Priming of Soil Organic Carbon Decomposition Induced by Exogenous Organic Carbon Input Depends on Vegetation and Soil Depth in Coastal Salt Marshes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sites and Soil Sampling
2.2. Laboratory Incubation
2.3. Gas Sampling and CO2 Concentration Measurements
2.4. Soil CO2 Mineralization Rate Calculation
2.5. Quantification of PEs
2.6. Soil Physicochemical Analysis
2.7. Analysis of the Microbial Community
2.8. Statistical Analyses
3. Results
3.1. Initial Soil Physical and Chemical Properties
3.2. Cumulative Soil CO2 Emissions
3.3. PEs of Different Soil Layers under Different Vegetation Types
3.4. Soil Physical and Chemical Properties
3.5. Structure of Microbial Community
4. Discussion
4.1. The Dynamics of PEs under the Two Vegetation Types
4.2. The Topsoil Layer Showed a Higher PE Than the Subsoil Layer in Salt Marshes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.Q.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- van Groenigen, K.J.; Osenberg, C.W.; Terrer, C.; Carrillo, Y.; Dijkstra, F.A.; Heath, J.; Nie, M.; Pendall, E.; Phillips, R.P.; Hungate, B.A. Faster turnover of new soil carbon inputs under increased atmospheric CO2. Glob. Chang. Biol. 2017, 23, 4420–4429. [Google Scholar] [CrossRef] [PubMed]
- van Groenigen, K.J.; Qi, X.; Osenberg, C.W.; Luo, Y.Q.; Hungate, B.A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 2014, 344, 508–509. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.D.; Treseder, K.K. Climate change feedbacks to microbial decomposition in boreal soils. Fungal Ecol. 2011, 4, 362–374. [Google Scholar] [CrossRef]
- Don, A.; Bohme, I.H.; Dohrmann, A.B.; Poeplau, C.; Tebbe, C.C. Microbial community composition affects soil organic carbon turnover in mineral soils. Biol. Fertil. Soils 2017, 53, 445–456. [Google Scholar] [CrossRef]
- Karhu, K.; Alaei, S.; Li, J.; Merila, P.; Ostonen, I.; Bengtson, P. Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C: N ratios. Soil Biol. Biochem. 2022, 167, 108615. [Google Scholar] [CrossRef]
- Qiao, N.; Schaefer, D.; Blagodatskaya, E.; Zou, X.; Xu, X.; Kuzyakov, Y. Labile carbon retention compensates for CO2 released by priming in forest soils. Glob. Chang. Biol. 2014, 20, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Sun, Z.L.; Liu, S.G.; Zhang, T.A.; Zhao, X.C.; Chen, S.; Wang, Q.K. Priming of soil organic carbon decomposition induced by exogenous organic carbon input: A meta-analysis. Plant Soil 2019, 443, 463–471. [Google Scholar] [CrossRef]
- Wang, H.; Xu, W.H.; Hu, G.Q.; Dai, W.W.; Jiang, P.; Bai, E. The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest. Oecologia 2015, 178, 1239–1250. [Google Scholar] [CrossRef]
- Deng, S.H.; Zheng, X.D.; Chen, X.B.; Zheng, S.M.; He, X.Y.; Ge, T.D.; Kuzyakov, Y.; Wu, J.S.; Su, Y.R.; Hu, Y.J. Divergent mineralization of hydrophilic and hydrophobic organic substrates and their priming effect in soils depending on their preferential utilization by bacteria and fungi. Biol. Fertil. Soils 2021, 57, 65–76. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Chen, R.R.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Lin, X.G.; Blagodatskaya, E.; Kuzyakov, Y. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Glob. Chang. Biol. 2014, 20, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Blagodatskaya, E.; Yuyukina, T.; Blagodatsky, S.; Kuzyakov, Y. Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biol. Biochem. 2011, 43, 778–786. [Google Scholar] [CrossRef]
