A Standardized Morpho-Functional Classification of the Planet’s Humipedons
Abstract
:1. Introduction: A Humipedon Classification Is Needed
2. A Soil Parted in Subunits and Horizons
3. The Environment in Which the Targeted Humipedon Is Found
- Terrestrial: humipedons that never submerged for more than a few days per year; peaty and water-filled horizons absent. These humipedons belong to Mull or non-Mull systems (Moder, Mor, Amphi, and Tangel);
- Histic Semiterrestrial: submerged humipedons characterized by peaty horizons; presence of a water table (perched or not). These humipedons belong to Fibrimoor, Mesimoor, Amphimoor, Saprimoor, and Anmoor systems;
- Aqueous Semiterrestrial: humipedons by the sea in tidal area, or submerged;
- Para systems: humipedons connected to the other three groups (Para = next to) in a dynamic way; they either precede the others in time or develop with them (overlapped, juxtaposed). These are Archaeo (extremophile microorganisms), Anaero (submerged organotrophic microorganisms), Crusto (cyanobacteria, lichens, algae, fungi), Rhizo (roots, rhizoids), Bryo (mosses), and Ligno (decaying wood agents) systems.
- Anthropic systems: Agro (natural humipedons anthropogenically transformed for agricultural purposes) and Techno (manmade imitation of natural humipedons, e.g., compost, or without a specific purpose (waste dumps, etc.)).
4. Systems and Forms of the Main Terrestrial and Semiterrestrial Humipedons and Recent Advances in Humus Classification
- (a)
- Mull system (top square, absence of OH horizon = Mull system); or
- (b)
- Non-Mull systems (with OH horizon = all the other systems):
- (b1)
- Non-Mull systems 1, on basic parent material (calcareous or high base saturation of topsoil horizons) divided according to the thickness of the OH and A horizons: if A ≥ 2 × OH, Amphi, if A < 2 × OH, Tangel; or
- (b2)
- Non-Mull systems 2, on acidic parent material (acidified topsoil horizons) or siliceous bedrock with low acid-neutralizing capacity (ANC), divided according to the type of transition between the organic (O horizons) and organic-mineral (A) or mineral layers of the profile. If the transition is gradual, which means that migrant animals may form an organic-mineral A horizon, then it is a Moder. With a clear and sharp transition instead, which means that the soil fauna does not incorporate organic matter in the mineral matrix, it is a Mor.
- -
- one Mull system without OH horizon, which corresponds to a rapid disappearance of litter from the topsoil;
- -
- four systems with OH (or with organic horizons not or little-attacked by pedofauna), which corresponds to a slow process of litter biodegradation:
- o
- two influenced by calcareous (or basic) parent material systems: (a) A horizon dominates in thickness (Amphi); (b) OH horizon dominates (Tangel);
- o
- two influenced by siliceous parent material systems: (a) presence of biological interchange between organic and mineral horizons (Moder); (b) no interchange, no or very few pedofauna (Mor).
- -
- three long-time submerged systems (Saprimoor, Mesimoor, and Fibrimoor), with progressive submerged duration and characteristic dominant horizons;
- -
- one disrupted system, with horizons showing a varying dynamic of submersion in time and duration, without a dominance of functioning revealed by a specific horizon (Amphimoor);
- -
- one rather organomineral Anmoor system, in areas with long periods of flood or dryness (6 months), earthworms arriving when the soil becomes aerated.
- -
- one Tidal system that develops between the high and low tide levels. This system contains two humus forms which differ in the length of the submersion period. The “kinship” of the Tidal system with the Terrestrial systems can be highlighted by using suitable prefixes;
- -
- one always-submerged Subtidal system lying under the lowest tide level.
5. TerrHum: Humusica in Your Phones and Tablets
6. Conclusions
- (1)
- Humipedon classification cannot escape a part of subjectivity. Direct classification experience is an important component of diagnostic ability. The novice investigator should call on the knowledge of an expert, even if the key horizons are few: it is precisely necessary to know these fundamental landmarks with certainty. It only takes one outing to catch a glimpse and touch these horizons. In a terrestrial environment (= out of water), it is necessary to see the OH organic horizon and the maA and miA organo-mineral horizons; in a semiterrestrial environment (= more or less in water), the HF and HS organic horizons, and the anA and anaA organomineral horizons are crucial; to define the humipedons of the first stages of soil development, it is necessary to recognize at least the Crusto, Bryo, and Rhizo systems.
