A Semi-Supervised Wildfire Image Segmentation Network with Multi-Scale Structural Fusion and Pixel-Level Contrastive Consistency
Abstract
1. Introduction
- A Lagrange Interpolation Module (LIM) is designed to extract structured information from the same spatial position across feature maps at different scales. This enables effective multi-scale fusion during decoding, thereby improving the model’s ability to perceive fire boundaries, textures, and fine structural details.
- A Pixel Contrast Consistency (PCC) mechanism is proposed to enforce pixel-level consistency between the labeled and unlabeled branches, allowing the model to maintain high segmentation accuracy in a semi-supervised setting and reduce the dependency on large-scale labeled datasets.
- Experiments on the Flame and D-Fire datasets show that our method achieves up to 93.7% mIoU and consistently outperforms existing approaches under both full and limited supervision.
2. Related Work
2.1. Semantic Segmentation
2.2. Semi-Supervised Semantic Segmentation
2.3. Semantic Segmentation of Forest Fire Images
3. Materials and Methods
3.1. Dataset
3.2. Methodology
3.2.1. Data Augmentation
3.2.2. Encoding Stages
3.2.3. Lagrange Interpolation Module
3.2.4. Pixel Contrast Consistency
4. Experiments and Results
4.1. Experiment Setup
4.2. Comparison with Other Methods
4.3. Ablation Experiments
4.4. Computational Complexity and Scalability Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Li, H.; Xiao, Q.; Yu, P.; Ding, Z.; Wang, Z.; Xie, S. Fighting against Forest Fire: A Lightweight Real-Time Detection Approach for Forest Fire Based on Synthetic Images. Expert Syst. Appl. 2025, 262, 125620. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Khan, Z.A.; Huang, A.; Sang, J. Multi-Level Feature Fusion Networks for Smoke Recognition in Remote Sensing Imagery. Neural Netw. 2025, 184, 107112. [Google Scholar] [CrossRef]
- Dampage, U.; Bandaranayake, L.; Wanasinghe, R.; Kottahachchi, K.; Jayasanka, B. Forest Fire Detection System Using Wireless Sensor Networks and Machine Learning. Sci. Rep. 2022, 12, 46. [Google Scholar] [CrossRef]
- Pincott, J.; Tien, P.W.; Wei, S.; Calautit, J.K. Indoor Fire Detection Utilizing Computer Vision-Based Strategies. J. Build. Eng. 2022, 61, 105154. [Google Scholar] [CrossRef]
- Sousa, M.J.; Moutinho, A.; Almeida, M. Wildfire Detection Using Transfer Learning on Augmented Datasets. Expert Syst. Appl. 2020, 142, 112975. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.; Ding, Y.; Wan, T.; Qi, B.; Pang, Y. FBC-ANet: A Semantic Segmentation Model for UAV Forest Fire Images Combining Boundary Enhancement and Context Awareness. Drones 2023, 7, 456. [Google Scholar] [CrossRef]
- Singh, H.; Ang, L.-M.; Lewis, T.; Paudyal, D.; Acuna, M.; Srivastava, P.K.; Srivastava, S.K. Trending and Emerging Prospects of Physics-Based and ML-Based Wildfire Spread Models: A Comprehensive Review. J. Res. 2024, 35, 135. [Google Scholar] [CrossRef]
- Ghali, R.; Akhloufi, M.A.; Mseddi, W.S. Deep Learning and Transformer Approaches for UAV-Based Wildfire Detection and Segmentation. Sensors 2022, 22, 1977. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Z.; Xu, B.; Niu, Y. Multi-Scale Semantic Segmentation for Fire Smoke Image Based on Global Information and U-Net. Electronics 2022, 11, 2718. [Google Scholar] [CrossRef]
