Regional Prediction of Fire Characteristics Using Machine Learning in Australia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Framework for Wildfire Prediction
- Step 1: Data IntegrationIn the first stage, two primary datasets are combined. Fire predictors include Estimated FA, Mean Estimated FBT, and Mean Estimated FRP. These are crucial indicators of wildfire intensity and spread. Alongside this, weather data is integrated, covering precipitation, relative humidity, temperature, wind speed, soil moisture content, and solar radiation. These environmental factors significantly influence wildfire behavior and are essential for building a reliable predictive model.
- Step 2: Feature EngineeringAfter integrating the datasets, the next step involves aggregating, cleaning, and preprocessing the data. Feature extraction is then performed to identify and generate the most relevant attributes from the combined datasets. To ensure that the models are validated rigorously and to reduce the risk of overfitting, a K-fold cross-validation strategy with five splits is used. This helps in assessing model performance across different subsets of the data.
- Step 3: Build Wildfire Prediction ModelsThe processed dataset is divided into training (80%) and validation (20%) sets. Several machine learning algorithms are used to model the data, detailed in Section 2.5 Prediction Models for Wildfire Characteristics. These models are then evaluated using two performance metrics: Root Mean Squared Error (RMSE), which measures the average prediction error, and the coefficient of determination (R2), which indicates the proportion of variance explained by the model.
2.3. Research Dataset Description
2.3.1. Climate Data
2.3.2. Wildfire Data
2.4. Data Preparation and Preprocessing
2.5. Prediction Models for Wildfire Characteristics
2.5.1. Tree-Based Models
2.5.2. SVM
2.5.3. Regression Models
2.5.4. Neural Networks
2.5.5. Instance-Based Models
2.6. Model Performance Evaluation and Selection
- n is the total number of observations;
- is the actual value at time i;
- is the predicted value at time i.
- is the mean of the actual values;
- n is the total number of observations.
3. Results
3.1. Australia Overall Best Performance of Wildfire Prediction
3.2. Best ML Model per Region and Target of Wildfire Prediction
3.2.1. Estimated FA Predictions Results Across Australian Regions
3.2.2. Mean FBT Predictions Results Across Australian Regions
3.2.3. Mean FRP Predictions Results Across Australian Regions
4. Discussion
5. Conclusions
- 1.
- Development and evaluation of Lasso Regression models tailored to seven diverse Australian fire regions, demonstrating regional adaptability and reliability.
- 2.
- Comparative analysis of multiple machine learning approaches for predicting FA, FBT, and FRP, establishing Lasso’s competitive edge.
- 3.
- Integration of environmental and climatic variables in predictive modeling, highlighting their differential impacts across the seven Australian regions.
- 4.
- Provision of a scalable framework for operational wildfire monitoring with reduced computational complexity, suited for real-time applications.
- 5.
- Recommendations for improving wildfire early warning systems through dynamic alert thresholds and temporal monitoring of fire characteristic changes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ML | Machine Learning |
DL | Deep Learning |
RF | Random Forest |
XGBoost | Extreme Gradient Boosting |
SVM | Support Vector Machine |
LSTM | Long Short-Term Memory |
LR | Linear Regression |
MLP | Multilayer Perceptron |
KNN | K-Nearest Neighbor |
LightGBM | Light Gradient Boosting Machine |
CNN | Convolutional Neural Network |
RMSE | Root Mean Squared Error |
R2 | Coefficient of Determination |
FA | Fire Area |
FBT | Fire Brightness Temperature |
FRP | Fire Radiative Power |
km2 | Square Kilometers |
MW | Megawatts |
K | Kelvin (temperature unit) |
EDA | Exploratory Data Analysis |
ERA5 | ECMWF Reanalysis v5 |
ECMWF | European Centre for Medium-Range Weather Forecasts |
MODIS | Moderate Resolution Imaging Spectroradiometer |
VIIRS | Visible Infrared Imaging Radiometer Suite |
NWCG | National Wildfire Coordinating Group |
EFFIS | European Forest Fire Information System |
WA | Western Australia |
NT | Northern Territory |
QL | Queensland |
NSW | New South Wales and Australian Capital Territory |
VI | Victoria |
TA | Tasmania |
SA | South Australia |
References
- Koh, J. Gradient boosting with extreme-value theory for wildfire prediction. Extremes 2023, 26, 273–299. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Wildfire Risk and Resilience: A Comprehensive Strategy for the 2022–2030 Period; U.S. Forest Service: Washington, DC, USA, 2021. Available online: https://www.fs.usda.gov (accessed on 4 March 2025).
