Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options
Abstract
:1. Background and Rationale
2. Adoption of Conservation Agriculture (CA)
Target | Soil Cover | Minimal or No Soil Disturbance | Legumes in the Rotation | Crop Diversification |
---|---|---|---|---|
Simulate “forest floor” conditions | X | X | ||
Reduce evaporative loss of moisture from soil surface | X | |||
Reduce evaporative loss from upper soil layers | X | X | ||
Minimize oxidation of SOM and CO2 loss | X | |||
Minimize compaction due to intense rainfall and the passage of machinery | X | X | ||
Minimize temperature fluctuations at the soil surface | X | |||
Maintain supply of OM as substrate for soil biota | X | |||
Increase and maintain nitrogen levels in the root zone | X | X | X | X |
Increase CEC of the root zone | X | X | X | X |
Maximize rain infiltration and minimize runoff | X | X | ||
Minimize soil loss in runoff | X | X | ||
Maintain natural layering of soil horizons through actions of soil biota | X | X | ||
Minimize weeds | X | X | X | |
Increase rate of biomass production | X | X | X | X |
Speed up recuperation of soil porosity by soil biota | X | X | X | X |
Reduce labour input | X | |||
Reduce fuel-energy input | X | |||
Recycle nutrients | X | X | X | X |
Reduce pests and diseases | X | |||
Rebuild damaged soil conditions and dynamics | X | X | X | X |
3. Principles: Conservation Tillage, Permanent Plant Cover, and Crop Diversification
3.1. Conservation Tillage (CT)
- (1)
- No tillage (NT)
- (2)
- Mulch tillage
- (3)
- Strip or zonal tillage
- (4)
- Ridge till
- (5)
- Reduced and minimum tillage or occasional tillage
3.1.1. Context of Application
3.1.2. Potential for SOC Sequestration
3.1.3. Co-Benefits
3.1.4. Possible Drawbacks and Recommendations
- (a)
- Biophysical barriers
- (b)
- Technical barriers
- (c)
- Economic barriers
- (d)
- Social, cultural, and political barriers
3.2. Permanent Plant Cover
3.2.1. Context of Application
3.2.2. Potential for SOC Sequestration
3.2.3. Co-Benefits
3.2.4. Possible Drawbacks and Recommendations
3.3. Crop Diversification
- (a)
- Covering and protecting the soil from climatic agents in a continuous and effective way;
- (b)
- Maintaining and improving soil structure through the action of the root systems of the plants;
- (c)
- Stimulating biological activity in the soil and eliminating periods with no crop cover;
- (d)
- Limiting environmental risks due to nitrate leaching, erosion and surface runoff, and loss of biodiversity.
3.3.1. Context of Application
3.3.2. Potential for SOC Sequestration
3.3.3. Co-Benefits
3.3.4. Possible Drawbacks and Recommendations
4. Processes
4.1. The Soil Carbon Balance and Different Processes of SOC Loss in Agroecosystems
4.2. Erosion by Water
4.3. Decomposition
4.4. Leaching
5. Practices
5.1. Conventional Tillage
5.2. Cover Cropping
5.3. Crop Diversification
6. Policy Options
6.1. European Union Policy Options
6.1.1. The Soil Thematic Strategy
6.1.2. The Common Agricultural Policy (CAP) (2023–2027)
- Contribute to climate change mitigation and adaptation;
- Foster sustainable development and efficient management of natural resources;
- Contribute to the protection of biodiversity, thus enhancing ecosystem services and preserving habitats and landscapes.
- (1)
- Eco-schemes (voluntary, Pillar 1): direct payments to farmers for the implementation of sustainable management. This is a novel feature of the new Green Architecture, and such schemes can be adapted to the specific needs of the different Member States at the national and/or regional levels. Eco-schemes are intended to play an important role in the new CAP, since 100% of the funding comes directly from the EU and, therefore, no extra funding from Member States is needed;
- (2)
- Agri-environment–climate measures (AECM) (voluntary, Pillar 2): these measures aim to address environmental and climate challenges using Rural Development Programmes;
- (3)
- Enhanced conditionality (mandatory, Pillar 1): this component sets out the basic and mandatory requirements that farmers and managers must fulfil in order to receive payments. The requirements refer to the implementation of good agricultural and environmental conditions (GAECs); e.g., maintenance of permanent grasslands, banning of burning arable stubble, implementation of buffer strips in water courses, use of tools for nutrient management, adoption of reduced tillage, avoidance of bare soils in sensitive periods, crop rotation, preservation of a share of the total agricultural area for landscape measures, and banning of the conversion of permanent grasslands in Natura 2000 sites.
6.1.3. The European Green Deal
- “Transform the EU into a fair and prosperous society, with a modern, resource-efficient and competitive economy where there are no net emissions of greenhouse gases in 2050 and where economic growth is decoupled from resource use”;
- “Protect, conserve and enhance the EU’s natural capital, and protect the health and well-being of citizens from environment-related risks and impacts”.