- Li, K.; Yuan, F.; Wang, C. An Effective Multi-Scale Interactive Fusion Network with Hybrid Transformer and CNN for Smoke Image Segmentation. Pattern Recognit. 2025, 159, 111177. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.; Ding, Y.; Bu, X. MS-FRCNN: A Multi-Scale Faster RCNN Model for Small Target Forest Fire Detection. Forests 2023, 14, 616. [Google Scholar] [CrossRef]
- Van Quyen, T.; Kim, M.Y. Feature Pyramid Network with Multi-Scale Prediction Fusion for Real-Time Semantic Segmentation. Neurocomputing 2023, 519, 104–113. [Google Scholar] [CrossRef]
- Hong, Y.; Pan, H.; Sun, W.; Wang, Y.; Bian, N.; Gao, H. Dual Spatial-Temporal Feature Pyramid With Decoupled Temporal Mining for Video Semantic Segmentation. IEEE Trans. Intell. Veh. 2024, 1–12. [Google Scholar] [CrossRef]
- Ma, Y.; Lan, X. Semantic Segmentation Using Cross-Stage Feature Reweighting and Efficient Self-Attention. Image Vis. Comput. 2024, 145, 104996. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Wang, J.; Wang, Z.; Wang, F.; Wang, J.; Zhang, W. Dynamic Token-Pass Transformers for Semantic Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 1827–1836. [Google Scholar]
- Liu, J.; Zhang, F.; Zhou, Z.; Wang, J. BFMNet: Bilateral Feature Fusion Network with Multi-Scale Context Aggregation for Real-Time Semantic Segmentation. Neurocomputing 2023, 521, 27–40. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Li, R.; Duan, C.; Meng, X.; Atkinson, P.M. Scale-Aware Neural Network for Semantic Segmentation of Multi-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 5015. [Google Scholar] [CrossRef]
- Koottungal, A.; Pandey, S.; Nambiar, A. Semi-Supervised Classification and Segmentation of Forest Fire Using Autoencoders. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Kumamoto, Japan, 21–23 August 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 27–39. [Google Scholar]
- Wang, J.; Wang, Y.; Liu, L.; Yin, H.; Ye, N.; Xu, C. Weakly Supervised Forest Fire Segmentation in UAV Imagery Based on Foreground-Aware Pooling and Context-Aware Loss. Remote Sens. 2023, 15, 3606. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, H.; He, Y.; Sun, W.; Mao, Z.-H.; Mian, A. Fully Convolutional Network-Based Self-Supervised Learning for Semantic Segmentation. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 132–142. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Zhang, X.; Emam, M.; Jing, W. Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning. Electronics 2023, 12, 348. [Google Scholar] [CrossRef]
- Ma, J.; Wang, C.; Liu, Y.; Lin, L.; Li, G. Enhanced Soft Label for Semi-Supervised Semantic Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 1185–1195. [Google Scholar]
- Pan, J.; Ou, X.; Xu, L. A Collaborative Region Detection and Grading Framework for Forest Fire Smoke Using Weakly Supervised Fine Segmentation and Lightweight Faster-RCNN. Forests 2021, 12, 768. [Google Scholar] [CrossRef]
