through (iv) B = 2000 times.
4. Dataset
5. Results and Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Small Business Administration (SBA), Office of Advocacy—Edward Lowe Foundation, Cassopolis, MI. The Innovation-Entrepreneurship NEXUS: A National Assessment of Entrepreneurship and Regional Economic Growth and Development, Study Conducted by Advanced Research Technologies, LLC, Powell, OH.; Small Business Administration (SBA); Office of Advocacy—Edward Lowe Foundation: Cassopolis, MI, USA, 2005. [Google Scholar]
- Schumpeter, J.A. The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle; Harvard University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Reynolds, P.D.; Hay, M.; Camp, S.M. Global Entrepreneurs Hip Monitor, 1999 Executive Report; Babson College, Kauffman Center for Entrepreneurial Leadership and the London Business School: Babson, MA, USA, 1999. [Google Scholar]
- Gartner, W.B. What are we talking about when we talk about entrepreneurship? J. Bus. Ventur. 1990, 5, 15–28. [Google Scholar] [CrossRef]
- Lundstrom, A.; Stevenson, L.A. Entrepreneurship Policy: Theory and Practice; Kluwer Academic Publishers: New York, NY, USA, 2005. [Google Scholar]
- Schaper, M. The essence of ecopreneurship, GMI Theme Issue: Environ. Entrep 2002, 38, 26–38. [Google Scholar]
- Gartner, W.B.; Shane, S.A. Measuring entrepreneurship over time. J. Bus. Ventur. 1995, 10, 283–301. [Google Scholar] [CrossRef]
- Acs, Z.J.; Arenius, P.; Hay, M.; Minniti, M. Global Entrepreneurship Monitor, 2004. Executive Report; London Business School: London, UK; Babson College: Wellesley, MA, USA, 2005. [Google Scholar]
- Minniti, M. Global Entrepreneurship Monitor, 2005 Executive Report; Babson College: Babson Park, MA, USA; London Business School: London, UK, 2006. [Google Scholar]
- Jones-Evans, D.; Brooksbank, D.J. GEM UK Regional Summary: Wales 2004; University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship: Champaign, IL, USA, 2004. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar]
- Reynolds, P.D.; Bygrave, W.D.; Autio, E. GEM 2003 Global Report; Babson College, the London Business School, and the Ewing Marion Kauffman Foundation: Babson, MA, USA, 2004. [Google Scholar]
- Ioannidis, S. Entrepreneurship in Greece, Foundation for Economic and Industrial Research (IOBE), Global Entrepreneurship Monitor 2003; Entrepreneurship in Greece, Foundation for Economic and Industrial Research (IOBE): Athens, Greek, 2004. (In Greek) [Google Scholar]
- Ioannidis, S.; Politis, T.; Tsakanikas, A. Entrepreneurship in Greece 2004–2005, Foundation for Economic and Industrial Research (IOBE), Global Entrepreneurship Monitor 2005, Athens, October; Entrepreneurship in Greece, Foundation for Economic and Industrial Research (IOBE): Athens, Greek, 2005. (In Greek) [Google Scholar]
- Pereira, M.A.; Ferreira, D.C.; Figueira, J.R.; Marques, R.C. Measuring the efficiency of the Portuguese public hospitals: A valuemodelled network data envelopment analysis with simulation. Expert Syst. Appl. 2021, 181, 115169. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Emrouznejad, A.; Shetab-Boushehri, S.N.; Hejazi, S.R. The origins, development and future directions of Data Envelopment Analysis approach in transportation systems. Socio-Econ. Plan. Sci. 2020, 69, 100672. [Google Scholar] [CrossRef]
- Martín, J.C.; Indelicato, A. A DEA MCDM approach applied to ESS8 dataset for measuring immigration and refugees citizens’ openness. J. Int. Migr. Integr. 2021. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Yang, G.L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar]