Climate Initiatives
From “Farm to Fork”: Designing a Fair, Healthy, and Environmentally Friendly Food System
Preserving and Restoring Ecosystems and Biodiversity
- “Bringing nature back to agricultural land” through the promotion of eco-schemes and results-based payment schemes and by ensuring that the CAP strategic plans include realistic and robust climate and environmental criteria and targets. These plans should include practices such as organic farming, agro-ecology, and agro-forestry. Furthermore, as also suggested by the EU Pollinators Initiative [162], the overall use of chemical pesticides should be reduced by 50% by 2030. The strategy also aims to restore at least 10% of agricultural areas occupied by high-diversity landscape features (inter alia, buffer strips, rotational or non-rotational fallow land, hedges, non-productive trees, terrace walls, and ponds) in order to enhance SOC sequestration and prevent soil erosion and depletion. Finally, the decline in genetic diversity will be addressed by modifying the marketing rules for traditional crop varieties in order to promote their conservation and sustainable use;
- “Addressing land take and restoring ecosystems” in order to protect soil fertility, reduce soil erosion, and increase SOC through the adoption of sustainable management practices. To promote these practices, the Commission updated the EU Soil Thematic Strategy in 2021. Soil sealing and rehabilitation of contaminated brownfields will be part of the Strategy for a Sustainable Built Environment;
- “Bringing nature back to cities” by calling on European cities of at least 20,000 inhabitants to develop ambitious Urban Greening Plans by the end of 2021 incorporating nature-based solutions;
- “Reducing pollution” through the implementation of the EU Chemicals Strategy for Sustainability [163], the Zero Pollution Action Plan for Air, Water and Soil [164], and the Nutrient Management Action Plan in 2022 [165], which aim to reduce the use of fertilizers by at least 20% and the risks related to and use of pesticides.
The Need for the Integration of CAP Reform and the Green Deal
- an adequate “no backsliding” principle obliging Member States to be more ambitious in their CAP Strategic Plans than at present regarding environmental and climate-related goals;
- an ambitious system of conditionality to maintain key standards (in particular, for crop rotation, soil cover, and maintenance of permanent grassland and agricultural land devoted to non-productive areas or features);
- mandatory eco-schemes.
6.2. Other International Relevant Policies
6.2.1. The 4 per 1000 Initiative
- The scarcity of scientific data. Research data on rates of SOC sequestration resulting from the implementation of recommended management practices (RMPs) for land use and agricultural management combinations are not widely available;
- The finite capacity of soil carbon sinks. The potential for SOC sequestration in global croplands is finite (0.4 to 1.2 Gt). Thus, SOC sequestration by itself cannot offset all emissions but must be part of a wider set of actions, including the adoption of RMPs that reduce C emissions and enhance C sinks;
- Resource-poor farmers and small landholders who are unable to adopt RMPs because of weak institutional support and poor access to essential inputs. These farmers’ degraded and depleted soils need urgent restoration through SOC sequestration and the adoption of RMPs;
- Financial commitments. The adoption of RMPs would require economic resources;
- Permanence. Incentivising the continuous use of RMPs and restorative land uses, as has been undertaken by some successful programs in the EU and USA, is of crucial importance and must be addressed;
- Implementation of the Paris Agreement’s 4 per 1000 program. Even though the limitation of global warming to 1.5 °C is required, the word “soil” is never mentioned. Therefore, this is a new challenge for soil scientists and agronomists.
6.2.2. Sustainable Development Goals (SDGs)
7. Concluding Remarks, Future Research Needs, and Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vicente-Vicente, J.L.; García-Ruiz, R.; Francaviglia, R.; Aguilera, E.; Smith, P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agric. Ecosyst. Environ. 2016, 235, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Powlson, D.S.; Stirling, C.M.; Thierfelder, C.; White, R.P.; Jat, M.L. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agric. Ecosyst. Environ. 2016, 220, 164–174. [Google Scholar] [CrossRef]
- Kirschenmann, F. Alternative agriculture in an energy- and resource-depleting future. Renew. Agric. Food Syst. 2010, 25, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Goris, M.; Bruil, J.; Félix, G.; Peeters, A.; Bàrberi, P.; Bellon, S.; Migliorini, P. Challenges and Action Points to Amplify Agroecology in Europe. Sustainability 2018, 10, 1598. [Google Scholar] [CrossRef] [Green Version]
- Conservation Agriculture. Available online: https://www.fao.org/conservation-agriculture/overview/what-is-conservation-agriculture/en/ (accessed on 13 February 2023).
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of Conservation Agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2018, 76, 29–51. [Google Scholar] [CrossRef]
- Friedrich, T.; Kassam, A.H.; Shaxson, F. Conservation Agriculture. In Agriculture for Developing Countries; Science and Technology Options Assessment (STOA) Project; European Technology Assessment Group: Karlsruhe, Germany, 2009. [Google Scholar]
- Ohiri, A.C.; Ezumah, H.C. Tillage effects on cassava (Manihot esculenta) production and some soil properties. Soil Tillage Res. 1990, 17, 221–229. [Google Scholar] [CrossRef]
- Lal, R. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 1993, 27, 1–8. [Google Scholar] [CrossRef]