- (2)
- In the field, humus systems and forms are distributed horizontally and vertically as in a mosaic (Figure 7A,B) [18]. It is therefore normal to be “lost” at the beginning. Before embarking on a localized and precise diagnosis, it is necessary to survey the ground, and determine the eventual main lines of the mosaic coverage. It is relatively easy to separate the Para systems from the others, for example, a Bryo systems on outcropping rocks. If in a phytocoenosis the vegetation is fairly homogeneous, the investigator will often be in a single humus system composed of a hidden mosaic of humus forms. In the forest, this often depends on the appearance of and increase in the OH horizon (localized increase in the volume of litter, microconcavity, change of coverage or exposure), or conversely on the decrease until the disappearance of this same OH horizon.
- (3)
- The questions which the investigator is called upon to answer are the following: (1) Is there an OH horizon? (2) How is the transition between the organic and the mineral parts of the humipedon? (3) Is the parent material (rock that directly or indirectly influences the formation of the diagnostic horizons of the humipedon) acidic or basic? (4) What is the water dynamics in the profile and how long does a given horizon remain submerged? (5) Am I in a tidal zone? (6) What are the main living actors of litter biodegradation and why? (7) What is the importance of the impact of human action on the system?
- (4)
- “Well-defined and easily recognizable” diagnostic horizons are associated to “central, typical” humus forms or systems. Cases of atypical horizons (but assignable to a diagnostic horizon defined by estimating the percentages of its components), or humipedons that mark the passage from one system to another, are common in geomorphologically and floristically varied environments. There is usually a dominant humus form, and others are in ecological corollary. Once the investigator understands how to work, it becomes an interesting game to interpret the dynamics of the forest soil.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Certini, G.; Scalenghe, R.; Amundson, R. A view of extraterrestrial soils. Eur. J. Soil Sci. 2009, 60, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ponge, J.-F.; Gobat, J.-M.; Juilleret, J.; Blouin, M.; Aubert, M.; Chertov, O.; Rubio, J.L. Humusica 1, article 1: Essential bases–Vocabulary. Appl. Soil Ecol. 2018, 122, 10–21. [Google Scholar] [CrossRef]
- Ponge, J.F. Humus: Dark side of life or intractable ‘aether’? Pedosphere 2022, 32, 660–664. [Google Scholar] [CrossRef]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Churchland, C.; Grayston, S.J. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front. Microbiol. 2014, 5, 261. [Google Scholar] [CrossRef] [Green Version]
- Tecon, R.; Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 2017, 41, 599–623. [Google Scholar] [CrossRef]
- Dwivedi, D.; Riley, W.; Torn, M.; Spycher, N.; Maggi, F.; Tang, J. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biol. Biochem. 2017, 107, 244–259. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Kögel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Pombubpa, N.; Pietrasiak, N.; De Ley, P.; Stajich, J.E. Insights into dryland biocrust microbiome: Geography, soil depth and crust type affect biocrust microbial communities and networks in Mojave Desert, USA. FEMS Microbiol. Ecol. 2020, 96, fiaa125. [Google Scholar] [CrossRef]
- Hao, J.; Chai, Y.N.; Lopes, L.D.; Ordóñez, R.A.; Wright, E.E.; Archontoulis, S.; Schachtman, D.P. The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa (United States). Appl. Environ. Microbiol. 2021, 87, e02673-20. [Google Scholar] [CrossRef]
- Frey, R.W. Concepts in the Study of Biogenic Sedimentary Structures. J. Sediment. Res. 1973, 43, 6–19. [Google Scholar]