- Liu, J.S.; Lu, L.Y.; Lu, W.M.; Lin, B.J. A survey of DEA applications. Omega 2013, 41, 893–902. [Google Scholar]
- Sutter, R.; Stough, R.R. Measuring entrepreneurship and knowledge capital: Metropolitan economic efficiency in the USA. Entrep. Reg. Dev. 2009, 21, 351–373. [Google Scholar] [CrossRef]
- Fried, H.O.; Tauer, L.W. An entrepreneur performance index. J. Product. Anal. 2015, 44, 69–77. [Google Scholar] [CrossRef]
- Cazals, C.; Florens, J.P.; Simar, L. Nonparametric frontier estimation: A robust approach. J. Econom. 2002, 106, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, E.; Szerb, L.; Acs, Z.J. Country level efficiency and national systems of entrepreneurship: A data envelopment analysis approach. J. Technol. Transf. 2016, 41, 1260–1283. [Google Scholar] [CrossRef] [Green Version]
- Du, K.; O’Connor, A. Entrepreneurship and advancing national level economic efficiency. Small Bus. Econ. 2018, 50, 91–111. [Google Scholar] [CrossRef]
- Silva, P.M.; Moutinho, V.F.; Moreira, A.C. Do social and economic factors affect the technical efficiency in entrepreneurship activities? Evidence from European countries using a two-stage DEA model. Socio-Econ. Plan. Sci. 2022, 82, 101314. [Google Scholar] [CrossRef]
- Rezaei, J.; Ortt, R.; Scholten, V. Measuring entrepreneurship: Expert-based vs. data-based methodologies. Expert Syst. Appl. 2012, 39, 4063–4074. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar]
- Banker, R.; Charnes, A.; Cooper, W. Some models for estimating technical and scale efficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar]
- Norman, M.; Stoker, B. Data Envelopment Analysis: The Assessment of Performance; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Thanassoulis, E. Introduction to the Theory and Application of Data Envelopment Analysis: A Foundation Text with Integrated Software; Kluwer Academic Publishers: Hingham, MA, USA, 2001. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Tone, T. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Springer Science+Business Media, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Handbook on Data Envelopment Analysis, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Osman, I.H.; Berbary, L.N.; Sidani, Y.; Al-Ayoubi, B.; Emrouznejad, A. Data envelopment analysis model for the appraisal and relative performance evaluation of nurses at an intensive care unit. J. Med. Syst. 2011, 35, 1039–1062. [Google Scholar] [CrossRef]
- Golany, B.A.; Roll, Y. An application procedure for data envelopment analysis. Omega 1989, 17, 237–250. [Google Scholar]
- Dyson, R.G.; Allen, R.; Camanho, A.S.; Podinovski, V.V.; Sarrico, C.S.; Shale, E.A. Pitfalls and protocols and DEA. Eur. J. Oper. Res. 2001, 132, 245–259. [Google Scholar] [CrossRef]
- Sarkis, J. Preparing your data for DEA. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Zhu, J., Cook, W.D., Eds.; Springer: New York, NY, USA, 2007; pp. 305–320. [Google Scholar]
- Hollingsworth, B.; Smith, P. Use of ratios in data envelopment analysis. Appl. Econ. Lett. 2003, 10, 733–735. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Simar, L.; Wilson, P.W. Statistical inference in nonparametric frontier models: The state of the art. J. Product. Anal. 2000, 13, 49–78. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. A general methodology for bootstrapping in nonparametric frontier models, J. Appl. Stat. 2000, 27, 779–802. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Two-stage dea: Caveat emptor. J. Product. Anal. 2011, 36, 205–218. [Google Scholar] [CrossRef]