- Antapa, P.L.; Angen, T.V. Tillage practices and residue management in Tanzania. In Organic-Matter Management and Tillage in Humid and Sub-Humid Africa; Food and Agriculture Organization of the United Nations: Rome, Italy, 1990; pp. 49–57. [Google Scholar]
- Greenland, D.J. Soil management and soil degradation. J. Soil Sci. 1981, 32, 301–322. [Google Scholar] [CrossRef]
- Claassen, R.; Bowman, M.; McFadden, J.; Smith, D.; Wallander, S. Tillage Intensity and Conservation Cropping in the United States; EIB-197; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2018; p. 27. [Google Scholar]
- Unger, P.W.; Langdale, G.W.; Papendick, R.I. Role of crop residues—Improving water conservation and use. In Cropping Strategies for Efficient Use of Water and Nitrogen; Hargrove, W.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1988; Volume 51, pp. 69–100. [Google Scholar]
- Stavi, I.; Bel, G.; Zaady, E. Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agron. Sustain. Dev. 2016, 36, 32. [Google Scholar] [CrossRef] [Green Version]
- Parr, J.F.; Papendick, R.I.; Hornick, S.B.; Meyer, R.E. The use of cover crops, mulches and tillage for soil water conservation and weed control. In Organic-Matter Management and Tillage in Humid and Sub-Humid Africa; Food and Agriculture Organization of the United Nations: Rome, Italy, 1990; pp. 246–261. [Google Scholar]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Peixoto, D.S.; Silva, B.M.; de Oliveira, G.C.; Moreira, S.G.; da Silva, F.; Curi, N. A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil Tillage Res. 2019, 194, 104307. [Google Scholar] [CrossRef]
- Haramoto, E.R.; Brainard, D.C. Strip Tillage and Oat Cover Crops Increase Soil Moisture and Influence N Mineralization Patterns in Cabbage. Hortscience 2012, 47, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Almagro, M. Strip, precision, zone tillage. In Recarbonizing Global Soils: A Technical Manual of Best Management Practices; FAO, ITPS, Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Volume 3, pp. 85–95. [Google Scholar]
- Nowatzki, J.; Endres, G.; Dejong-Hughes, J.; Aakre, D. Strip Till for Field Crop Protection; University of Minnesota Extension and NDSU Extension Service: St. Paul, MN, USA; Fargo, ND, USA, 2011; p. 10. [Google Scholar]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Almagro, M.; Díaz-Pereira, E.; Boix-Fayos, C.; Zornoza, R.; Sánchez-Navarro, V.; Re, P.; Fernández, C.; Martínez-Mena, M. The combination of crop diversification and no tillage enhances key soil quality parameters related to soil functioning without compromising crop yields in a low-input rainfed almond orchard under semiarid Mediterranean conditions. Agric. Ecosyst. Environ. 2023, 345, 108320. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Conway, G.; Moreno-Garcia, M.; Kassam, A.; Mkomwa, S.; Ordoñez-Fernandez, R.; Triviño-Tarradas, P.; Carbonell-Bojollo, R. Meta-analysis on carbon sequestration through Conservation Agriculture in Africa. Soil Tillage Res. 2019, 190, 22–30. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B.S. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Pardo, G.; del Prado, A.; Martínez-Mena, M.; Bustamante, M.A.; Martín, J.R.; Álvaro-Fuentes, J.; Moral, R. Orchard and horticulture systems in Spanish Mediterranean coastal areas: Is there a real possibility to contribute to C sequestration? Agric. Ecosyst. Environ. 2017, 238, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Francaviglia, R.; Di Bene, C.; Farina, R.; Salvati, L.; Vicente-Vicente, J.L. Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: A comprehensive data analysis. Mitig. Adapt. Strat. Glob. Chang. 2019, 24, 795–818. [Google Scholar] [CrossRef]
- Sheehy, J.; Regina, K.; Alakukku, L.; Six, J. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems. Soil Tillage Res. 2015, 150, 107–113. [Google Scholar] [CrossRef]
- Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and GHG Fluxes in Terrestrial Ecosystems. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/Fullreport-1.pdf) (accessed on 12 December 2022).
- Alliaume, F.W.A.H.; Rossing, W.A.H.; Tittonell, P.; Jorge, G.; Dogliotti, S. Reduced tillage and cover crops improve water capture and reduce erosion of fine textured soils in raised bed tomato systems. Agric. Ecosyst. Environ. 2014, 183, 127–137. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Francis, C.A. Building resilient soils through agroecosystem redesign under fluctuating climatic regimes. J. Soil Water Conserv. 2016, 71, 127A–133A. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q.P. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Paredes, D.; Cayuela, L.; Gurr, G.M.; Campos, M. Is ground cover vegetation an effective biological control enhancement strategy against olive pests? PLoS ONE 2015, 10, e0117265. [Google Scholar] [CrossRef] [Green Version]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Almagro, M.; de Vente, J.; Boix-Fayos, C.; García-Franco, N.; Melgares de Aguilar, J.; González, D.; Solé-Benet, A.; Martínez-Mena, M. Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems. Mitig. Adapt. Strat. Glob. Chang. 2016, 21, 1029–1043. [Google Scholar] [CrossRef]
- Biddoccu, M.; Ferraris, S.; Pitacco, A.; Cavallo, E. Temporal variability of soil management effects on soil hydrological properties, runoff and erosion at the field scale in a hillslope vineyard, North-West Italy. Soil Tillage Res. 2017, 165, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Mena, M.; Carrillo-López, E.; Boix-Fayos, C.; Almagro, M.; Franco, N.G.; Díaz-Pereira, E.; Montoya, I.; de Vente, J. Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena 2020, 187, 104352. [Google Scholar] [CrossRef]