- Freppaz, M.; Pintaldi, E.; Magnani, A.; Viglietti, D.; Williams, M.W. Topsoil and snow: A continuum system. Appl. Soil Ecol. 2018, 123, 435–440. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Korkina, I.; Vorobeichik, E. Humus Index as an indicator of the topsoil response to the impacts of industrial pollution. Appl. Soil Ecol. 2018, 123, 455–463. [Google Scholar] [CrossRef]
- Kukuļs, I.; Nikodemus, O.; Kasparinskis, R.; Žīgure, Z. Humus forms, carbon stock and properties of soil organic matter in forests formed on dry mineral soils in Latvia. Est. J. Earth Sci. 2020, 69, 63. [Google Scholar] [CrossRef]
- Büks, F.; van Schaik, N.L.; Kaupenjohann, M. What do we know about how the terrestrial multicellular soil fauna reacts to microplastic? Soil 2020, 6, 245–267. [Google Scholar] [CrossRef]
- Bani, A.; Pioli, S.; Ventura, M.; Panzacchi, P.; Borruso, L.; Tognetti, R.; Tonon, G.; Brusetti, L. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 2018, 126, 75–84. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Matteodo, M. Humusica 1, article 7: Terrestrial humus systems and forms—Field practice and sampling problems. Appl. Soil Ecol. 2018, 122, 92–102. [Google Scholar] [CrossRef]
- Lovelock, J.E.; Margulis, L. Atmospheric homeostasis by and for the biosphere: The gaia hypothesis. Tellus 1974, 26, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Barlow, J.; França, F.; Gardner, T.A.; Hicks, C.; Lennox, G.D.; Berenguer, E.; Castello, L.; Economo, E.P.; Ferreira, J.; Guénard, B.; et al. The future of hyperdiverse tropical ecosystems. Nature 2018, 559, 517–526. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World scientists’ warning of a climate emergency. Bioscience 2019, 70, 8–12. [Google Scholar] [CrossRef]
- Ali, A.; Chen, H.Y.; You, W.-H.; Yan, E.-R. Multiple abiotic and biotic drivers of aboveground biomass shift with forest stratum. For. Ecol. Manag. 2019, 436, 1–10. [Google Scholar] [CrossRef]
- Frazão, J.; Goede, R.; Brussaard, L.; Faber, J.H.; Groot, J.; Pulleman, M.M. Earthworm communities in arable fields and restored field margins, as related to management practices and surrounding landscape diversity. Agric. Ecosyst. Environ. 2017, 248, 1–8. [Google Scholar] [CrossRef]
- Ponge, J.-F. Biodiversité et biomasse de la faune du sol sous climat tempéré. Comptes Rendus De L’académie D’agriculture De Fr. 2000, 86, 129–135. [Google Scholar]
- Blakemore, R.J. Critical Decline of Earthworms from Organic Origins under Intensive, Humic SOM-Depleting Agriculture. Soil Syst. 2018, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Fournier, B.; Samaritani, E.; Frey, B.; Seppey, C.V.; Lara, E.; Heger, T.; Mitchell, E.A. Higher spatial than seasonal variation in floodplain soil eukaryotic microbial communities. Soil Biol. Biochem. 2020, 147, 107842. [Google Scholar] [CrossRef]
- European Commission. The Factory of Life: Why Soil Biodiversity Is so Important; Office for Official Publications of the European Union: Luxembourg, 2010; Available online: https://ec.europa.eu/environment/archives/soil/pdf/soil_biodiversity_brochure_en.pdf (accessed on 27 June 2022).
- Joergensen, R.G.; Wichern, F. Alive and kicking: Why dormant soil microorganisms matter. Soil Biol. Biochem. 2018, 116, 419–430. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Antunes, P.M.; Bennett, A.E.; Birkhofer, K.; Bissett, A.; Bowker, M.A.; Caruso, T.; Chen, B.; Coleman, D.C.; de Boer, W.; et al. Priorities for research in soil ecology. Pedobiologia 2017, 63, 1–7. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Jabiol, B.; Sartori, G.; Kolb, E.; Gobat, J.-M.; Le Bayon, R.-C.; Aubert, M.; De Waal, R.; Van Delft, B.; et al. Humusica 1, article 4: Terrestrial humus systems and forms—Specific terms and diagnostic horizons. Appl. Soil Ecol. 2018, 122, 56–74. [Google Scholar] [CrossRef]