- Fann, N.; Alman, B.; Broome, R.A.; Morgan, G.G.; Johnston, F.H.; Pouliot, G.; Rappold, A.G. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef]
- Wen, B.; Wu, Y.; Xu, R.; Guo, Y.; Li, S. Excess emergency department visits for cardiovascular and respiratory diseases during the 2019–20 bushfire period in Australia: A two-stage interrupted time-series analysis. Sci. Total Environ. 2022, 809, 152226. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Tang, D.; Li, R. Global impact of fire emission on ambient nitrate (NO3) and health effects during 2005–2019. J. Hazard. Mater. 2025, 494, 138509. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, L.; de Souza, E.M.; Rosset, C.; Junior, A.M.; Boquett, J.A.; Rofatto, V.F.; Brum, D.; Gonzaga, L., Jr.; de Oliveira, M.Z.; Veronez, M.R. Fire association with respiratory disease and COVID-19 complications in the state of Pará, Brazil. Lancet Reg. Health Am. 2022, 6, 100102. [Google Scholar] [CrossRef]
- Akter, S.; Grafton, R.Q. Do fires discriminate? Socio-economic disadvantage, wildfire hazard exposure and the Australian 2019–20 “Black Summer” fires. Clim. Change 2021, 165, 30. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, C.; Wang, X.; Thompson, J.R.; Peñuelas, J.; Yue, C.; Peng, S.; Huang, Y. Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake. Proc. Natl. Acad. Sci. USA 2022, 119, e2101186119. [Google Scholar] [CrossRef]
- Geary, W.L.; Doherty, T.S.; Nimmo, D.G.; Tulloch, A.I.; Ritchie, E.G. Predator responses to fire: A global systematic review and meta-analysis. J. Anim. Ecol. 2020, 89, 955–971. [Google Scholar] [CrossRef]
- Sayedi, S.S.; van Marle, M.J.E.; Hantson, S.; Forkel, M.; van der Werf, G.R. Assessing changes in global fire regimes. Fire Ecol. 2024, 20, 18. [Google Scholar] [CrossRef]
- Plarier, A. Agricultural fire or arson? Hist. Reflect. 2020, 46, 9–24. [Google Scholar] [CrossRef]
- Pereira, M.; Gonçalves, N.; Amraoui, M. The Influence of Wildfire Climate on Wildfire Incidence: The Case of Portugal. Fire 2024, 7, 234. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.; Heilman, W. Wildland fire emissions, Carbon, and climate: Wildfire–climate interactions. For. Ecol. Manag. 2014, 317, 80–96. [Google Scholar] [CrossRef]
- van Wees, D.; van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T. Global biomass burning fuel consumption and emissions at 500m spatial resolution based on the global fire emissions database (GFED). Geosci. Model Dev. 2022, 15, 8411–8437. [Google Scholar] [CrossRef]
- Rodrigues, M.; Camprubí, À.C.; Balaguer-Romano, R.; Megía, C.J.C.; Castañares, F.; Ruffault, J.; Fernandes, P.M.; de Dios, V.R. Drivers and implications of the extreme 2022 wildfire season in Southwest Europe. Sci. Total Environ. 2023, 859, 160320. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, F.; Lin, Z.; Harrison, S.P.; Chen, Y.; Kug, J.S. Climate influence on the 2019 fires in Amazonia. Sci. Total Environ. 2021, 794, 148718. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F.; Almeida, M.; Ribeiro, C.; Bradstock, R.A.; Sharples, J.J. Experiments on the influence of spot fire and topography interaction on fire rate of spread. PLoS ONE 2021, 16, e0245132. [Google Scholar] [CrossRef]
- Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and Machine Learning Approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Balch, J.K.; St. Denis, L.A.; Mahood, A.L.; Magi, B.I.; Shuman, J.K.; Brando, P.M.; Forkel, M. Warming weakens the night-time barrier to global fire. Nature 2022, 602, 442–448. [Google Scholar] [CrossRef]
- Tory, K.J.; Cruz, M.G.; Matthews, S.; Kilinc, M.; McCaw, W.L. On the sensitivity of fire-weather climate projections to empirical fire models. Agric. For. Meteorol. 2024, 348, 109928. [Google Scholar] [CrossRef]
- Quan, X.; Wang, W.; Xie, Q.; He, B.; de Dios, V.R.; Yebra, M.; Jiao, M.; Chen, R. Improving wildfire occurrence modelling by integrating time-series features of weather and fuel moisture content. Environ. Model. Softw. 2023, 170, 105840. [Google Scholar] [CrossRef]
- Makowski, D. Simple random forest classification algorithms for predicting occurrences and sizes of wildfires. Extremes 2022, 26, 331–338. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhang, C.; Zhang, Y.; Zhang, L. Improving wildfire danger assessment using time series features of weather and fuel in the Great Xing’an Mountain Region, China. Forests 2023, 14, 986. [Google Scholar] [CrossRef]
- Ismail, F.N.; Noor, A.M.; Tan, W.L.; Hassan, R.; Ahmad, S.A. An assessment of existing wildfire danger indices in comparison to one-class machine learning models. Nat. Hazards 2024. Preprint. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, X.; Li, Y. Time Series Prediction of Wildfires Using LSTM Networks in China. Atmos. Environ. 2023, 278, 119466. [Google Scholar]
- Zhu, Q.; Riley, W.J.; Lin, Y.; Chen, Y.; Jones, A.D.; Neale, R.B. Building a machine learning surrogate model for wildfire activities within a global earth system model. Geosci. Model Dev. 2022, 15, 1899–1911. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, Y.; Karniadakis, G.E. Data-Driven Surrogate Model with Latent Data Assimilation: Application to Wildfire Forecasting. J. Comput. Phys. 2022, 464, 111302. [Google Scholar] [CrossRef]
- Li, F.; van Wees, D.; Luo, Y.; Yue, C.; Ward, D.S.; Randerson, J.T. Attentionfire_v1.0: Interpretable machine learning fire model for burned-area predictions over Tropics. Geosci. Model Dev. 2023, 16, 869–884. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, L.; Fang, X.; Zhou, X.; Li, Y.; Xu, Y. Global wildfire danger predictions based on deep learning taking into account static and dynamic variables. Forests 2024, 15, 216. [Google Scholar] [CrossRef]
- Bhowmik, R.T.; Jung, Y.S.; Aguilera, J.A.; Prunicki, M.; Nadeau, K. A multi-modal wildfire prediction and early-warning system based on A Novel Machine Learning Framework. J. Environ. Manag. 2023, 341, 117908. [Google Scholar] [CrossRef]
- Miao, X.; Li, J.; Mu, Y.; He, C.; Ma, Y.; Chen, J.; Wei, W.; Gao, D. Time series forest fire prediction based on improved transformer. Forests 2023, 14, 1596. [Google Scholar] [CrossRef]
- Kang, Y.; Jang, E.; Im, J.; Kwon, C.; Kim, S. Developing a new hourly forest fire risk index based on Catboost in South Korea. Appl. Sci. 2020, 10, 8213. [Google Scholar] [CrossRef]
- Phelps, N.; Woolford, D.G. Guidelines for effective evaluation and comparison of wildland fire occurrence prediction models. Int. J. Wildland Fire 2021, 30, 225. [Google Scholar] [CrossRef]