- Preiti, G.; Romeo, M.; Bacchi, M.; Monti, M. Soil loss measure from Mediterranean arable cropping systems: Effects of rotation and tillage system on C-factor. Soil Tillage Res. 2017, 170, 85–93. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Perez, M.; Almagro, M.; Garcia-Franco, N.; Díaz-Pereira, E. Long-term impacts of sustainable management practices on soil properties and crop yields in rainfed Mediterranean almond agroecosystems. Eur. J. Agron. 2021, 123, 126207. [Google Scholar] [CrossRef]
- Almagro, M.; Garcia-Franco, N.; Martínez-Mena, M. The potential of reducing tillage frequency and incorporating plant residues as a strategy for climate change mitigation in semiarid Mediterranean agroecosystems. Agric. Ecosyst. Environ. 2017, 246, 210–220. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Bhatia, A.; Pathak, H.; Jain, N.; Singh, P.K.; Tomer, R. Greenhouse gas mitigation in rice–wheat system with leaf color chart-based urea application. Environ. Monit. Assess. 2012, 184, 3095–3107. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Mahajan, G.; Sardana, V.; Timsina, J.; Jat, M.L. Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: Problems, opportunities, and strategies. Adv. Agron. 2012, 117, 315–369. [Google Scholar]
- Sanz, M.J.; De Vente, J.L.; Chotte, J.-L.; Bernoux, M.; Kust, G.; Ruiz, I.; Almagro, M.; Alloza, J.A.; Vallejo, R.; Castillo, V.; et al. Sustainable Land Management Contribution to Successful Land-Based Climate Change Adaptation and Mitigation: A Report of the Science-Policy Interface; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2017; p. 178. [Google Scholar]
- Smith, P.; Adams, J.; Beerling, D.J.; Beringer, T.; Calvin, K.V.; Fuss, S.; Griscom, B.; Hagemann, N.; Kammann, C.; Kraxner, F.; et al. Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. 2019, 44, 255–286. [Google Scholar] [CrossRef]
- Smith, P.; Nkem, J.; Calvin, K.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Hoang, A.L.; Lwasa, S.; McElwee, P.; et al. Interlinkages between Desertification, Land Degradation, Food Security and Greenhouse Gas Fluxes: Synergies, Trade-offs and Integrated Response Options. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Portner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; p. 122. [Google Scholar]
- Cooper, J.; Baranski, M.; Stewart, G.; Nobel-de Lange, M.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, A.; Brock, C.; Casa-grande, M.; et al. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agron. Sustain. Dev. 2016, 36, 22. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Mena, M.; Garcia-Franco, N.; Almagro, M.; Ruiz-Navarro, A.; Albaladejo, J.; de Aguilar, J.M.; Gonzalez, D.; Querejeta, J.I. Decreased foliar nitrogen and crop yield in organic rainfed almond trees during transition from reduced tillage to no-tillage in a dryland farming system. Eur. J. Agron. 2013, 49, 149–157. [Google Scholar] [CrossRef]
- Guenet, B.; Gabrielle, B.; Chenu, C.; Arrouays, D.; Balesdent, J.; Bernoux, M.; Bruni, E.; Caliman, J.-P.; Cardinael, R.; Chen, S.; et al. Can N2O emissions offset the benefits from soil organic carbon storage? Glob. Chang. Biol. 2020, 27, 237–256. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Antichi, D.; Almagro, M.; Hedlund, K.; Sarno, G.; Virto, I. Local adaptation strategies to increase or maintain soil organic carbon content under arable farming in Europe: Inspirational ideas for setting operational groups within the European innovation partnership. J. Rural. Stud. 2020, 79, 102–115. [Google Scholar] [CrossRef]
- Sasal, M.C.; Léonard, J.; Andriulo, A.; Boizard, H. A contribution to understanding the origin of platy structure in silty soils under no tillage. Soil Tillage Res. 2017, 173, 42–48. [Google Scholar] [CrossRef]
- Chinseu, E.; Dougill, A.; Stringer, L. Why do smallholder farmers dis-adopt conservation agriculture? Insights from Malawi. Land Degrad. Dev. 2019, 30, 533–543. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Ingram, J.; Mills, J.; Frelih-Larsen, A.; Davis, M.; Merante, P.; Ringrose, S.; Molnar, A.; Sánchez, B.; Ghaley, B.B.; Karaczun, Z. Managing Soil Organic Carbon: A Farm Perspective. Eurochoices 2014, 13, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Borgström, S.; Zachrisson, A.; Eckerberg, K. Funding ecological restoration policy in practice—Patterns of short-termism and regional biases. Land Use Policy 2016, 52, 439–453. [Google Scholar] [CrossRef]
- Runhaar, H. Governing the transformation towards ‘nature-inclusive’ agriculture: Insights from the Netherlands. Int. J. Agric. Sustain. 2017, 15, 340–349. [Google Scholar] [CrossRef]
- Ferwerda, W. 4 Returns, 3 Zones, 20 Years: A Holistic Framework for Ecological Restoration by People and Business for Next Generations; Rotterdam School of Management, Erasmus University: Rotterdam, The Netherlands; International Union of Conservation of Nature, Commission on Ecosystem Management and Commonland: Gland, Switzerland, 2015. [Google Scholar]
- Schoonhoven, Y.; Runhaar, H. Conditions for the adoption of agro-ecological farming practices: A holistic framework illustrated with the case of almond farming in Andalusia. Int. J. Agric. Sustain. 2018, 16, 442–454. [Google Scholar] [CrossRef] [Green Version]
- Ahnström, J.; Höckert, J.; Bergeå, H.L.; Francis, C.A.; Skelton, P.; Hallgren, L. Farmers and nature conservation: What is known about attitudes, context factors and actions affecting conservation? Renew. Agric. Food Syst. 2009, 24, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Schomberg, H.H.; Wietholter, S.; Griffin, T.S.; Reeves, D.W.; Cabrera, M.L.; Fisher, D.S.; Endale, D.M.; Novak, J.M.; Balkcom, K.S.; Raper, R.L.; et al. Assessing Indices for Predicting Potential Nitrogen Mineralization in Soils under Different Management Systems. Soil Sci. Soc. Am. J. 2009, 73, 1575–1586. [Google Scholar] [CrossRef]
- Reeves, D. Cover crops and rotations. In Crop Residue Management; Hatfield, J., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 124–172. [Google Scholar]
