A Modified Version of RothC to Model the Direct and Indirect Effects of Rice Straw Mulching on Soil Carbon Dynamics, Calibrated in Two Valencian Citrus Orchards
Abstract
:1. Introduction
- Modify RothC to include the effects of mulch on soil temperature and soil water content, especially in a Valencian climate;
- Calibrate and test the modified RothC using field data, obtained in a three-year-long field experiment [47].
2. Material and Methods
2.1. Modifications of RothC for Mulching’s Direct and Indirect Effects in Mediterranean Climate: The RothC_MM Model
2.1.1. The RothC Model
2.1.2. Modifications to RothC for Mediterranean Climate: RothC_Med
- extended the water retention curve function to automatically take in soil water content data obtained from the field, to conduct multi-parameter calibrations of RothC_N;
- introduced a “drainage” empirical parameter (here called “MinTSMD”) to represent the effect of macropore flow, e.g., from the formation of cracks; this parameter is a minimum TSMD level which can be calibrated using soil water content time series;
- introduced a sinusoidal function to fit the effect on TSMD of a yearly fluctuating shallow water table; the parameters of this function can be estimated using a local/regional groundwater model or from direct piezometer observations.
2.1.3. Modifications to RothC to Include Mulching: RothC_Mulch and Its Combination with RothC_Med (RothC_MM)
2.2. Calibration and Test of the RothC_MM Model
2.2.1. Dataset Used
2.2.2. Model Initialization
2.2.3. Model Calibration and Test
3. Results
3.1. Model Initialization
3.2. Model Calibration and Test
3.3. Model Test
4. Discussion
4.1. Calibration and Test Model
4.2. Analysis of Sueca Mulch Simulation
4.3. 2050 Projections of SOC
4.4. Comparison with Other Studies and Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- IPCC Summary for Policymakers. In Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. (Eds.) World Meteorological Organization: Geneva, Switzerland, 2018; 24p. [Google Scholar]
- Buyanovsky, G.A.; Wagner, G.H. Carbon Cycling in Cultivated Land and Its Global Significance. Glob. Change Biol. 1998, 4, 131–141. [Google Scholar] [CrossRef]
- FAO. Soil Organic Carbon Mapping Cookbook, 2nd ed.; FAO: Rome, Italy, 2018; Available online: https://www.fao.org/documents/card/es?details=I8895EN/ (accessed on 27 December 2023).
- Betts, R.A.; Falloon, P.D.; Goldewijk, K.K.; Ramankutty, N. Biogeophysical Effects of Land Use on Climate: Model Simulations of Radiative Forcing and Large-Scale Temperature Change. Agric. For. Meteorol. 2007, 142, 216–233. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.J. Soil Carbon Debt of 12,000 Years of Human Land Use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The Role of Soil Carbon in Natural Climate Solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Ramesh, T.; Bolan, N.S.; Kirkham, M.B.; Wijesekara, H.; Kanchikerimath, M.; Srinivasa Rao, C.; Sandeep, S.; Rinklebe, J.; Ok, Y.S.; Choudhury, B.U.; et al. Chapter One—Soil Organic Carbon Dynamics: Impact of Land Use Changes and Management Practices: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 156, pp. 1–107. [Google Scholar]
- Lal, R.; Follett, R. Soil Carbon Sequestration and the Greenhouse Effect; ASA-CSSA-SSSA: Madison, WI, USA, 2009. [Google Scholar]