- Wilson, R.; Wickramasuriya, R.; Marchiori, D. An empirical modelling and simulation framework for fire events initiated by vegetation and electricity network interactions. Fire 2023, 6, 61. [Google Scholar] [CrossRef]
- Sharma, S.K.; Aryal, J.; Rajabifard, A. Remote Sensing and meteorological data fusion in predicting bushfire severity: A case study from Victoria, Australia. Remote Sens. 2022, 14, 1645. [Google Scholar] [CrossRef]
- McElhinny, M.; Jain, P.; Wang, X.; Flannigan, M.D. A high-resolution reanalysis of global fire weather from 1979 to 2018—overwintering the drought code. Earth Syst. Sci. Data 2020, 12, 1823–1833. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Bemmerzouk, A.M.; Mitsopoulos, I.D. Evaluation of the Canadian Fire Weather Index system in an Eastern Mediterranean environment. Meteorol. Appl. 2011, 18, 83–93. [Google Scholar] [CrossRef]
- Ullah, M.R.; Liu, X.D.; Al-Amin, M. Spatial-temporal distribution of forest fires and Fire Weather Index calculation from 2000 to 2009 in China. J. For. Sci. 2013, 59, 279–287. [Google Scholar] [CrossRef]
- Walding, N.G.; Williams, H.T.P.; McGarvie, S.; Belcher, C.M. A comparison of the US National Fire Danger Rating System (NFDRS) with recorded fire occurrence and final fire size. Int. J. Wildland Fire 2018, 27, 99–113. [Google Scholar] [CrossRef]
- Balashov, I.V.; Loupian, E.A.; Bartalev, S.A.; Burtsev, M.A.; Mazurov, A.A. ISDM-ROSLESKHOZ operation and evolution experience. IOP Conf. Ser. Earth Environ. Sci. 2021, 806, 012007. [Google Scholar] [CrossRef]
- Zhou, T.; Ding, L.; Ji, J.; Yu, L.; Wang, Z. Combined estimation of fire perimeters and fuel adjustment factors in FARSITE for forecasting wildland fire propagation. Fire Saf. J. 2020, 116, 103167. [Google Scholar] [CrossRef]
- Zhou, T.; Ding, L.; Ji, J.; Li, L.; Huang, W. Ensemble Transform Kalman Filter (ETKF) for large-scale wildland fire spread simulation using FARSITE tool and state estimation method. Fire Saf. J. 2019, 105, 95–106. [Google Scholar] [CrossRef]
- Martins, L.; Almeida, R.V.; Maia, A.; Vieira, P. Analysing Fire Propagation Models: A Case Study on FARSITE for Prolonged Wildfires. Fire 2025, 8, 166. [Google Scholar] [CrossRef]
- Achour, H.; Toujani, A.; Trabelsi, H.; Jaouadi, W. Evaluation and comparison of Sentinel-2 MSI, Landsat 8 OLI, and EFFIS data for forest fires mapping: Illustrations from the summer 2017 fires in Tunisia. Geocarto Int. 2021, 37, 7021–7040. [Google Scholar] [CrossRef]
- Chen, Y.; van der Werf, G.R.; Giglio, L.; Randerson, J.T. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth Syst. Sci. Data 2023, 15, 5227–5259. [Google Scholar] [CrossRef]
- Nur, A.; Smith, J.; Lee, H.; Kumar, P. Spatial prediction of wildfire susceptibility using hybrid machine learning models based on support vector regression in Sydney, Australia. Remote Sens. 2023, 15, 760. [Google Scholar] [CrossRef]
- McNorton, J.R.; Johnston, J.; Cruz, M.G.; Brown, T.J.; Jiménez, E.; Tansey, K.; Wooster, M.J. A global probability-of-fire (POF) forecast. Geophys. Res. Lett. 2024, 51, e2023GL107929. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Liu, Y.; Chen, Z. Real-time detection of wildfire risk caused by powerline vegetation faults using advanced machine learning techniques. Adv. Eng. Inform. 2020, 44, 101070. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B. Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. Sci. Total Environ. 2023, 879, 163004. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Lim, S. Gene expression programming and machine learning methods for bushfire susceptibility mapping in New South Wales, Australia. Nat. Hazards 2021. preprint. [Google Scholar] [CrossRef]