- Francaviglia, R.; Vicente-Vicente, J.L. Cover cropping. In Recarbonizing Global Soils: A Technical Manual of Best Management Practices; FAO, ITPS, Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Volume 3, pp. 3–13. [Google Scholar]
- Jian, J.; Du, X.; Reiter, M.S.; Stewart, R.D. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol. Biochem. 2020, 143, 107735. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Smith, P. An overview of the permanence of soil organic carbon stocks: Influence of direct human-induced, indirect and natural effects. Eur. J. Soil Sci. 2005, 56, 673–680. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.-A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Kaspar, T.; Singer, J. The Use of Cover Crops to Manage Soil. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J., Sauer, T., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2011; pp. 321–337. [Google Scholar]
- Muhammad, I.; Wang, J.; Sainju, U.M.; Zhang, S.; Zhao, F.; Khan, A. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma 2021, 381, 114696. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 2016, 36, 48. [Google Scholar] [CrossRef] [Green Version]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J.; Proctor, C.A.; Creech, C.F.; Drewnoski, M.E.; Redfearn, D.D. Harvesting cover crops for biofuel and livestock production: Another ecosystem service? Agron. J. 2020, 112, 2373–2400. [Google Scholar] [CrossRef]
- Masilionyte, L.; Maiksteniene, S.; Kriauciuniene, Z.; Jablonskyte-Rasce, D.; Zou, L.; Sarauskis, E. Effect of cover crops in smothering weeds and volunteer plants in alternative farming systems. Crop Prot. 2017, 91, 74–81. [Google Scholar] [CrossRef]
- Demestihas, C.; Plénet, D.; Génard, M.; Raynal, C.; Lescourret, F. Ecosystem services in orchards. A review. Agron. Sustain. Dev. 2017, 37, 12. [Google Scholar] [CrossRef]
- Chapagain, T.; Lee, E.A.; Raizada, M.N. The Potential of Multi-Species Mixtures to Diversify Cover Crop Benefits. Sustainability 2020, 12, 2058. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lautenbach, S.; Nieto, A.P.G.; Bondeau, A.; Cramer, W.; Geijzendorffer, I.R. The impact of conservation farming practices on Mediterranean agro-ecosystem services provisioning—A meta-analysis. Reg. Environ. Chang. 2019, 19, 2187–2202. [Google Scholar] [CrossRef]
- Wratten, S.D.; Gillespie, M.; Decourtye, A.; Mader, E.; Desneux, N. Pollinator habitat enhancement: Benefits to other ecosystem services. Agric. Ecosyst. Environ. 2012, 159, 112–122. [Google Scholar] [CrossRef]
- Basche, A.D.; Miguez, F.E.; Kaspar, T.C.; Castellano, M.J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 2014, 69, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef] [Green Version]
- Chamizo, S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Sánchez-Cañete, E.P.; Vicente-Vicente, J.L.; Kowalski, A.S. Net ecosystem CO2 exchange in an irrigated olive orchard of SE Spain: Influence of weed cover. Agric. Ecosyst. Environ. 2017, 239, 51–64. [Google Scholar] [CrossRef]
- DuPont, S.T.; Ferris, H.; Van Horn, M. Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl. Soil Ecol. 2009, 41, 157–167. [Google Scholar] [CrossRef]
- Hill, E.C.; Renner, K.A.; Sprague, C.L.; Davis, A.S. Cover Crop Impact on Weed Dynamics in an Organic Dry Bean System. Weed Sci. 2016, 64, 261–275. [Google Scholar] [CrossRef]
- Baraibar, B.; Hunter, M.C.; Schipanski, M.E.; Hamilton, A.; Mortensen, D.A. Weed Suppression in Cover Crop Monocultures and Mixtures. Weed Sci. 2018, 66, 121–133. [Google Scholar] [CrossRef]
- Blesh, J. Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 2018, 55, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.M.; Murrell, E.G.; White, C.M.; Baraibar, B.; Barbercheck, M.E.; Bradley, B.A.; Cornelisse, S.; Hunter, M.C.; Kaye, J.P.; Mortensen, D.A.; et al. Ecosystem Services and Disservices Are Bundled in Simple and Diverse Cover Cropping Systems. Agric. Environ. Lett. 2017, 2, 170033. [Google Scholar] [CrossRef]
- Francaviglia, R.; Álvaro-Fuentes, J.; Di Bene, C.; Gai, L.; Regina, K.; Turtola, E. Diversified Arable Cropping Systems and Management Schemes in Selected European Regions Have Positive Effects on Soil Organic Carbon Content. Agriculture 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Kremen, C.; Iles, A.; Bacon, C.M. Diversified Farming Systems: An agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 2012, 17, 44. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Christopher, S.F.; Lal, R.; Mishra, U. Regional Study of No-Till Effects on Carbon Sequestration in the Midwestern United States. Soil Sci. Soc. Am. J. 2009, 73, 207–216. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Angers, D.A.; Carson, J. Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry 1998, 42, 55–72. [Google Scholar] [CrossRef]
- Lynch, J.M.; Bragg, E. Microorganisms and Soil Aggregate Stability. Adv. Soil Sci. 1985, 2, 133–171. [Google Scholar] [CrossRef]
- Jastrow, J.D.; Miller, R.M. Soil aggregate stabilisation and carbon sequestration: Feedbacks through organomineral associations. In Soil Processes and the Carbon Cycle; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 207–223. [Google Scholar]
- LE Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Nunes, M.R.; van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- Martiniello, P. Biochemical parameters in a Mediterranean soil as affected by wheat–forage rotation and irrigation. Eur. J. Agron. 2007, 26, 198–208. [Google Scholar] [CrossRef]
- Francis, C.A. Crop rotations. In Encyclopedia of Soils in the Environment; Hillel, D., Rosenzweig, C., Powlson, D., Scow, K., Singer, M., Sparks, D., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 318–322. [Google Scholar]