- Cheng, J.; Deng, C.; Su, Y.; An, Z.; Wang, Q. Methods and Datasets on Semantic Segmentation for Unmanned Aerial Vehicle Remote Sensing Images: A Review. ISPRS J. Photogramm. Remote Sens. 2024, 211, 1–34. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings, Part III 18, Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Zhao, D. A Survey on Continual Semantic Segmentation: Theory, Challenge, Method and Application. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10891–10910. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Tian, Z.; Jiang, L.; Liu, S.; Zhao, H.; Wang, L.; Jia, J. Semi-Supervised Semantic Segmentation with Directional Context-Aware Consistency. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1205–1214. [Google Scholar]
- Kwon, D.; Kwak, S. Semi-Supervised Semantic Segmentation with Error Localization Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 9957–9967. [Google Scholar]
- Yang, L.; Qi, L.; Feng, L.; Zhang, W.; Shi, Y. Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7236–7246. [Google Scholar]
- Bhargavi, K.; Jyothi, S. A Survey on Threshold Based Segmentation Technique in Image Processing. Int. J. Innov. Res. Dev. 2014, 3, 234–239. [Google Scholar]
- Qiu, T.; Yan, Y.; Lu, G. An Autoadaptive Edge-Detection Algorithm for Flame and Fire Image Processing. IEEE Trans. Instrum. Meas. 2011, 61, 1486–1493. [Google Scholar] [CrossRef]
- Yu, Q.; Clausi, D.A. IRGS: Image Segmentation Using Edge Penalties and Region Growing. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 2126–2139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Peng, T.; Lu, Z. Comparative Research on Forest Fire Image Segmentation Algorithms Based on Fully Convolutional Neural Networks. Forests 2022, 13, 1133. [Google Scholar] [CrossRef]
- Jonnalagadda, A.V.; Hashim, H.A. SegNet: A Segmented Deep Learning Based Convolutional Neural Network Approach for Drones Wildfire Detection. Remote Sens. Appl. 2024, 34, 101181. [Google Scholar] [CrossRef]
- Shahid, M.; Chen, S.-F.; Hsu, Y.-L.; Chen, Y.-Y.; Chen, Y.-L.; Hua, K.-L. Forest Fire Segmentation via Temporal Transformer from Aerial Images. Forests 2023, 14, 563. [Google Scholar] [CrossRef]
- Yang, S.; Huang, Q.; Yu, M. Advancements in Remote Sensing for Active Fire Detection: A Review of Datasets and Methods. Sci. Total. Environ. 2024, 943, 173273. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Gao, P.; Zou, X.; Wang, W. Forest Fire Monitoring via Uncrewed Aerial Vehicle Image Processing Based on a Modified Machine Learning Algorithm. Front. Plant. Sci. 2022, 13, 954757. [Google Scholar] [CrossRef] [PubMed]
- Thach, N.N.; Ngo, D.B.-T.; Xuan-Canh, P.; Hong-Thi, N.; Thi, B.H.; Nhat-Duc, H.; Dieu, T.B. Spatial Pattern Assessment of Tropical Forest Fire Danger at Thuan Chau Area (Vietnam) Using GIS-Based Advanced Machine Learning Algorithms: A Comparative Study. Ecol. Inf. 2018, 46, 74–85. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-Metaheuristic Ensembles for Spatial Assessment of Forest Fire Susceptibility. J. Environ. Manag. 2020, 260, 109867. [Google Scholar] [CrossRef]
- Alkhatib, R.; Sahwan, W.; Alkhatieb, A.; Schütt, B. A Brief Review of Machine Learning Algorithms in Forest Fires Science. Appl. Sci. 2023, 13, 8275. [Google Scholar] [CrossRef]