- Sankaran, K.S.; Lim, S.-J.; Bhaskar, S.C. An automated prediction of remote sensing data of Queensland-Australia for flood and wildfire susceptibility using Bissoa-DBMLA scheme. Acta Geophys. 2022, 70, 3005–3021. [Google Scholar] [CrossRef]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S.; Sims, N.C.; Bannister, A.J.; Hollis, J.J.; Hurley, R.J. Anatomy of a Catastrophic Wildfire: The Black Saturday Kilmore East Fire in Victoria, Australia. For. Ecol. Manag. 2012, 284, 269–285. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Atkins, J.W.; Fahey, R.T.; Hardiman, B.S.; Gough, C.M. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 2018, 123, 1387–1405. [Google Scholar] [CrossRef]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef]
- Schafer, J.L.; Graham, J.W. Missing data: Our view of the state of the art. Psychol. Methods 2002, 7, 147–177. [Google Scholar] [CrossRef]
- Bustillo Sánchez, M.; Ibañez, C.; Cisneros, A.; Bazán, A.; Delgado, S. Spatial assessment of wildfires susceptibility in Santa Cruz (Bolivia) using random forest. Geosciences 2021, 11, 224. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Zhang, Y.; Chen, M.; Wang, H.; Liu, Y. Machine learning for predicting forest fire occurrence in Changsha: An innovative investigation into the introduction of a forest fuel factor. Remote Sens. 2023, 15, 4208. [Google Scholar] [CrossRef]
- Dong, H.; Silva, C.A.; Morais, M.; Camacho, P.; Fraga, H.; Oliveira, J.T. Wildfire prediction model based on spatial and temporal characteristics: A case study of a wildfire in Portugal’s Montesinho Natural Park. Sustainability 2022, 14, 10107. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Li, X.; Wang, T.; Chen, Y.; Gao, J.; Wang, Y. Risk factors and prediction of the probability of wildfire occurrence in the China–Mongolia–Russia cross-border area. Remote Sens. 2023, 15, 42. [Google Scholar] [CrossRef]
- Rubí, J.N.; Gondim, P.R. A performance comparison of machine learning models for wildfire occurrence risk prediction in the Brazilian federal district region. Environ. Syst. Decis. 2024, 44, 351–368. [Google Scholar] [CrossRef]
- Haydar, M.; Islam, M.N.; Rahman, M.T.; Hasan, M.K.; Chowdhury, M.A.; Hossain, M.S. Data driven forest fire susceptibility mapping in Bangladesh. Ecol. Indic. 2024, 166, 112264. [Google Scholar] [CrossRef]
- Agrawal, N.; Nelson, P.V.; Low, R.D. A Novel Approach for Predicting Large Wildfires Using Machine Learning towards Environmental Justice via Environmental Remote Sensing and Atmospheric Reanalysis Data across the United States. Remote Sens. 2023, 15, 5501. [Google Scholar] [CrossRef]
- Tonbul, H.; Yilmaz, E.O.; Kavzoglu, T. Comparative analysis of Deep Learning and machine learning models for burned area estimation using Sentinel-2 image: A case study in Muğla-Bodrum, Turkey. In Proceedings of the 2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST), Istanbul, Turkey, 7–9 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Shmuel, A.; Heifetz, E. Global wildfire susceptibility mapping based on machine learning models. Forests 2022, 13, 1050. [Google Scholar] [CrossRef]