- Di Bene, C.; Gómez-López, M.; Francaviglia, R.; Farina, R.; Blasi, E.; Martínez-Granados, D.; Calatrava, J. Barriers and Opportunities for Sustainable Farming Practices and Crop Diversification Strategies in Mediterranean Cereal-Based Systems. Front. Environ. Sci. 2022, 10, 861225. [Google Scholar] [CrossRef]
- Angus, J.F.; Kirkegaard, J.A.; Hunt, J.R.; Ryan, M.H.; Ohlander, L.; Peoples, M.B. Break crops and rotations for wheat. Crop Pasture Sci. 2015, 66, 523–552. [Google Scholar] [CrossRef]
- Francaviglia, R.; Álvaro-Fuentes, J.; Di Bene, C.; Gai, L.; Regina, K.; Turtola, E. Diversification and Management Practices in Selected European Regions. A Data Analysis of Arable Crops Production. Agronomy 2020, 10, 297. [Google Scholar] [CrossRef] [Green Version]
- Bouwman, A.F.; Beusen, A.H.W.; Griffioen, J.; Van Groenigen, J.W.; Hefting, M.M.; Oenema, O.; Van Puijenbroek, P.J.T.M.; Seitzinger, S.; Slomp, C.P.; Stehfest, E. Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130112. [Google Scholar] [CrossRef] [Green Version]
- Lemke, R.L.; Zhong, Z.; Campbell, C.A.; Zentner, R. Can pulse crops play a role in mitigating greenhouse gases from North American agriculture? Agron. J. 2007, 99, 1719–1725. [Google Scholar] [CrossRef]
- Jeuffroy, M.H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P. Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas. Biogeosciences 2013, 10, 1787–1797. [Google Scholar] [CrossRef] [Green Version]
- Schwenke, G.D.; Herridge, D.F.; Scheer, C.; Rowlings, D.W.; Haigh, B.M.; McMullen, K.G. Soil N2O emissions under N2-fixing legumes and N-fertilised canola: A reappraisal of emissions factor calculations. Agric. Ecosyst. Environ. 2015, 202, 232–242. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Nolot, J.-M.; Raffaillac, D.; Justes, E. Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur. J. Agron. 2017, 82, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
- Verheijen, F.G.; Jones, R.J.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth-Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions, Thematic Strategy for Soil Protection, COM 231 Final; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Cantón, Y.; Solé-Benet, A.; de Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 2011, 75, 1254–1261. [Google Scholar] [CrossRef]
- Almagro, M.; Martínez-Mena, M. Litter decomposition rates of green manure as affected by soil erosion, transport and deposition processes, and the implications for the soil carbon balance of a rainfed olive grove under a dry Mediterranean climate. Agric. Ecosyst. Environ. 2014, 196, 167–177. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Throop, H.L.; Archer, S.R. Resolving the Dryland Decomposition Conundrum: Some New Perspectives on Potential Drivers. Prog. Bot. 2009, 70, 171–194. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; López, J.; Almagro, M.; Albaladejo, J.; Castillo, V.; Ortiz, R.; Boix-Fayos, C. Organic carbon enrichment in sediments: Effects of rainfall characteristics under different land uses in a Mediterranean area. Catena 2012, 94, 36–42. [Google Scholar] [CrossRef]
- The Mission for Soil Health and Food: Opportunities for Earth Observation. Available online: https://www.copernicus.eu/system/files/2020-12/NT%2025nov%20-%20The%20Horizon%20Europe%20Missions%20-%20Challenges%20and%20opportunities%20for%20Copernicus_0.pdf (accessed on 12 December 2022).
- Maetens, W.; Poesen, J.; Vanmaercke, M. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Sci. Rev. 2012, 115, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Halbritter, A.H.; De Boeck, H.J.; Eycott, A.E.; Reinsch, S.; Robinson, D.A.; Vicca, S.; Berauer, B.; Christiansen, C.T.; Estiarte, M.; Grünzweig, J.M.; et al. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods Ecol. Evol. 2019, 11, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2008; p. 286. [Google Scholar]
- Currie, W.S. Relationships between carbon turnover and bioavailable energy fluxes in two temperate forest soils. Glob. Chang. Biol. 2003, 9, 919–929. [Google Scholar] [CrossRef]
- Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 2007, 35, 313–347. [Google Scholar] [CrossRef] [Green Version]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Austin, A.T.; Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 2006, 442, 555–558. [Google Scholar] [CrossRef]
- King, J.Y.; Brandt, L.A.; Adair, E.C. Shedding light on plant litter decomposition: Advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry 2012, 111, 57–81. [Google Scholar] [CrossRef] [Green Version]
- Almagro, M.; Maestre, F.T.; Martínez-López, J.; Valencia, E.; Rey, A. Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands. Soil Biol. Biochem. 2015, 90, 214–223. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Wang, X.; Chen, Y. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation. Glob. Chang. Biol. 2015, 21, 2095–2104. [Google Scholar] [CrossRef]
- Sanderman, J. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric. Ecosyst. Environ. 2012, 155, 70–77. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Kindler, R.; Siemens, J.A.N.; Kaiser, K.; Walmsley, D.C.; Bernhofer, C.; Buchmann, N.; Cellier, P.; Eugster, W.; Gleixner, G.; Grũnwald, T.; et al. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob. Chang. Biol. 2011, 17, 1167–1185. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Wang, L.; Feng, X.; Zhang, J.; Ma, T.; Wang, X.; Liu, Z. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands. Biogeosciences 2018, 15, 1627–1641. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.G.; Aiken, G.R.; Wickland, K.P.; Striegl, R.G.; Hernes, P.J. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob. Biogeochem. Cycles 2008, 22, GB4002. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M. Pedogenic carbonates and the global carbon cycle. In Global Change and Pedogenic Carbonate; Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 1–14. [Google Scholar]