- Avkiran, N.K. The evidence of efficiency gains: The role of mergers and the benefits to the public. J. Bank. Financ. 1999, 23, 991–1013. [Google Scholar] [CrossRef]
- Evanoff, D.D.; Israilevich, P.R. Productive efficiency in banking. Econom. Perspect. 1991, 15, 11–32. [Google Scholar]
- Simar, L.; Wilson, P.W. Statistical inference in nonparametric frontier models: Recent developments and perspectives. In The Measurement of Productive Efficiency and Productivity Growth, 2nd ed.; Fried, H.O., Lovell, C.A.K., Schmidt, S.S., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 421–521. [Google Scholar]
- Hellenic Statistical Authority (ELSTAT). Statistical Business Register; ELSTAT: Piraeus, Greece, 2015. [Google Scholar]
- Hellenic Statistical Authority (ELSTAT). Newly Established or Expanded Manufacturing Units (Licenses to Operate Expanded); ELSTAT: Piraeus, Greece, 2015. [Google Scholar]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of productive processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
Measures of Regional Entrepreneurship Activity | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Number of enterprises a per 1000 persons of labor force | 204.13 | 436.51 | 344.01 | 62.41 |
Number of new enterprises b in manufacturing per 1000 persons of labor force | 0.01 | 0.21 | 0.06 | 0.05 |
Employment rate | 0.69 | 0.85 | 0.76 | 0.04 |
Single DEA | DEA-Bootstrapping Estimates | ||||||||
---|---|---|---|---|---|---|---|---|---|
Regions | DEA-BCC Point Estimates | Bias | Variance | r | Bias-Corrected Point Estimates | Lower Bound | Upper Bound | Ranking a | Classification |
Attica | 1.0000 | 0.0460 | 0.0012 | 453.16 | 0.9540 | 0.9060 | 0.9987 | 5 | HLR |
Central Macedonia | 0.9331 | 0.0153 | 0.0001 | 5812.17 | 0.9177 | 0.8944 | 0.9319 | 10 | MLR |
Crete | 0.9201 | 0.0148 | 0.0001 | 5901.32 | 0.9053 | 0.8806 | 0.9190 | 11 | MLR |
Eastern Macedonia and Thrace | 0.9517 | 0.0134 | 0.0001 | 7935.58 | 0.9382 | 0.9178 | 0.9505 | 7 | MLR |
Epirus | 0.9772 | 0.0214 | 0.0002 | 2863.59 | 0.9560 | 0.9246 | 0.9763 | 2 | |
Ionian Islands | 1.0000 | 0.0462 | 0.0012 | 462.13 | 0.9538 | 0.9061 | 0.9991 | 6 | HLR |
Mainland Greece | 0.9409 | 0.0159 | 0.0001 | 6640.96 | 0.9249 | 0.9025 | 0.9396 | 9 | MLR |
Northern Aegean | 1.0000 | 0.0251 | 0.0004 | 1661.56 | 0.9749 | 0.9397 | 0.9987 | 1 | HLR |
Peloponnesus | 0.9445 | 0.0144 | 0.0001 | 4129.23 | 0.9301 | 0.9021 | 0.9435 | 8 | MLR |
Southern Aegean | 1.0000 | 0.0453 | 0.0009 | 803.72 | 0.9547 | 0.9208 | 0.9986 | 3 | HLR |
Thessaly | 0.9057 | 0.0149 | 0.0001 | 7031.98 | 0.8908 | 0.8701 | 0.9048 | 12 | LLR |
Western Greece | 1.0000 | 0.0453 | 0.0013 | 431.87 | 0.9547 | 0.9055 | 0.9989 | 4 | HLR |
Western Macedonia | 0.9092 | 0.0220 | 0.0002 | 2697.25 | 0.8870 | 0.8561 | 0.9079 | 13 | LLR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolas, I.E. Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis. Stats 2022, 5, 1221-1230. https://doi.org/10.3390/stats5040073
Tsolas IE. Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis. Stats. 2022; 5(4):1221-1230. https://doi.org/10.3390/stats5040073
Chicago/Turabian StyleTsolas, Ioannis E. 2022. "Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis" Stats 5, no. 4: 1221-1230. https://doi.org/10.3390/stats5040073
APA StyleTsolas, I. E. (2022). Assessing Regional Entrepreneurship: A Bootstrapping Approach in Data Envelopment Analysis. Stats, 5(4), 1221-1230. https://doi.org/10.3390/stats5040073