- Janizadeh, S.; Tran, T.T.K.; Bateni, S.M.; Jun, C.; Kim, D.; Trauernicht, C.; Heggy, E. Advancing the LIGHTGBM approach with three novel nature-inspired optimizers for predicting wildfire susceptibility in Kaua’i and Moloka’i Islands, Hawaii. Expert Syst. Appl. 2024, 258, 124963. [Google Scholar] [CrossRef]
- Sri Sowmya, V.; Sasikala, D.; Theetchenya, S. A comparative exploration of time series models for Wild fire prediction. In Proceedings of the 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 11–12 January 2024; Volume 34, pp. 1–5. [Google Scholar] [CrossRef]
- Aldiansyah, S.; Madani, I. Spatial Model of Wildfire Susceptibility Using Machine Learning Approaches on Rawa Aopa Watumohai National Park, Indonesia. GeoScape 2024, 18, 1–20. [Google Scholar] [CrossRef]
- Trucchia, A.; Mari, G.; Carrion, D.; Batlles, F.J. Machine-Learning Applications in Geosciences: Comparison of Different Algorithms and Vegetation Classes’ Importance Ranking in Wildfire Susceptibility. Geosciences 2022, 12, 424. [Google Scholar] [CrossRef]
- Shahzad, F.; Abbas, Q.; Iqbal, M.F.; Shahzad, M.I. Comparing Machine Learning Algorithms to Predict Vegetation Fire Detections in Pakistan. Fire Ecol. 2024, 20, 1. [Google Scholar] [CrossRef]
- Ali, S.D.; Ridwan, I.; Septiana, M.; Fithria, A.; Rezekiah, A.A.; Rahmadi, A.; Asyari, M.; Rahman, H.; Syafarina, G.A. GeoAI for Disaster Mitigation: Fire Severity Prediction Models Using Sentinel-2 and ANN Regression. In Proceedings of the 2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia, 24–25 November 2022; Volume 43, pp. 1–7. [Google Scholar] [CrossRef]
- Sawetsuthipan, T.; Wongchaisuwat, P. Forecasting burned areas of wildfires: A case study of Mae Hong Son Province in Thailand. In Proceedings of the 2023 4th International Conference on Computers and Artificial Intelligence Technology (CAIT), Macau, Macao, 13–15 December 2023; Volume 9, pp. 52–56. [Google Scholar] [CrossRef]
- Qin, L.; Shao, W.; Du, G.; Mou, J.; Bi, R. Predictive modeling of wildfires in the United States. In Proceedings of the 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 28–29 January 2021; pp. 562–567. [Google Scholar] [CrossRef]
- Gao, B.; Shan, Y.; Liu, X.; Yin, S.; Yu, B.; Cui, C.; Cao, L. Prediction and driving factors of forest fire occurrence in Jilin province, China. J. For. Res. 2023, 35, 1. [Google Scholar] [CrossRef]
- Castrejon, D.J.; Wang, C.; Osmak, D.; Kukadiya, B.; Liu, L.; Giraldo, M.; Jiang, X. Machine learning-based California Wildfire Risk Prediction and Visualization. In Proceedings of the 2023 International Conference on Machine Learning and Applications (ICMLA), Jacksonville, FL, USA, 15–17 December 2023; pp. 1212–1217. [Google Scholar] [CrossRef]
- Zhao, L.; Ge, Y.; Guo, S.; Li, H.; Li, X.; Sun, L.; Chen, J. Forest fire susceptibility mapping based on precipitation-constrained cumulative dryness status information in southeast China: A novel machine learning modeling approach. For. Ecol. Manag. 2024, 558, 121771. [Google Scholar] [CrossRef]