- Wei, Z.; Hoffland, E.; Zhuang, M.; Hellegers, P.; Cui, Z. Organic Inputs to Reduce Nitrogen Export via Leaching and Runoff: A Global Meta-Analysis. Environ. Pollut. 2021, 291, 118176. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana-Renault, N.; Nadal-Romero, E.; Beguería, S. Erosion in Mediterranean Ecosystems: Changes and Future Challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A Meta-Analysis of Soil Erosion Rates across the World. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Ghaley, B.B.; Rusu, T.; Sandén, T.; Spiegel, H.; Menta, C.; Visioli, G.; O’Sullivan, L.; Gattin, I.T.; Delgado, A.; Liebig, M.A.; et al. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability 2018, 10, 794. [Google Scholar] [CrossRef]
- Madejón, E.; Moreno, F.; Murillo, J.M.; Pelegrín, F. Soil Biochemical Response to Long-Term Conservation Tillage under Semi-Arid Mediterranean Conditions. Soil Tillage Res. 2007, 94, 346–352. [Google Scholar] [CrossRef]
- Vastola, A.; Zdruli, P.; D’Amico, M.; Pappalardo, G.; Viccaro, M.; Di Napoli, F.; Cozzi, M.; Romano, S. A Comparative Multidimensional Evaluation of Conservation Agriculture Systems: A Case Study from a Mediterranean Area of Southern Italy. Land Use Policy 2017, 68, 326–333. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Coleman, K.; Jenkinson, D.S. RothC-26.3—A Model for the Turnover of Carbon in Soil. In Evaluation of Soil Organic Matter Models; Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 237–246. ISBN 978-3-642-64692-8. [Google Scholar]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; Mcbratney, A.; Courcelles, V.; Singh, K.; et al. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar]
- Bao, X.; Zhu, X.; Chang, X.; Wang, S.; Xu, B.; Luo, C.; Zhang, Z.; Wang, Q.; Rui, Y.; Cui, X. Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau. PLoS ONE 2016, 11, e0165212. [Google Scholar] [CrossRef] [PubMed]
- Akinremi, O.O.; McGinn, S.M.; McLean, H.D.J. Effects of Soil Temperature and Moisture on Soil Respiration in Barley and Fallow Plots. Can. J. Soil Sci. 1999, 79, 5–13. [Google Scholar] [CrossRef]
- Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; et al. Temperature Response of Soil Respiration Largely Unaltered with Experimental Warming. Proc. Natl. Acad. Sci. USA 2016, 113, 13797–13802. [Google Scholar] [CrossRef] [PubMed]
- Falloon, P.; Smith, P.; Coleman, K.; Marshall, S. How Important Is Inert Organic Matter for Predictive Soil Carbon Modelling Using the Rothamsted Carbon Model? Soil Biol. Biochem. 2000, 32, 433–436. [Google Scholar] [CrossRef]
- Jordon, M.W.; Smith, P.; Long, P.R.; Bürkner, P.-C.; Petrokofsky, G.; Willis, K.J. Can Regenerative Agriculture Increase National Soil Carbon Stocks? Simulated Country-Scale Adoption of Reduced Tillage, Cover Cropping, and Ley-Arable Integration Using RothC. Sci. Total Environ. 2022, 825, 153955. [Google Scholar] [CrossRef]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; McConkey, B.G.; Campbell, C.A.; Nemecek, T. Accounting for Soil Carbon Changes in Agricultural Life Cycle Assessment (LCA): A Review. J. Clean. Prod. 2015, 104, 23–39. [Google Scholar] [CrossRef]
- Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [Google Scholar] [CrossRef]