- Huo, C.F.; Liang, J.Y.; Zhang, W.D.; Wang, P.; Cheng, W.X. Priming effect and its regulating factors for fast and slow soil organic carbon pools: A meta-analysis. Pedosphere 2022, 32, 140–148. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Review: Factors affecting rhizosphere priming effects. J. Plant Nutr. Soil Sci. 2002, 165, 382–396. [Google Scholar] [CrossRef]
- Liu, J.E.; Han, R.M.; Su, H.R.; Wu, Y.P.; Zhang, L.M.; Richardson, C.J.; Wang, G.X. Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China. Ecol. Eng. 2017, 106, 132–139. [Google Scholar] [CrossRef]
- Sawada, K.; Inagaki, Y.; Toyota, K. Priming effects induced by C and N additions in relation to microbial biomass turnover in Japanese forest soils. Appl. Soil Ecol. 2021, 162, 103884. [Google Scholar] [CrossRef]
- Xu, Y.; Seshadri, B.; Sarkar, B.; Rumpel, C.; Sparks, D.; Bolan, N.S. Chapter 6-Microbial control of soil carbon turnover. In The Future of Soil Carbon; Garcia, C., Nannipieri, P., Hernandez, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 165–194. [Google Scholar]
- Fu, X.H.; Song, Q.L.; Li, S.Q.; Shen, Y.F.; Yue, S.C. Dynamic changes in bacterial community structure are associated with distinct priming effect patterns. Soil Biol. Biochem. 2022, 169, 108671. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, W.F.; Qi, J.X.; Zhang, H.Y.; Tao, F.; Zhang, R.D. Priming effects of soil organic matter decomposition with addition of different carbon substrates. J. Soils Sediments 2019, 19, 1171–1178. [Google Scholar] [CrossRef]
- Schwarz, C.; van Rees, F.; Xie, D.H.; Kleinhans, M.G.; van Maanen, B. Salt marshes create more extensive channel networks than mangroves. Nat. Commun. 2022, 13, 2017. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.M.; Jiang, J.; Cui, L.N.; Feng, W.T.; Wang, Y.G.; Zhang, J.C. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 2019, 673, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Pratolongo, P.; Leonardi, N.; Kirby, J.R.; Plater, A. Chapter 3-Temperate coastal wetlands: Morphology, sediment processes, and plant communities. In Coastal Wetlands, 2nd ed.; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105–152. [Google Scholar]
- Dinter, T.; Geihser, S.; Gube, M.; Daniel, R.; Kuzyakov, Y. Impact of sea level change on coastal soil organic matter, priming effects and prokaryotic community assembly. FEMS Microbiol. Ecol. 2019, 95, fiz129. [Google Scholar] [CrossRef]
- Charles, H.; Dukes, J.S. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecol. Appl. 2009, 19, 1758–1773. [Google Scholar] [CrossRef]
- Bai, J.H.; Zhang, G.L.; Zhao, Q.Q.; Lu, Q.Q.; Jia, J.; Cui, B.S.; Liu, X.H. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Sci. Rep. 2016, 6, 34835. [Google Scholar] [CrossRef]
- Sun, J.N.; Yang, R.Y.; Li, Y.N.; Geng, Y.J.; Pan, Y.H.; Zhang, Z.H. Fading positive effect of biochar on cotton yield in a coastal saline soil during a 2-year field trial. J. Soil Sci. Plant Nutr. 2023, 23, 991–1002. [Google Scholar] [CrossRef]