- Gupta, Y.; Goyal, N.; Varghese, V.J.; Goyal, P. Utilizing MODIS fire mask for predicting forest fires using Landsat-9/8 and meteorological data. In Proceedings of the 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA), Thessaloniki, Greece, 9–13 October 2023; Volume 27, pp. 1–10. [Google Scholar] [CrossRef]
- Haji Zahari, M.I.H.B.P.; Karri, R.R.; Isa, M.H.; Zahran, E.S.M.M.; Nagendra, S.S. Soft computing techniques for prediction of forest fire occurrence in Brunei Darussalam. AIP Conf. Proc. 2023, 2643, 030023. [Google Scholar] [CrossRef]
- Laube, R.; Hamilton, H.J. Wildfire occurrence prediction using time series classification: A comparative study. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 4178–4182. [Google Scholar] [CrossRef]
- Pham, K.; Nguyen, T.; Tran, Q.; Le, H.; Vu, D. California wildfire prediction using Machine Learning. In Proceedings of the 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Nassau, Bahamas, 12–14 December 2022; Volume 16, pp. 525–530. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Davis, K.T.; Dobrowski, S.Z.; Higuera, P.E.; Holden, Z.A.; Veblen, T.T.; Rother, M.T.; Parks, S.A.; Sala, A.; Maneta, M.P. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 6193–6198. [Google Scholar] [CrossRef]
- Partheepan, S.; Sanati, F.; Hassan, J. Bushfire severity modelling and predicting future trends in Australia using remote sensing and machine learning. Environ. Model. Softw. 2025, 188, 106377. [Google Scholar] [CrossRef]
- Yazici, K.; Taskin, A. A Comparative Bayesian Optimization-Based Machine Learning and Artificial Neural Networks Approach for Burned Area Prediction in Forest Fires: An Application in Turkey. Nat. Hazards 2023, 119, 1883–1912. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, P.; Yadav, R.; Rani, M. A Comparison of Machine Learning Models for Predicting Rainfall in Urban Metropolitan Cities. Sustainability 2023, 15, 13724. [Google Scholar] [CrossRef]
- Islam, M.R.; Najafi, M.R. Machine Learning-Based Regional Flood Frequency Framework for Climate Resilient Infrastructure. J. Hydrol. 2025, 661, 133703. [Google Scholar] [CrossRef]
Type | Indicator | Statistical Measures | Time Period | Frequency | Data Source |
---|---|---|---|---|---|
Climate Data | Precipitation [mm/day] Relative Humidity [%] Soil Water Content [m3] Solar Radiation [MJ/day] Temperature [°C] Wind Speed [m/s] | Minimum Maximum Mean Variance | 1 January 2005 to 23 January 2021 | Daily | ERA5 Hourly Reanalysis |
Wildfire Data | Estimated FA | Sum | 4 January 2005 to 28 January 2021 | Daily | MODIS MCD14DL |
Mean Estimated FBT | Mean | ||||
Mean Estimated FRP | Mean | ||||
Confidence | Std. Deviation, Variance | ||||
Pixel Count | Count |
Best Model | Wildfire Target | RMSE | R2 Score |
---|---|---|---|
Lasso Regression | Estimated FA (km2) | 0.021053 | 0.084497 |
Mean Estimated FBT (K) | 0.064149 | 0.284465 | |
Mean Estimated FRP (MW) | 0.017694 | 0.021653 |
Region | RMSE | R2 | Environmental Interpretation |
---|---|---|---|
NSW | 0.00394 | 0.05249 | Captures sparse fuel and topographic variability via regularization |
WA | 0.03549 | 0.15189 | Handles sparse vegetation and gentle terrain transitions |
SA | 0.00773 | 0.12744 | Local microclimate and canopy-driven fire behavior captured by nearest neighbors |
TA | 0.00476 | 0.14280 | Effective for fine-scale fire behavior in forested and mountainous areas |