- Farina, R.; Coleman, K.; Whitmore, A.P. Modification of the RothC Model for Simulations of Soil Organic C Dynamics in Dryland Regions. Geoderma 2013, 200–201, 18–30. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as Water-Saving Technique in Dryland Agriculture: Review Article. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef]
- Mulumba, L.N.; Lal, R. Mulching Effects on Selected Soil Physical Properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of Mulching on Soil Physical Properties and Runoff under Semi-Arid Conditions in Southern Spain. CATENA 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C.; Ning, K.; Tang, C. How Effective Are Soil and Water Conservation Measures (SWCMs) in Reducing Soil and Water Losses in the Red Soil Hilly Region of China? A Meta-Analysis of Field Plot Data. Sci. Total Environ. 2020, 735, 139517. [Google Scholar] [CrossRef] [PubMed]
- Locke, M.A.; Bryson, C.T. Herbicide-Soil Interactions in Reduced Tillage and Plant Residue Management Systems. Weed Sci. 1997, 45, 307–320. [Google Scholar] [CrossRef]
- Si, P.; Liu, E.; He, W.; Sun, Z.; Dong, W.; Yan, C.; Zhang, Y. Effect of No-Tillage with Straw Mulch and Conventional Tillage on Soil Organic Carbon Pools in Northern China. Arch. Agron. Soil Sci. 2018, 64, 398–408. [Google Scholar] [CrossRef]
- Gu, C.; Liu, Y.; Mohamed, I.; Zhang, R.; Wang, X.; Nie, X.; Jiang, M.; Brooks, M.; Chen, F.; Li, Z. Dynamic Changes of Soil Surface Organic Carbon under Different Mulching Practices in Citrus Orchards on Sloping Land. PLoS ONE 2016, 11, e0168384. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-Ecological Functions of Crop Residues under Conservation Agriculture. A Review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef]
- Dossou-Yovo, E.R.; Brüggemann, N.; Ampofo, E.; Igue, A.M.; Jesse, N.; Huat, J.; Agbossou, E.K. Combining No-Tillage, Rice Straw Mulch and Nitrogen Fertilizer Application to Increase the Soil Carbon Balance of Upland Rice Field in Northern Benin. Soil Tillage Res. 2016, 163, 152–159. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.; Paustian, K. Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Koga, N.; Tsuji, H. Effects of Reduced Tillage, Crop Residue Management and Manure Application Practices on Crop Yields and Soil Carbon Sequestration on an Andisol in Northern Japan. Soil Sci. Plant Nutr. 2009, 55, 546–557. [Google Scholar] [CrossRef]
- Rahman, M.A.; Chikushi, J.; Saifizzaman, M.; Lauren, J.G. Rice Straw Mulching and Nitrogen Response of No-till Wheat Following Rice in Bangladesh. Field Crops Res. 2005, 91, 71–81. [Google Scholar] [CrossRef]
- Warren Raffa, D.; Antichi, D.; Carlesi, S.; Frasconi, C.; Marini, S.; Priori, S.; Bàrberi, P. Groundcover Mulching in Mediterranean Vineyards Improves Soil Chemical, Physical and Biological Health Already in the Short Term. Agronomy 2021, 11, 787. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Mulching as Best Management Practice to Reduce Surface Runoff and Erosion in Steep Clayey Olive Groves. Int. Soil Water Conserv. Res. 2021, 9, 26–36. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw Mulch as a Sustainable Solution to Decrease Runoff and Erosion in Glyphosate-Treated Clementine Plantations in Eastern Spain. An Assessment Using Rainfall Simulation Experiments. CATENA 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Galdos, M.V.; Cerri, C.C.; Cerri, C.E.P.; Paustian, K.; Van Antwerpen, R. Simulation of Soil Carbon Dynamics under Sugarcane with the CENTURY Model. Soil Sci. Soc. Am. J. 2009, 73, 802–811. [Google Scholar] [CrossRef]