- Han, G.X.; Sun, B.Y.; Chu, X.J.; Xing, Q.H.; Song, W.M.; Xia, J.Y. Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements. Agric. For. Meteorol. 2018, 256, 292–303. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. Interbational Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Rome, Italy, 2022. [Google Scholar]
- Gao, F.L.; Wang, Y.H.; Whitt, A.A.; Wang, H.D.; Ma, C.C.; Guo, H.Y. Belowground responses of Phragmites Australis and Suaeda Salsa to salinity and water depth changes. Pak. J. Bot. 2018, 50, 853–861. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass-C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Semenov, M.V.; Yao, F.; Ye, J.; Bu, R.C.; Ma, R.; Lin, J.J.; Kurganova, I.; Wang, X.G.; et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Glob. Chang. Biol. 2021, 27, 2763–2779. [Google Scholar] [CrossRef] [PubMed]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; Ksenofontova, N.; Zinyakova, N.B.; van Bruggen, A.H.C. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota? J. Environ. Manag. 2021, 294, 113018. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Zhang, W.; Zhou, F.; Liu, Y.; He, H.B.; Zhang, X.D. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biol. Biochem. 2020, 142, 107723. [Google Scholar] [CrossRef]
- Luo, X.X.; Wang, L.Y.; Liu, G.C.; Wang, X.; Wang, Z.Y.; Zheng, H. Effects of biochar on carbon mineralization of coastal wetland soils in the Yellow River Delta, China. Ecol. Eng. 2016, 94, 329–336. [Google Scholar] [CrossRef]
- Gong, Z.N.; Zhang, C.; Zhang, L.; Bai, J.H.; Zhou, D.M. Assessing spatiotemporal characteristics of native and invasive species with multi-temporal remote sensing images in the Yellow River Delta, China. Land Degrad. Dev. 2021, 32, 1338–1352. [Google Scholar] [CrossRef]
- Lu, W.Z.; Xiao, J.F.; Liu, F.; Zhang, Y.; Liu, C.A.; Lin, G.H. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-analysis of eddy covariance data. Glob. Chang. Biol. 2017, 23, 1180–1198. [Google Scholar] [CrossRef]
- You, M.Y.; He, P.; Dai, S.S.; Burger, M.; Li, L.J. Priming effect of stable C pool in soil and its temperature sensitivity. Geoderma 2021, 401, 115216. [Google Scholar] [CrossRef]
- Thiessen, S.; Gleixner, G.; Wutzler, T.; Reichstein, M. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass-An incubation study. Soil Biol. Biochem. 2013, 57, 739–748. [Google Scholar] [CrossRef]
- Bastida, F.; Garcia, C.; Fierer, N.; Eldridge, D.J.; Bowker, M.A.; Abades, S.; Alfaro, F.D.; Berhe, A.A.; Cutler, N.A.; Gallardo, A.; et al. Global ecological predictors of the soil priming effect. Nat. Commun. 2019, 10, 3481. [Google Scholar] [CrossRef]
- Liu, H.F.; Banfield, C.; Gomes, S.I.F.; Gube, M.; Weig, A.; Pausch, J. Vegetation transition from meadow to forest reduces priming effect on SOM decomposition. Soil Biol. Biochem. 2023, 184, 109123. [Google Scholar] [CrossRef]
- Chen, Y.C.; Li, W.P.; You, Y.; Ye, C.; Shu, X.; Zhang, Q.F.; Zhang, K.R. Soil properties and substrate quality determine the priming of soil organic carbon during vegetation succession. Plant Soil 2022, 471, 559–575. [Google Scholar] [CrossRef]
- Hou, W.H.; Zhang, R.J.; Xi, Y.B.; Liang, S.X.; Sun, Z.C. The role of waterlogging stress on the distribution of salt marsh plants in the Liao River estuary wetland. Glob. Ecol. Conserv. 2020, 23, e01100. [Google Scholar] [CrossRef]