VI | 0.00596 | 0.20591 | Adapts well to complex terrain and urban–wildland interface dynamics |
QL | 0.01859 | 0.51979 | Captures rich non-linear relations among climate, topography, and vegetation |
NT | 0.02454 | 0.20750 | Handles high-variance seasonal regimes and heterogeneous vegetation transitions |
Region | RMSE | R2 | Environmental Interpretation |
---|---|---|---|
NSW | 0.0747 | 0.41712 | Fuel heterogeneity, fragmented landscapes |
WA | 0.06172 | 0.32574 | High solar radiation, wind variability |
SA | 0.09551 | 0.34424 | Diurnal cycles, temperature spikes |
TA | 0.10238 | 0.14451 | Moist forest cover, thermal signal disruption |
VI | 0.08127 | 0.24826 | Complex topography, patchy cloud cover |
QL | 0.05747 | 0.29785 | Tropical canopy, humidity, storms |
NT | 0.06007 | 0.24618 | Monsoon seasonality, ignition from lightning, high variance |
Region | RMSE | R2 | Environmental Interpretation |
---|---|---|---|
NSW | 0.02325 | 0.102909 | Coastal winds and terrain variations introduce noise, but model accuracy remains strong. High seasonal activity aids feature learning. |
WA | 0.02295 | 0.122765 | Effective despite sparse vegetation and arid conditions. Performance aided by fewer clouds and clearer satellite readings. |
SA | 0.03525 | 0.00668 | Complex terrain and patchy vegetation reduce variance explanation. Fires are wind-driven and sporadic, challenging for linear models. |
TA | 0.04813 | 0.01558 | Cool, moist climate and fragmented vegetation complicate FRP prediction. Low solar intensity may reduce satellite fire detection fidelity. |
VI | 0.051757 | 0.024745 | Complex terrain and volatile weather (e.g., wind shifts, dry lightning) introduce non-linear fire dynamics. Lasso captures baseline trends but misses finer interactions. |
QL | 0.01347 | 0.13965 | High accuracy due to relatively stable vegetation types and strong thermal signatures from high biomass combustion. Warm, humid climate supports more predictable FRP patterns. |
NT | 0.025449 | 0.065457 | Monsoonal wet–dry seasonality creates sharp contrasts in fire potential. Sparse features and vast open rangeland reduce model effectiveness for FRP variation. |
Parameter | No Danger | Low | Moderate | High | Extreme |
---|---|---|---|---|---|
FA (km2) | <0.1 | 0.1–0.5 | 0.5–2 | 2–10 | >10 |
FBT (K) | <310 | 310–330 | 330–345 | 345–365 | >365 |
FRP (MW) | <30 | 30–100 | 100–300 | 300–1500 | >1500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abohaia, Z.; Elkhouly, A.; Barachi, M.E.; Al-Khatib, O. Regional Prediction of Fire Characteristics Using Machine Learning in Australia. Fire 2025, 8, 330. https://doi.org/10.3390/fire8080330
Abohaia Z, Elkhouly A, Barachi ME, Al-Khatib O. Regional Prediction of Fire Characteristics Using Machine Learning in Australia. Fire. 2025; 8(8):330. https://doi.org/10.3390/fire8080330
Chicago/Turabian StyleAbohaia, Zina, Abeer Elkhouly, May El Barachi, and Obada Al-Khatib. 2025. "Regional Prediction of Fire Characteristics Using Machine Learning in Australia" Fire 8, no. 8: 330. https://doi.org/10.3390/fire8080330
APA StyleAbohaia, Z., Elkhouly, A., Barachi, M. E., & Al-Khatib, O. (2025). Regional Prediction of Fire Characteristics Using Machine Learning in Australia. Fire, 8(8), 330. https://doi.org/10.3390/fire8080330