- Galdos, M.V.; Cerri, C.C.; Cerri, C.E.P. Soil Carbon Stocks under Burned and Unburned Sugarcane in Brazil. Geoderma 2009, 153, 347–352. [Google Scholar] [CrossRef]
- Mondini, C.; Cayuela, M.L.; Sinicco, T.; Fornasier, F.; Galvez, A.; Sánchez-Monedero, M.A. Modification of the RothC Model to Simulate Soil C Mineralization of Exogenous Organic Matter. Biogeosciences 2017, 14, 3253–3274. [Google Scholar] [CrossRef]
- Nieto, O.M.; Castro, J.; Fernández, E.; Smith, P. Simulation of Soil Organic Carbon Stocks in a Mediterranean Olive Grove under Different Soil-Management Systems Using the RothC Model. Soil Use Manag. 2010, 26, 118–125. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005; ISBN 0-521-68551-6. [Google Scholar]
- Visconti, F.; Peiró, E.; de Paz, J.M. Fertility Evolution in the Inter-Row Topsoil of Two Valencian Citrus Orchards under Bare-Kept and Straw-Mulched Treatments throughout 2019–2021—A Dataset. Mendeley Data 2023. [Google Scholar] [CrossRef]
- Yokozawa, M.; Shirato, Y.; Sakamoto, T.; Yonemura, S.; Nakai, M.; Ohkura, T. Use of the RothC Model to Estimate the Carbon Sequestration Potential of Organic Matter Application in Japanese Arable Soils. Soil Sci. Plant Nutr. 2010, 56, 168–176. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S.; Crocker, G.J.; Grace, P.R.; Klír, J.; Körschens, M.; Poulton, P.R.; Richter, D.D. Simulating Trends in Soil Organic Carbon in Long-Term Experiments Using RothC-26.3. Geoderma 1997, 81, 29–44. [Google Scholar] [CrossRef]
- Schlamadinger, B.; International Energy Agency (Eds.) Carbon Accounting and Emissions Trading Related to Bioenergy, Wood Products and Carbon Sequestration, Proceedings of the Workshop, Canberra, Australia, 26–30 March 2001; IEA Bioenergy Task 38: Graz, Austria, 2001; ISBN 978-3-9500847-5-7. [Google Scholar]
- Moxley, J.; Anthony, S.; Begum, K.; Bhogal, A.; Buckingham, S.; Christie, P.; Datta, A.; Dragosits, U.; Fitton, N.; Higgins, A.; et al. Capturing Cropland and Grassland Management Impacts on Soil Carbon in the UK LULUCF Inventory. Available online: http://randd.defra.gov.uk/Document.aspx?Document=12186_SP1113Finalreport.pdf (accessed on 15 September 2023).
- Smith, P.; Soussana, J.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to Measure, Report and Verify Soil Carbon Change to Realize the Potential of Soil Carbon Sequestration for Atmospheric Greenhouse Gas Removal. Glob. Change Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [PubMed]
- van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and Use of a Database of Hydraulic Properties of European Soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Manzoni, S.; Schimel, J.P.; Porporato, A. Responses of Soil Microbial Communities to Water Stress: Results from a Meta-analysis. Ecology 2012, 93, 930–938. [Google Scholar] [CrossRef]
- Šimunek, J.; Šejna, M.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 2.0, IGWMC-TPS-70. Available online: https://www.pc-progress.com/Downloads/Pgm_hydrus1D/HYDRUS1D-4.08.pdf (accessed on 13 June 2021).
- Rodríguez Ballesteros, C. Clasificación Climática de Köppen-Geiger (Para España). Periodo de Referencia 1981–2010. 2016. Available online: https://Climaenmapas.Blogspot.Com/p/Pagina-Koppen.Html (accessed on 14 April 2021).