- Soto, R.L.; Martínez-Mena, M.; Padilla, M.C.; de Vente, J. Restoring soil quality of woody agroecosystems in Mediterranean drylands through regenerative agriculture. Agric. Ecosyst. Environ. 2021, 306, 107191. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Wiesmeier, M.; Colocho Hurtarte, L.C.; Fella, F.; Martínez-Mena, M.; Almagro, M.; García Martínez, E.; Kögel-Knabner, I. Pruning debris incorporation and reduced tillage improve soil organic matter stabilization and structure of salt-affected soils in a semi-arid Mediterranean Citrus tree orchard. Soil Tillage Res. 2021, 213, 105129. [Google Scholar] [CrossRef]
- Almagro, M.; Martínez-Mena, M. Conservation, reduced and superficial tillage. In Recarbonizing Global Soils: A Technical Manual of Best Management Practices; FAO, ITPS, Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Volume 3, pp. 72–84. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Arrúe, J.L.; Gracia, R.; López, M.V. Tillage and cropping intensification effects on soil aggregation: Temporal dynamics and controlling factors under semiarid conditions. Geoderma 2008, 145, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Dimassi, B.; Mary, B.; Wylleman, R.; Labreuche, J.; Couture, D.; Piraux, F.; Cohan, J.-P. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric. Ecosyst. Environ. 2014, 188, 134–146. [Google Scholar] [CrossRef]
- Feiziene, D.; Feiza, V.; Slepetiene, A.; Liaudanskiene, I.; Kadziene, G.; Deveikyte, I.; Vaideliene, A. Long-Term Influence of Tillage and Fertilization on Net Carbon Dioxide Exchange Rate on Two Soils with Different Textures. J. Environ. Qual. 2011, 40, 1787–1796. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Vicente, J.L.; Gómez-Muñoz, B.; Hinojosa-Centeno, M.B.; Smith, P.; Garcia-Ruiz, R. Carbon saturation and assessment of soil organic carbon fractions in Mediterranean rainfed olive orchards under plant cover management. Agric. Ecosyst. Environ. 2017, 245, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Ball, K.R.; Baldock, J.A.; Penfold, C.; Power, S.A.; Woodin, S.J.; Smith, P.; Pendall, E. Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma 2020, 379, 114619. [Google Scholar] [CrossRef]
- Sekaran, U.; Kumar, S.; Gonzalez-Hernandez, J.L. Integration of crop and livestock enhanced soil biochemical properties and microbial community structure. Geoderma 2021, 381, 114686. [Google Scholar] [CrossRef]
- Wulanningtyas, H.S.; Gong, Y.; Li, P.; Sakagami, N.; Nishiwaki, J.; Komatsuzaki, M. A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation. Soil Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Grove, J.; Poffenbarger, H.; Jacobsen, K.; Tao, B.; Zhu, X.; McNear, D. Assessing synergistic effects of no-tillage and cover crops on soil carbon dynamics in a long-term maize cropping system under climate change. Agric. For. Meteorol. 2020, 291, 108090. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Congreves, K.A.; Verhallen, A.; Hayes, A.; Hooker, D.C. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Can. J. Soil Sci. 2014, 94, 303–315. [Google Scholar] [CrossRef]
- Miglierina, A.M.; Iglesias, J.O.; Landriscini, M.R.; Galantini, J.A.; Rosell, R.A. The effects of crop rotation and fertilization on wheat productivity in the Pampean semiarid region of Argentina. 1. Soil physical and chemical properties. Soil Tillage Res. 2000, 53, 129–135. [Google Scholar] [CrossRef]
- Varvel, G.E. Soil Organic Carbon Changes in Diversified Rotations of the Western Corn Belt. Soil Sci. Soc. Am. J. 2006, 70, 426–433. [Google Scholar] [CrossRef]
- European Environment Agency. The European Environment: State and Outlook 2020; Publications Office of the European Union: Luxembourg, 2020; Volume 60. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions. In EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives COM/2020/380 Final; European Commission: Brussel, Belgium, 2020. [Google Scholar]
- Lampkin, N.; Stolze, M.; Meredith, S.; de Porras, M.; Haller, L.; Mészáros, D. Eco-Schemes in the New CAP: A Guide for Managing Authorities; IFOAM EU, FIBL, IEEP: Brussels, Belgium, 2020; p. 76. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, The European Economic and Social Committee and the Committee of the Regions. In The European Green Deal COM/2019/640 Final; European Commission: Brussel, Belgium, 2019. [Google Scholar]
- European Commission. A Clean Planet for All—A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; COM/2018/773; European Commission: Brussel, Belgium, 2018. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and the Council on the Implementation of the EU Strategy on Adaptation to Climate Change COM/2018/738 Final; European Commission: Brussel, Belgium, 2018. [Google Scholar]
- European Commission. Nature-Based Solutions. 2017. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/environment/nature-based-solutions_en (accessed on 12 December 2022).
- European Commission. From Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; European Union: Brussel, Belgium, 2020. [Google Scholar]
- European Commission. Organic Farming—Action Plan for the Development of EU Organic Production; European Commission: Brussel, Belgium, 2021. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. In EU Pollinators Initiative COM (2018) 395 Final; European Commission: Brussel, Belgium, 2018. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European and Social Committee and the Committee of the Regions. In Chemicals Strategy for Sustainability Towards a Toxic-Free Environment COM (2020) 667 Final; European Commission: Brussel, Belgium, 2020. [Google Scholar]
- Towards a Zero Pollution Ambition for Air, Water and Soil. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12588-EU-Action-Plan (accessed on 12 December 2022).
