Integrated Soil Management: Food Supply, Environmental Impacts, and Socioeconomic Functions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. https://doi.org/10.3390/soilsystems6040087.
- Rubiales, D. Managing Root Parasitic Weeds to Facilitate Legume Reintroduction into Mediterranean Rain-Fed Farming Systems. Soil Syst. 2023, 7, 99. https://doi.org/10.3390/soilsystems7040099.
- Martinho, V.J.P.D.; Pereira, J.L.S.; Gonçalves, J.M. Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production. Soil Syst. 2022, 6, 32. https://doi.org/10.3390/soilsystems6020032.
- Hredoy, R.H.; Siddique, M.A.B.; Akbor, M.A.; Shaikh, M.A.A.; Rahman, M.M. Impacts of Landfill Leachate on the Surrounding Environment: A Case Study on Amin Bazar Landfill, Dhaka (Bangladesh). Soil Syst. 2022, 6, 90. https://doi.org/10.3390/soilsystems6040090.
- Arrobas, M.; Silva, J.; Busato, M.R.; Ferreira, A.C.; Raimundo, S.; Pereira, A.; Finatto, T.; de Mello, N.A.; Correia, C.M.; Rodrigues, M.Â. Large Chestnut Trees Did Not Respond to Annual Fertiliser Applications, Requiring a Long-Term Approach to Establishing Effective Fertilisation Plans. Soil Syst. 2023, 7, 2. https://doi.org/10.3390/soilsystems7010002.
- Parveen, A.; Aslam, M.M.; Iqbal, R.; Ali, M.; Kamran, M.; Alwahibi, M.S.; Akram, M.; Elshikh, M.S. Effect of Natural Phytohormones on Growth, Nutritional Status, and Yield of Mung Bean (Vigna radiata L.) and N Availability in Sandy-Loam Soil of Sub-Tropics. Soil Syst. 2023, 7, 34. https://doi.org/10.3390/soilsystems7020034.
- Nacoon, S.; Seemakram, W.; Ekprasert, J.; Theerakulpisut, P.; Sanitchon, J.; Kuyper, T.W.; Boonlue, S. Arbuscular Mycorrhizal Fungi Enhance Growth and Increase Concentrations of Anthocyanin, Phenolic Compounds, and Antioxidant Activity of Black Rice (Oryza sativa L.). Soil Syst. 2023, 7, 44. https://doi.org/10.3390/soilsystems7020044.
- Cavalaris, C.; Gemtos, T.; Karamoutis, C. Rotational Tillage Practices to Deal with Soil Compaction in Carbon Farming. Soil Syst. 2023, 7, 90. https://doi.org/10.3390/soilsystems7040090.
- Sheshnitsan, S.; Golubkina, N.; Sheshnitsan, T.; Murariu, O.C.; Tallarita, A.V.; Caruso, G. Selenium and Heavy Metals in Soil–Plant System in a Hydrogeochemical Province with High Selenium Content in Groundwater: A Case Study of the Lower Dniester Valley. Soil Syst. 2024, 8, 7. https://doi.org/10.3390/soilsystems8010007.
- Landi, S.; Carletti, B.; Binazzi, F.; Cacini, S.; Nesi, B.; Resta, E.; Roversi, P.F.; Simoni, S. Impact of Pot Farming on Plant-Parasitic Nematode Control. Soil Syst. 2024, 8, 60. https://doi.org/10.3390/soilsystems8020060.
- Kintl, A.; Šmeringai, J.; Lošák, T.; Huňady, I.; Sobotková, J.; Hrušovský, T.; Varga, L.; Vejražka, K.; Elbl, J. The Effect of Soil Heterogeneity on the Content of Macronutrients and Micronutrients in the Chickpea (Cicer arietinum L.). Soil Syst. 2024, 8, 75. https://doi.org/10.3390/soilsystems8030075.