- Zanella, A.; De Waal, R.; Van Delft, B.; Ponge, J.-F.; Jabiol, B.; De Nobili, M.; Ferronato, C.; Gobat, J.-M.; Vacca, A. Humusica 2, Article 9: Histic humus systems and forms—Specific terms, diagnostic horizons and overview. Appl. Soil Ecol. 2018, 122, 148–153. [Google Scholar] [CrossRef]
- Damptey, F.G.; Birkhofer, K.; Nsiah, P.K.; De La Riva, E.G. Soil Properties and Biomass Attributes in a Former Gravel Mine Area after Two Decades of Forest Restoration. Land 2020, 9, 209. [Google Scholar] [CrossRef]
- Keke, H.; Bo, Z. Leaching is the dominant route for soil organic carbon lateral transport under crop straw addition on sloping croplands. Plant Soil Environ. 2018, 64, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Moroni, M.T.; Hagemann, U.; Beilman, D.W. Dead Wood is Buried and Preserved in a Labrador Boreal Forest. Ecosystems 2010, 13, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Sofo, A.; Ricciuti, P.; Fausto, C.; Mininni, A.N.; Crecchio, C.; Scagliola, M.; Malerba, A.D.; Xiloyannis, C.; Dichio, B. The metabolic and genetic diversity of soil bacterial communities depends on the soil management system and C/N dynamics: The case of sustainable and conventional olive groves. Appl. Soil Ecol. 2019, 137, 21–28. [Google Scholar] [CrossRef]
- Yang, Z.; Wullschleger, S.D.; Liang, L.; Graham, D.E.; Gu, B. Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biol. Biochem. 2016, 95, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [Green Version]
- Batjes, N.H.; Batjes, N.H. Technologically achievable soil organic carbon sequestration in world croplands and grasslands. Land Degrad. Dev. 2019, 30, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Ping, C.L.; Jastrow, J.D.; Jorgenson, M.T.; Michaelson, G.J.; Shur, Y.L. Permafrost soils and carbon cycling. Soil 2015, 1, 147–171. [Google Scholar] [CrossRef] [Green Version]
- Chiti, T.; Gardin, L.; Perugini, L.; Quaratino, R.; Vaccari, F.P.; Miglietta, F.; Valentini, R. Soil organic carbon stock assessment for the different cropland land uses in Italy. Biol. Fertil. Soils 2012, 48, 9–17. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, S.; Jiang, X.; Zhao, J.; Liu, S.; Yang, M.; Han, Y.; Sha, W. Are land use and short time climate change effective on soil carbon compositions and their relationships with soil properties in alpine grassland ecosystems on Qinghai-Tibetan Plateau? Sci. Total Environ. 2018, 625, 539–546. [Google Scholar] [CrossRef]
- Bojko, O.; Kabala, C. Organic carbon pools in mountain soils—Sources of variability and predicted changes in relation to climate and land use changes. Catena 2017, 149, 209–220. [Google Scholar] [CrossRef]
- Zanella, A.; Katzensteiner, K.; Ponge, J.; Jabiol, B.; Sartori, G.; Kolb, E.; Le Bayon, R.; Aubert, M.; Ascher-Jenull, J.; Englisch, M.; et al. TerrHum: An iOS Application for Classifying Terrestrial Humipedons and Some Considerations about Soil Classification. Soil Sci. Soc. Am. J. 2019, 83, S42–S48. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ponge, J.-F.; Jabiol, B.; Sartori, G.; Kolb, E.; Le Bayon, C.; Gobat, J.-M.; Aubert, M.; De Waal, R.; Van Delft, B.; et al. Humusica 1, article 5: Terrestrial humus systems and forms—Keys of classification of humus systems and forms. Appl. Soil Ecol. 2018, 122, 75–86. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Briones, M.J. Humusica 1, article 8: Terrestrial humus systems and forms—Biological activity and soil aggregates, space-time dynamics. Appl. Soil Ecol. 2018, 122, 103–137. [Google Scholar] [CrossRef]
- Cesário, F.V.; Balieiro, F.D.C.; Mazzei, L. Humipedon dynamics in lowland Amazonian forests: Are there Amphi humus forms even in tropical rain forests? Geoderma 2022, 418, 115849. [Google Scholar] [CrossRef]
- Waez-Mousavi, S. Humus systems in the Caspian Hyrcanian temperate forests. Appl. Soil Ecol. 2018, 123, 664–667. [Google Scholar] [CrossRef]