- Soil Survey Staff Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Mota, C.; Alcaraz-López, C.; Iglesias, M.; Martínez-Ballesta, M.; Carvajal, M. Absorción de CO2 Por Los Cultivos Más Representativos de La Región de Murcia. Hortic. Glob. 2011, 294, 58–63. [Google Scholar]
- Nemo; Klumpp, K.; Coleman, K.; Dondini, M.; Goulding, K.; Hastings, A.; Jones, M.B.; Leifeld, J.; Osborne, B.; Saunders, M.; et al. Soil Organic Carbon (SOC) Equilibrium and Model Initialisation Methods: An Application to the Rothamsted Carbon (RothC) Model. Environ. Model. Assess. 2017, 22, 215–229. [Google Scholar] [CrossRef]
- Pulcher, R.; Balugani, E.; Ventura, M.; Greggio, N.; Marazza, D. Inclusion of Biochar in a C Dynamics Model Based on Observations from an 8-Year Field Experiment. SOIL 2022, 8, 199–211. [Google Scholar] [CrossRef]
- Tomas-Burguera, M.; Vicente-Serrano, S.M.; Beguería, S.; Reig, F.; Latorre, B. Reference Crop Evapotranspiration Database in Spain (1961–2014). Earth Syst. Sci. Data 2019, 11, 1917–1930. [Google Scholar] [CrossRef]
- Allen, R.G. Crop Evapotranspiration-Guideline for Computing Crop Water Requirements. Irrig. Drain 1998, 56, 300. [Google Scholar]
- Brooks, S. Markov Chain Monte Carlo Method and Its Application. J. R. Stat. Soc. Ser. D Stat. 1998, 47, 69–100. [Google Scholar] [CrossRef]
- Royston, J.P. Some Techniques for Assessing Multivarate Normality Based on the Shapiro-Wilk W. J. R. Stat. Soc. Ser. C Appl. Stat. 1983, 32, 121–133. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Smith, J.; Smith, P. Environmental Modelling: An Introduction; OUP: Oxford, UK, 2007; ISBN 978-0-19-927206-8. [Google Scholar]
- Parton, W.J.; Stewart, J.W.B.; Cole, C.V. Dynamics of C, N, P and S in Grassland Soils: A Model. Biogeochemistry 1988, 5, 109–131. [Google Scholar] [CrossRef]
- Balugani, E.; Lubczynski, M.W.; Reyes-Acosta, L.; van der Tol, C.; Francés, A.P.; Metselaar, K. Groundwater and Unsaturated Zone Evaporation and Transpiration in a Semi-Arid Open Woodland. J. Hydrol. 2017, 547, 54–66. [Google Scholar] [CrossRef]
- Balugani, E.; Lubczynski, M.W.; van der Tol, C.; Metselaar, K. Testing Three Approaches to Estimate Soil Evaporation through a Dry Soil Layer in a Semi-Arid Area. J. Hydrol. 2018, 567, 405–419. [Google Scholar] [CrossRef]
- Davidson, E.C.A.; Belk, E.; Boone, R.D. Soil Water Content and Temperature as Independent or Confounded Factors Controlling Soil Respiration in a Temperate Mixed Hardwood Forest. Glob. Chang. Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Y.; Cai, Z.; Zheng, X. Diel Pattern of Soil Respiration in N-Amended Soil under Maize Cultivation. Atmos. Environ. 2006, 40, 3294–3305. [Google Scholar] [CrossRef]
- Daly, E.; Oishi, A.C.; Porporato, A.; Katul, G.G. A Stochastic Model for Daily Subsurface CO2 Concentration and Related Soil Respiration. Adv. Water Resour. 2008, 31, 987–994. [Google Scholar] [CrossRef]
- Jian, J.; Bailey, V.; Dorheim, K.; Konings, A.G.; Hao, D.; Shiklomanov, A.N.; Snyder, A.; Steele, M.; Teramoto, M.; Vargas, R.; et al. Historically Inconsistent Productivity and Respiration Fluxes in the Global Terrestrial Carbon Cycle. Nat. Commun. 2022, 13, 1733. [Google Scholar] [CrossRef] [PubMed]
- Smith, P. Land Use Change and Soil Organic Carbon Dynamics. Nutr. Cycl. Agroecosyst. 2008, 81, 169–178. [Google Scholar] [CrossRef]