- European Union. Regulation (EU) 2018/841 on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry in the 2030 Climate and Energy Framework, and Amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU; European Parliament and European Council: Brussels, Belgium, 2018. [Google Scholar]
- Panagos, P.; Montanarella, L.; Barbero, M.; Schneegans, A.; Aguglia, L.; Jones, A. Soil priorities in the European Union. Geoderma Reg. 2022, 29, e00510. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Borrelli, P.; Köninger, J.; Ballabio, C.; Orgiazzi, A.; Lugato, E.; Liakos, L.; Hervas, J.; Jones, A.; et al. European Soil Data Centre 2.0: Soil data and knowledge in support of the EU policies. Eur. J. Soil Sci. 2022, 73, e13315. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Lal, R. Beyond COP 21: Potential and challenges of the “4 per Thousand” initiative. J. Soil Water Conserv. 2016, 71, 20A–25A. [Google Scholar] [CrossRef]
- UNGA Resolution 70/1. Transforming our world: The 2030 Agenda for Sustainable Development. In Resolution Adopted by the General Assembly on 25 September 2015; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Jónsson, J.Ö.G.; Davíðsdóttir, B.; Jónsdóttir, E.M.; Kristinsdóttir, S.M.; Ragnarsdóttir, K.V. Soil indicators for sustainable development: A transdisciplinary approach for indicator development using expert stakeholders. Agric. Ecosyst. Environ. 2016, 232, 179–189. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
Region | CA Cropland Area (M ha) | Total Cropland CA Area (%) | CA Area Cropland in the Region (%) |
---|---|---|---|
South America | 69.90 | 38.7 | 63.2 |
North America | 63.18 | 35.0 | 28.1 |
Australia/New Zealand | 22.67 | 12.6 | 45.5 |
Asia | 13.93 | 7.7 | 4.1 |
Russia/Ukraine | 5.70 | 3.2 | 3.6 |
Europe | 3.56 | 2.0 | 5.0 |
Africa | 1.51 | 0.8 | 1.1 |
Global Total | 180.44 | 100 | 12.5 |
Location | Climate Zone | Additional C Storage Potential (t C ha−1 yr−1) | Duration (Years) | Cropping System | Reference |
---|---|---|---|---|---|
Regional | Warm temperate dry | 0.27 | 10.6 | A + W | [27] |
Global | Arid, temperate, and tropical | 0.56 | 8.5 | A | [67] |
Regional | Warm temperate dry | 0.43 | 5.6 | AC + W | [43] |
Regional | Warm temperate dry | 1.01 | 6.7 | PC + W | [43] |
Global | Temperate and tropical | 0.32 | 11.9 | A | [68] |
Regional | Warm temperate dry | 1.03 | 7.7 | W | [1] |
Variable | Coefficient |
---|---|
SOC control * | 0.20 |
Rotation every 3 years * | 0.61 |
Years * | −0.45 |
Legumes * | 0.60 |
Cover crop | −0.04 |
Conventional tillage * | 0.22 |
No tillage * | −0.32 |
Mineral fertilization | 0.08 |
Mixed fertilization * | −0.16 |
Organic fertilization | 0.11 |
Residue incorporated * | −0.31 |
Residue mulched * | −0.33 |
Residue removed * | 0.58 |
Semiarid * | 0.16 |
Subhumid | −0.14 |
MedNCerAw * | 0.17 |
MedSCerAW * | −0.45 |
BorFodMix | 0.11 |
Clay * | −0.28 |
Loam * | −0.41 |
Sandy clay loam * | 0.61 |
Cover Crop | SOC Bulk Soil (mg g−1) | SOC Coarse Fraction (mg g−1) | SOC Fine Fraction (mg g−1) |
---|---|---|---|
Grass only | 14.22 ± 1.22 b | 7.42 ± 1.43 b | 35.50 ± 4.74 b |
Legume only | 13.62 ± 1.10 a | 6.96 ± 1.15 b | 32.77 ± 4.23 a |
Mixture | 14.64 ± 1.29 b | 9.36 ± 1.86 b | 34.56 ± 4.55 b |
Control | 11.41 ± 1.02 a | 5.36 ± 1.01 a | 30.57 ± 3.91 a |
p-value | <0.01 | <0.01 | 0.02 |
N Fertilization | 0 N | Low N | High N | |||
---|---|---|---|---|---|---|
Rotation | Delta SOC | % | Delta SOC | % | Delta SOC | % |
Corn | ||||||
C-SB vs. CC | 5.6 | 11.8 | 3.4 | 6.9 | 1.5 | 2.9 |
OCL-SG-SB-C vs. CC | 9.9 | 21.0 | 7.0 | 14.2 | 6.2 | 12.1 |
SB-SG-OCL-C vs. CC | 7.8 | 16.5 | 4.2 | 8.6 | 3.9 | 7.6 |
Soybean | ||||||
C-SB vs. CSB | −1.4 | −2.5 | 0.1 | 0.1 | −0.7 | −1.3 |
SG-SB vs. CSB | −5.3 | −9.8 | −3.1 | −6.0 | −4.3 | −8.0 |
OCL-SG-SB-C vs. CSB | 3.0 | 5.5 | 3.7 | 7.0 | 4.0 | 7.5 |
SB-SG-OCL-C vs. CSB | 0.9 | 1.6 | 0.9 | 1.7 | 1.7 | 3.2 |
Sorghum | ||||||
SG-SB vs. CSG | −6.1 | −11.1 | −3.5 | −6.6 | −5.3 | −9.7 |
OCL-SG-SB-C vs. CSG | 2.2 | 4.0 | 3.3 | 6.2 | 3.0 | 5.5 |
SB-SG-OCL-C vs. CSG | 0.1 | 0.1 | 0.5 | 0.9 | 0.7 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. https://doi.org/10.3390/soilsystems7010017
Francaviglia R, Almagro M, Vicente-Vicente JL. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Systems. 2023; 7(1):17. https://doi.org/10.3390/soilsystems7010017
Chicago/Turabian StyleFrancaviglia, Rosa, María Almagro, and José Luis Vicente-Vicente. 2023. "Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options" Soil Systems 7, no. 1: 17. https://doi.org/10.3390/soilsystems7010017
APA StyleFrancaviglia, R., Almagro, M., & Vicente-Vicente, J. L. (2023). Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Systems, 7(1), 17. https://doi.org/10.3390/soilsystems7010017