- Jafarisarabi, H. Effects of Tree Species Diversity on Leaf Litter Decomposition and Recognizing the Humus Forms in the Central Zagros Forests, Iran; Lorestan University: Khorramabad, Iran, 2019. [Google Scholar]
- Colombini, G.; Auclerc, A.; Watteau, F. Techno-moder: A proposal for a new morpho-functional humus form developing on Technosols revealed by micromorphology. Geoderma 2020, 375, 114526. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Topoliantz, S.; Bernier, N.; Juilleret, J. Humusica 2, Article 15: Agro humus systems and forms. Appl. Soil Ecol. 2018, 122, 204–219. [Google Scholar] [CrossRef]
- Burrow, C.; Pernin, C.; Lepretre, A. Influence of connectivity & topsoil management practices of a constructed technosol on pedofauna colonization: A field study. Appl. Soil Ecol. 2018, 123, 416–419. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Juilleret, J.; de Waal, R.; Le Bayon, R.-C.; Vacca, A.; Andreetta, A. Humusica 1, Article 6: Terrestrial humus systems and forms—Hydro intergrades. Appl. Soil Ecol. 2018, 122, 87–91. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; De Waal, R.; Van Delft, B.; De Nobili, M.; Ferronato, C.; Antisari, L.V.; Vianello, G.; Jabiol, B. Humusica 2, article 11: Histic humus systems and forms–Epihisto intergrades and dynamics. Appl. Soil Ecol. 2018, 122, 162–169. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; de Waal, R.; Ferronato, C.; De Nobili, M.; Juilleret, J. Humusica 1, article 3: Essential bases—Quick look at the classification. Appl. Soil Ecol. 2018, 122, 42–55. [Google Scholar] [CrossRef]
- Zanella, A.; De Waal, R.; Van Delft, B.; Ponge, J.-F.; Ferronato, C.; De Nobili, M.; Le Bayon, R.-C.; Andreetta, A.; Kõlli, R. Humusica 2, article 10: Histic humus systems and forms—Key of classification. Appl. Soil Ecol. 2018, 122, 154–161. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Fritz, I.; Pietrasiak, N.; Matteodo, M.; Nadporozhskaya, M.; Juilleret, J.; Tatti, D.; Le Bayon, C.; Rothschild, L.; et al. Humusica 2, article 13: Para humus systems and forms. Appl. Soil Ecol. 2018, 122, 181–199. [Google Scholar] [CrossRef]
- Markiewicz, M.; Hulisz, P.; Charzyński, P.; Piernik, A. Characteristics of soil organic matter of edifisols—An example of techno humus system. Appl. Soil Ecol. 2018, 123, 509–512. [Google Scholar] [CrossRef]
- Zanella, A.; Ascher-Jenull, J. Editorial. Appl. Soil Ecol. 2018, 122, 1–9. [Google Scholar] [CrossRef]
- Zanella, A.; Ascher-Jenull, J. Editorial. Appl. Soil Ecol. 2018, 122, 139–147. [Google Scholar] [CrossRef]
- Zanella, A.; Ascher-Jenull, J. Editorial. Appl. Soil Ecol. 2018, 123, 297–298. [Google Scholar] [CrossRef]
- Baritz, R. Humus Forms in Forests of the Northern German Lowlands. 2003. Available online: http://www.schweizerbart.de//publications/detail/isbn/9783510959082/Sonderheft\_SF\_3\_Geol\_Jahrb\_Reihe\_F (accessed on 27 June 2022).
- Chertov, O.; Nadporozhskaya, M. Development and application of humus form concept for soil classification, mapping and dynamic modelling in Russia. Appl. Soil Ecol. 2018, 123, 420–423. [Google Scholar] [CrossRef]
- Bernier, N.; Ponge, J.-F. Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest. Soil Biol. Biochem. 1994, 26, 183–220. [Google Scholar] [CrossRef] [Green Version]
- Hugelius, G.; Bockheim, J.G.; Camill, P.; Elberling, B.; Grosse, G.; Harden, J.W.; Johnson, K.; Jorgenson, T.; Koven, C.D.; Kuhry, P.; et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 2013, 5, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ferronato, C.; De Nobili, M.; Vianello, G.; Antisari, L.V.; Ponge, J.-F.; De Waal, R.; Van Delft, B.; Vacca, A. Humusica 2, article 12: Aqueous humipedons—Tidal and subtidal humus systems and forms. Appl. Soil Ecol. 2018, 122, 170–180. [Google Scholar] [CrossRef]