- Rath, K.M.; Rousk, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biol. Biochem. 2015, 81, 108–123. [Google Scholar] [CrossRef]
- Kamble, P.N.; Gaikwad, V.B.; Kuchekar, S.R.; Baath, E. Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). Eur. J. Soil Biol. 2014, 65, 87–95. [Google Scholar] [CrossRef]
- Campbell, T.P.; Ulrich, D.E.M.; Toyoda, J.; Thompson, J.; Munsky, B.; Albright, M.B.N.; Bailey, V.L.; Tfaily, M.M.; Dunbar, J. Microbial communities influence soil dissolved organic carbon concentration by altering metabolite composition. Front. Microbiol. 2022, 12, 799014. [Google Scholar] [CrossRef] [PubMed]
- Lynum, C.A.; Bulseco, A.N.; Dunphy, C.M.; Osborne, S.M.; Vineis, J.H.; Bowen, J.L. Microbial community response to a passive salt marsh restoration. Estuaries Coasts 2020, 43, 1439–1455. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, R.; Guo, Y.T.; Wang, Q.; Cui, Y.; Xiu, Y.J.; Ma, Z.W.; Zhang, M.X. Changes in soil microbial community composition during Phragmites australis straw decomposition in salt marshes with freshwater pumping. Sci. Total Environ. 2021, 762, 143996. [Google Scholar] [CrossRef]
- Morrissey, E.M.; Mau, R.L.; Schwartz, E.; McHugh, T.A.; Dijkstra, P.; Koch, B.J.; Marks, J.C.; Hungate, B.A. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017, 11, 1890–1899. [Google Scholar] [CrossRef]
- Zhang, K.P.; Ni, Y.Y.; Liu, X.J.; Chu, H.Y. Microbes changed their carbon use strategy to regulate the priming effect in an 11-year nitrogen addition experiment in grassland. Sci. Total Environ. 2020, 727, 138645. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Yang, S.; Wu, H.; Wang, Z.R.; Semenov, M.V.; Ye, J.; Yin, L.M.; Wang, X.G.; Kravchenko, I.; Semenov, V.; Kuzyakov, Y.; et al. Linkages between the temperature sensitivity of soil respiration and microbial life strategy are dependent on sampling season. Soil Biol. Biochem. 2022, 172, 108758. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- Luu, A.T.; Hoang, N.T.; Dinh, V.M.; Bui, M.H.; Grandy, S.; Hoang, D.T.T. Effects of carbon input quality and timing on soil microbe mediated processes. Geoderma 2022, 409, 115605. [Google Scholar] [CrossRef]
- Dai, S.S.; He, P.; Guo, X.L.; Ge, T.D.; Oliver, M.A.; Li, L.J. Faster carbon turnover in topsoil with straw addition is less beneficial to carbon sequestration than subsoil and mixed soil. Soil Sci. Soc. Am. J. 2022, 86, 1431–1443. [Google Scholar] [CrossRef]
- Tian, Q.X.; Yang, X.L.; Wang, X.G.; Liao, C.; Li, Q.X.; Wang, M.; Wu, Y.; Liu, F. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil. Biogeochemistry 2016, 128, 125–139. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, L.G.; Fei, S.X.; Zhang, J.W.; Jiang, X.M.; Wang, Y.; Yu, X. Responses of soil organic carbon mineralization and microbial communities to leaf litter addition under different soil layers. Forests 2021, 12, 170. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Bai, J.H.; Wang, X.; Zhang, W.; Huang, Y.J.; Wang, L.L.; Gao, Y.C. Soil organic carbon content and stock in wetlands with different hydrologic conditions in the Yellow River Delta, China. Ecohydrol. Hydrobiol. 2020, 20, 537–547. [Google Scholar] [CrossRef]