- Ghali, R.; Akhloufi, M.A.; Jmal, M.; Souidene Mseddi, W.; Attia, R. Wildfire Segmentation Using Deep Vision Transformers. Remote Sens. 2021, 13, 3527. [Google Scholar] [CrossRef]
- Garcia, T.; Ribeiro, R.; Bernardino, A. Wildfire Aerial Thermal Image Segmentation Using Unsupervised Methods: A Multilayer Level Set Approach. Int. J. Wildland Fire 2023, 32, 435–447. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, H.G.; Suhr, J.K. Semantic Segmentation Network Slimming and Edge Deployment for Real-Time Forest Fire or Flood Monitoring Systems Using Unmanned Aerial Vehicles. Electronics 2023, 12, 4795. [Google Scholar] [CrossRef]
- Feng, H.; Qiu, J.; Wen, L.; Zhang, J.; Yang, J.; Lyu, Z.; Liu, T.; Fang, K. U3UNet: An Accurate and Reliable Segmentation Model for Forest Fire Monitoring Based on UAV Vision. Neural Netw. 2025, 185, 107207. [Google Scholar] [CrossRef]
- Saxena, V.; Jain, Y.; Mittal, S. A Deep Learning Based Approach for Semantic Segmentation of Small Fires from UAV Imagery. Remote Sens. Lett. 2025, 16, 277–289. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, M.; Wang, H.; Ding, X.; Li, S.; Gong, W. SAMFA: A Flame Segmentation Algorithm for Infrared and Visible Aerial Images in the Same Scene. Drones 2025, 9, 217. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, C.; Yin, J.; Tian, Y.; Cui, W. A Semantic Segmentation Method for Early Forest Fire Smoke Based on Concentration Weighting. Electronics 2021, 10, 2675. [Google Scholar] [CrossRef]
- Niu, K.; Wang, C.; Xu, J.; Yang, C.; Zhou, X.; Yang, X. An Improved YOLOv5s-Seg Detection and Segmentation Model for the Accurate Identification of Forest Fires Based on UAV Infrared Image. Remote Sens. 2023, 15, 4694. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Z.; Zhang, H.; Li, C.-L.; Bian, X.; Huang, J.-B.; Pfister, T. Pseudoseg: Designing Pseudo Labels for Semantic Segmentation. arXiv 2020, arXiv:2010.09713. [Google Scholar]
- Mendel, R.; De Souza, L.A.; Rauber, D.; Papa, J.P.; Palm, C. Semi-Supervised Segmentation Based on Error-Correcting Supervision. In Proceedings, Part XXIX 16, Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 141–157. [Google Scholar]
- Yuan, J.; Ge, J.; Wang, Z.; Liu, Y. Semi-Supervised Semantic Segmentation with Mutual Knowledge Distillation. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 5436–5444. [Google Scholar]
- Fan, S.; Zhu, F.; Feng, Z.; Lv, Y.; Song, M.; Wang, F.-Y. Conservative-Progressive Collaborative Learning for Semi-Supervised Semantic Segmentation. IEEE Trans. Image Process. 2023, 32, 6183–6194. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Xie, S.; Lin, L.; Tong, R.; Chen, Y.-W.; Li, Y.; Wang, H.; Huang, Y.; Zheng, Y. Semicvt: Semi-Supervised Convolutional Vision Transformer for Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 11340–11349. [Google Scholar]
- Hu, X.; Jiang, L.; Schiele, B. Training Vision Transformers for Semi-Supervised Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 4007–4017. [Google Scholar]