- Zanella, A.; Schad, P.; Galbraith, J.; Ponge, J.-F. Humusica 2, Article 14: Anthropogenic soils and humus systems, comparing classification systems. Appl. Soil Ecol. 2018, 122, 200–203. [Google Scholar] [CrossRef]
- Carollo, S. Studio Preliminare di Suoli di Cengia; Esempi di Forme di Humus su Roccia Madre Basica [Preliminary Study of Ledge Soils, Examples of Humus Forms on Basic Parent Material]. Ph.D. Thesis, Università degli Studi di Padova, Padova, Italy, 2020. [Google Scholar]
- Brandolese, A. Studio Preliminare di Suoli di Cengia; Esempi di Forme di Humus su Roccia Madre Acida [Preliminary Study of Ledge Soils, Examples of Humus Forms on Acidic Parent Material]. Ph.D. Thesis, Università degli Studi di Padova, Padova, Italy, 2020. [Google Scholar]
- Bertelle, M. Suoli Alpini di Cengia: Indagine Preliminare Sui Fattori Che ne Determinano la Formazione (Trentino e Veneto, Italia) [Alpine Ledge Soils: Preliminary Investigation of the Factors that Determine its Formation (Trentino and Veneto, Italy)]. Ph.D. Thesis, Università degli Studi di Padova, Padova, Italy, 2021. [Google Scholar]
- Zaminato, N. Gli Indici di Biodiversità Come Strumento Per Comprendere gli Effetti dei Cambiamenti Climatici: Un Caso di Studio nel Parco Naturale Adamello Brenta [Biodiversity Indices as a Tool for Understanding the Effects of Climate Change: A Case Study in the Ada]. Ph.D. Thesis, Università degli Studi di Padova, Padova, Italy, 2019. [Google Scholar]
- Aubert, M.; Trap, J.; Chauvat, M.; Hedde, M.; Bureau, F. Forest humus forms as a playground for studying aboveground-belowground relationships: Part 2, a case study along the dynamics of a broadleaved plain forest ecosystem. Appl. Soil Ecol. 2018, 123, 398–408. [Google Scholar] [CrossRef]
- Hellwig, N.; Tatti, D.; Sartori, G.; Anschlag, K.; Graefe, U.; Egli, M.; Gobat, J.-M.; Broll, G. Modeling Spatial Patterns of Humus Forms in Montane and Subalpine Forests: Implications of Local Variability for Upscaling. Sustainability 2018, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Hellwig, N.; Gómez-Brandón, M.; Ascher-Jenull, J.; Bardelli, T.; Anschlag, K.; Fornasier, F.; Pietramellara, G.; Insam, H.; Broll, G. Humus Forms and Soil Microbiological Parameters in a Mountain Forest: Upscaling to the Slope Scale. Soil Syst. 2018, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, E.; Falsone, G.; Petrillo, M. Humus forms, organic matter stocks and carbon fractions in forest soils of northwestern Italy. Biol. Fertil. Soils 2011, 47, 555–566. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanella, A.; Ponge, J.-F.; Jabiol, B.; Van Delft, B.; De Waal, R.; Katzensteiner, K.; Kolb, E.; Bernier, N.; Mei, G.; Blouin, M.; et al. A Standardized Morpho-Functional Classification of the Planet’s Humipedons. Soil Syst. 2022, 6, 59. https://doi.org/10.3390/soilsystems6030059
Zanella A, Ponge J-F, Jabiol B, Van Delft B, De Waal R, Katzensteiner K, Kolb E, Bernier N, Mei G, Blouin M, et al. A Standardized Morpho-Functional Classification of the Planet’s Humipedons. Soil Systems. 2022; 6(3):59. https://doi.org/10.3390/soilsystems6030059
Chicago/Turabian StyleZanella, Augusto, Jean-François Ponge, Bernard Jabiol, Bas Van Delft, Rein De Waal, Klaus Katzensteiner, Eckart Kolb, Nicolas Bernier, Giacomo Mei, Manuel Blouin, and et al. 2022. "A Standardized Morpho-Functional Classification of the Planet’s Humipedons" Soil Systems 6, no. 3: 59. https://doi.org/10.3390/soilsystems6030059
APA StyleZanella, A., Ponge, J. -F., Jabiol, B., Van Delft, B., De Waal, R., Katzensteiner, K., Kolb, E., Bernier, N., Mei, G., Blouin, M., Juilleret, J., Pousse, N., Stanchi, S., Cesario, F., Le Bayon, R. -C., Tatti, D., Chersich, S., Carollo, L., Englisch, M., ... Hager, H. (2022). A Standardized Morpho-Functional Classification of the Planet’s Humipedons. Soil Systems, 6(3), 59. https://doi.org/10.3390/soilsystems6030059