- Qiu, H.S.; Liu, J.Y.; Chen, X.B.; Hu, Y.J.; Su, Y.R.; Ge, T.D.; Li, D.; Wu, J.S. Rice straw carbon mineralization is affected by the timing of exogenous glucose addition in flooded paddy soil. Appl. Soil Ecol. 2022, 173, 104374. [Google Scholar] [CrossRef]
- Wang, H.; Boutton, T.W.; Xu, W.H.; Hu, G.Q.; Jiang, P.; Bai, E. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Sci. Rep. 2015, 5, 10102. [Google Scholar] [CrossRef]
Vegetation | S. salsa | P. australis | ||
---|---|---|---|---|
Soil Layer | Topsoil | Subsoil | Topsoil | Subsoil |
EC (mS cm−1) | 4.47 ± 0.18 a | 2.27 ± 0.09 b | 0.37 ± 0.01 c | 0.33 ± 0.00 d |
pH | 8.07 ± 0.07 c | 8.15 ± 0.03 c | 8.76 ± 0.13 a | 8.34 ± 0.08 b |
TN (g kg−1) | 0.30 ± 0.02 ab | 0.26 ± 0.03 b | 0.32 ± 0.02 a | 0.31 ± 0.03 a |
TC (g kg−1) | 12.97 ± 0.01 c | 12.97 ± 0.09 c | 13.73 ± 0.15 a | 13.49 ± 0.14 b |
TOC (g kg−1) | 1.18 ± 0.15 b | 1.13 ± 0.09 b | 1.61 ± 0.28 a | 1.54 ± 0.13 a |
DOC (mg kg−1) | 18.35 ± 1.90 a | 16.07 ± 2.12 ab | 16.38 ± 0.85 ab | 13.89 ± 1.58 b |
MBC (mg kg−1) | 9.90 ± 1.89 a | 6.80 ± 1.32 ab | 8.49 ± 2.53 a | 4.40 ± 2.01 b |
Clay (%) | 6.32 ± 0.58 a | 6.24 ± 0.52 a | 4.03 ± 0.36 c | 5.15 ± 0.73 b |
Silt (%) | 78.32 ± 4.59 a | 80.61 ± 4.43 a | 71.38 ± 3.45 b | 81.70 ± 1.51 a |
Sand (%) | 15.36 ± 5.16 b | 13.15 ± 444 b | 24.58 ± 3.60 a | 13.15 ± 1.26 b |
Richness | Shannon | |||||
---|---|---|---|---|---|---|
Vegetation | Soil Layer | Treatment | Mean | Response Ratio | Mean | Response Ratio |
S. salsa | Topsoil | CK | 1223.50 ± 432.26 f | 2.2 ± 0.26 d | ||
+G | 1416.50 ± 449.22 ef | 0.16 ± 0.10 a | 2.60 ± 0.54 cd | 0.15 ± 0.09 a | ||
Subsoil | CK | 1769.67 ± 340.96 e | 2.77 ± 0.39 c | |||
+G | 2345.50 ± 134.62 d | 0.30 ± 0.21 a | 3.77 ± 0.14 b | 0.31 ± 0.16 a | ||
P. australis | Topsoil | CK | 6448.50 ± 64.26 a | 7.33 ± 0.40 a | ||
+G | 4168.00 ± 246.97 b | −0.44 ± 0.05 b | 4.29 ± 0.02 bc | −0.54 ± 0.11 b | ||
Subsoil | CK | 6222.75 ± 197.79 a | 7.08 ± 0.16 a | |||
+G | 3119.75 ± 41.94 c | −0.69 ± 0.03 c | 4.06 ± 0.05 b | −0.55 ± 0.02 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, X.; Xie, B.; Wang, X.; Zhao, M.; Han, G.; Chen, Y.; Song, W. Priming of Soil Organic Carbon Decomposition Induced by Exogenous Organic Carbon Input Depends on Vegetation and Soil Depth in Coastal Salt Marshes. Soil Syst. 2024, 8, 34. https://doi.org/10.3390/soilsystems8010034
Zhang Y, Li X, Xie B, Wang X, Zhao M, Han G, Chen Y, Song W. Priming of Soil Organic Carbon Decomposition Induced by Exogenous Organic Carbon Input Depends on Vegetation and Soil Depth in Coastal Salt Marshes. Soil Systems. 2024; 8(1):34. https://doi.org/10.3390/soilsystems8010034
Chicago/Turabian StyleZhang, Yaru, Xue Li, Baohua Xie, Xiaojie Wang, Mingliang Zhao, Guangxuan Han, Yongjin Chen, and Weimin Song. 2024. "Priming of Soil Organic Carbon Decomposition Induced by Exogenous Organic Carbon Input Depends on Vegetation and Soil Depth in Coastal Salt Marshes" Soil Systems 8, no. 1: 34. https://doi.org/10.3390/soilsystems8010034
APA StyleZhang, Y., Li, X., Xie, B., Wang, X., Zhao, M., Han, G., Chen, Y., & Song, W. (2024). Priming of Soil Organic Carbon Decomposition Induced by Exogenous Organic Carbon Input Depends on Vegetation and Soil Depth in Coastal Salt Marshes. Soil Systems, 8(1), 34. https://doi.org/10.3390/soilsystems8010034