- Cagnarini, C.; Renella, G.; Mayer, J.; Hirte, J.; Schulin, R.; Costerousse, B.; Della Marta, A.; Orlandini, S.; Menichetti, L. Multi-Objective Calibration of RothC Using Measured Carbon Stocks and Auxiliary Data of a Long-Term Experiment in Switzerland. Eur. J. Soil Sci. 2019, 70, 819–832. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Spouncer, L.R.; Cowie, B.; Swift, R.S. Calibration of the Rothamsted Organic Carbon Turnover Model (RothC Ver. 26.3), Using Measurable Soil Organic Carbon Pools. Soil Res. 2004, 42, 79. [Google Scholar] [CrossRef]
- Zimmermann, M.; Leifeld, J.; Schmidt, M.W.I.; Smith, P.; Fuhrer, J. Measured Soil Organic Matter Fractions Can Be Related to Pools in the RothC Model. Eur. J. Soil Sci. 2007, 58, 658–667. [Google Scholar] [CrossRef]
- Allison, S.D.; Wallenstein, M.D.; Bradford, M.A. Soil-Carbon Response to Warming Dependent on Microbial Physiology. Nat. Geosci. 2010, 3, 336–340. [Google Scholar] [CrossRef]
- Wang, G.; Jagadamma, S.; Mayes, M.A.; Schadt, C.W.; Megan Steinweg, J.; Gu, L.; Post, W.M. Microbial Dormancy Improves Development and Experimental Validation of Ecosystem Model. ISME J. 2015, 9, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Gao, Q.; Yang, Y.; Hobbie, S.E.; Reich, P.B.; Zhou, J. Soil Enzymes as Indicators of Soil Function: A Step toward Greater Realism in Microbial Ecological Modeling. Glob. Chang. Biol. 2022, 28, 1935–1950. [Google Scholar] [CrossRef]
- Sulman, B.N.; Moore, J.A.M.; Abramoff, R.; Averill, C.; Kivlin, S.; Georgiou, K.; Sridhar, B.; Hartman, M.D.; Wang, G.; Wieder, W.R.; et al. Multiple Models and Experiments Underscore Large Uncertainty in Soil Carbon Dynamics. Biogeochemistry 2018, 141, 109–123. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Paris, France, 2022. [Google Scholar]
- Ferrenberg, A.M.; Swendsen, R.H. New Monte Carlo Technique for Studying Phase Transitions. Phys. Rev. Lett. 1989, 63, 1658. [Google Scholar] [CrossRef]
- Marazza, D.; Pesce, S.; Greggio, N.; Vaccari, F.P.; Balugani, E.; Buscaroli, A. The Long-Term Experiment Platform for the Study of Agronomical and Environmental Effects of the Biochar: Methodological Framework. Agriculture 2022, 12, 1244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesce, S.; Balugani, E.; De Paz, J.M.; Marazza, D.; Visconti, F. A Modified Version of RothC to Model the Direct and Indirect Effects of Rice Straw Mulching on Soil Carbon Dynamics, Calibrated in Two Valencian Citrus Orchards. Soil Syst. 2024, 8, 12. https://doi.org/10.3390/soilsystems8010012
Pesce S, Balugani E, De Paz JM, Marazza D, Visconti F. A Modified Version of RothC to Model the Direct and Indirect Effects of Rice Straw Mulching on Soil Carbon Dynamics, Calibrated in Two Valencian Citrus Orchards. Soil Systems. 2024; 8(1):12. https://doi.org/10.3390/soilsystems8010012
Chicago/Turabian StylePesce, Simone, Enrico Balugani, José Miguel De Paz, Diego Marazza, and Fernando Visconti. 2024. "A Modified Version of RothC to Model the Direct and Indirect Effects of Rice Straw Mulching on Soil Carbon Dynamics, Calibrated in Two Valencian Citrus Orchards" Soil Systems 8, no. 1: 12. https://doi.org/10.3390/soilsystems8010012
APA StylePesce, S., Balugani, E., De Paz, J. M., Marazza, D., & Visconti, F. (2024). A Modified Version of RothC to Model the Direct and Indirect Effects of Rice Straw Mulching on Soil Carbon Dynamics, Calibrated in Two Valencian Citrus Orchards. Soil Systems, 8(1), 12. https://doi.org/10.3390/soilsystems8010012