- Choudhary, R.; Lenka, S.; Yadav, D.K.; Lenka, N.K.; Kanwar, R.S.; Sarkar, A.; Saha, M.; Singh, D.; Adhikari, T. Impact of Crop Residue, Nutrients, and Soil Moisture on Methane Emissions from Soil under Long-Term Conservation Tillage. Soil Syst. 2024, 8, 88. https://doi.org/10.3390/soilsystems8030088.
- Wang, Y.; Yang, L.; Liu, W.; Zhuang, J. The Effect of Manure Application Rates on the Vertical Distribution of Antibiotic Resistance Genes in Farmland Soil. Soil Syst. 2024, 8, 89. https://doi.org/10.3390/soilsystems8030089.
- Buckle, A.L.; Crotty, F.V.; Staddon, P.L. Mixed Grazing Increases Abundance of Arbuscular Mycorrhizal Fungi in Upland Welsh Grasslands. Soil Syst. 2024, 8, 94. https://doi.org/10.3390/soilsystems8030094.
References
- Sahoo, S.; Singha, C.; Govind, A.; Moghimi, A. Review of climate-resilient agriculture for ensuring food security: Sustainability opportunities and challenges of India. Environ. Sustain. Indic. 2025, 25, 100544. [Google Scholar] [CrossRef]
- Ntsomboh-Ntsefong, G.; Mbi, K.T.; Seyum, E.G. Advancements in soil science for sustainable agriculture: Conventional and emerging knowledge and innovations. Acad. Biol. 2024, 2. [Google Scholar] [CrossRef]
- Kumar, K.A.; Jayanthi, J.; Singh, R.D.; Sahu, S.K.; Hasan, A. Exploring soil health and sustainability in the Northwestern Himalayas: Assessing indicators amidst changing land use. Environ. Earth Sci. 2025, 84, 210. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Nassour, A.; Nelles, M. The (FWE)2 nexus: Bridging food, food waste, water, energy, and ecosystems for circular systems and sustainable development. Trends Food Sci. Technol. 2024, 154, 104788. [Google Scholar] [CrossRef]
- Tovar-Ortiz, S.A.; Rodriguez-Gonzalez, P.T.; Tovar-Gómez, R. Modeling the Impact of Global Warming on Ecosystem Dynamics: A Compartmental Approach to Sustainability. World 2024, 5, 1077–1100. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X.; Mustafa, A. Exploring the link between soil health and crop productivity. Ecotoxicol. Environ. Saf. 2025, 289, 117703. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ding, Y. Precision Agriculture Current Progress from a Novel Bibliometric Method. World Food Policy 2025, 11, e7000. [Google Scholar] [CrossRef]
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D.; Ferreira, A.J.D.; Cunha, C.; Pereira, J.L.S.; Carreira, M.D.C.S.; Castanheira, N.L.; Ramos, T.C.B. Soil legislation and policies: Bibliometric analysis, systematic review and quantitative approaches with an emphasis on the specific cases of the European Union and Portugal. Heliyon 2024, 10, e34307. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.L.S.; Martinho, V.J.P.D. Integrated Soil Management: Food Supply, Environmental Impacts, and Socioeconomic Functions. Soil Syst. 2025, 9, 64. https://doi.org/10.3390/soilsystems9020064
Pereira JLS, Martinho VJPD. Integrated Soil Management: Food Supply, Environmental Impacts, and Socioeconomic Functions. Soil Systems. 2025; 9(2):64. https://doi.org/10.3390/soilsystems9020064
Chicago/Turabian StylePereira, José L. S., and Vítor J. P. D. Martinho. 2025. "Integrated Soil Management: Food Supply, Environmental Impacts, and Socioeconomic Functions" Soil Systems 9, no. 2: 64. https://doi.org/10.3390/soilsystems9020064
APA StylePereira, J. L. S., & Martinho, V. J. P. D. (2025). Integrated Soil Management: Food Supply, Environmental Impacts, and Socioeconomic Functions. Soil Systems, 9(2), 64. https://doi.org/10.3390/soilsystems9020064