- Wang, H.; Zhang, Q.; Li, Y.; Li, X. Allspark: Reborn Labeled Features from Unlabeled in Transformer for Semi-Supervised Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 3627–3636. [Google Scholar]
Methods | Backbone | mIoU (%) | |||
---|---|---|---|---|---|
1/8 | 1/4 | 1/2 | Full | ||
ECS [51] | ResNet | 72.4 | 74.6 | 79.6 | 87.6 |
PseudoSeg [50] | ResNet | 71.9 | 73.2 | 77.7 | 86.3 |
DCC [28] | ResNet | 73.5 | 75.4 | 80.3 | 88.5 |
ELN [29] | ResNet | 72.6 | 73.3 | 79.4 | 87.4 |
MKD [52] | ResNet | 70.8 | 73.5 | 79.9 | 88.1 |
CPCL [53] | ResNet | 69.3 | 72.8 | 78.6 | 86.9 |
SemiCVT [54] | Transformer | 74.6 | 77.6 | 82.4 | 90.4 |
S4Former [55] | Transformer | 72.0 | 76.3 | 83.6 | 90.2 |
Allspark [56] | Transformer | 70.9 | 75.8 | 82.7 | 90.0 |
ESL [22] | ResNet | 70.2 | 73.1 | 80.4 | 87.8 |
UniMatch [30] | ResNet | 72.7 | 73.8 | 81.5 | 89.3 |
Ours | ResNet | 74.2 | 76.3 | 82.6 | 90.4 |
Ours | Transformer | 75.4 | 78.5 | 84.5 | 91.6 |
Methods | Backbone | mIoU (%) | |||
---|---|---|---|---|---|
1/8 | 1/4 | 1/2 | Full | ||
ECS [51] | ResNet | 75.9 | 76.4 | 81.4 | 89.4 |
PseudoSeg [50] | ResNet | 72.8 | 76.8 | 80.5 | 89.7 |
DCC [28] | ResNet | 75.4 | 77.5 | 82.3 | 90.6 |
ELN [29] | ResNet | 74.8 | 76.2 | 82.6 | 91.2 |
MKD [52] | ResNet | 73.6 | 75.3 | 83.7 | 91.9 |
CPCL [53] | ResNet | 72.4 | 74.8 | 80.1 | 90.2 |
SemiCVT [54] | Transformer | 77.3 | 80.2 | 85.4 | 92.4 |
S4Former [55] | Transformer | 76.6 | 80.4 | 85.8 | 92.7 |
Allspark [56] | Transformer | 75.9 | 78.7 | 83.6 | 91.9 |
ESL [22] | ResNet | 73.9 | 75.9 | 82.4 | 90.3 |
UniMatch [30] | ResNet | 75.4 | 76.8 | 84.3 | 91.5 |
Ours | ResNet | 77.6 | 79.5 | 85.8 | 92.8 |
Ours | Transformer | 79.8 | 82.5 | 86.7 | 93.7 |
Methods | Backbone | LIM | PPC | mIoU (%) | |
---|---|---|---|---|---|
Flame | D-Fire | ||||
1/8 | √ | 70.4 | 72.8 | ||
√ | √ | 72.2 | 75.7 | ||
√ | √ | 73.5 | 76.1 | ||
√ | √ | √ | 74.2 | 77.6 | |
1/4 | √ | 71.8 | 73.9 | ||
√ | √ | 73.6 | 77.7 | ||
√ | √ | 74.8 | 78.4 | ||
√ | √ | √ | 76.3 | 79.5 | |
1/2 | √ | 77.6 | 79.4 | ||
√ | √ | 79.9 | 83.5 | ||
√ | √ | 80.4 | 83.7 | ||
√ | √ | √ | 82.6 | 85.8 |
Method | mIoU (%) | |
---|---|---|
Flame | D-Fire | |
Baseline | 77.6 | 79.4 |
Baseline + CBAM | 79.4 | 83.4 |
Baseline + SE-Block | 78.5 | 82.9 |
Baseline + ECA-Block | 78.6 | 81.1 |
Baseline + LIM | 79.9 | 83.5 |
Method | Backbone | mIoU (%) | Params (M) | Training Time (s) |
---|---|---|---|---|
ECS [51] | ResNet | 79.6 | 38.8 | 341 |
PseudoSeg [50] | ResNet | 77.7 | 37.4 | 334 |
DCC [28] | ResNet | 80.3 | 40.3 | 354 |
ELN [29] | ResNet | 79.4 | 41.9 | 369 |
MKD [52] | ResNet | 79.9 | 39.5 | 376 |
CPCL [53] | ResNet | 78.6 | 42.2 | 392 |
SemiCVT [54] | Transformer | 82.4 | 53.5 | 513 |
S4Former [55] | Transformer | 83.6 | 55.8 | 502 |
Allspark [56] | Transformer | 82.7 | 54.0 | 493 |
ESL [22] | ResNet | 80.4 | 39.8 | 363 |
UniMatch [30] | ResNet | 81.5 | 45.5 | 409 |
Ours | ResNet | 82.6 | 37.9 | 338 |
Ours | Transformer | 84.5 | 53.7 | 485 |
Input Size | mIoU (%) | |||
---|---|---|---|---|
1/8 | 1/4 | 1/2 | Full | |
256 × 256 | 74.2 | 76.3 | 82.6 | 90.4 |
384 × 384 | 74.6 | 76.9 | 82.9 | 90.7 |
512 × 512 | 74.8 | 77.2 | 83.0 | 90.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wei, W.; Guo, J.; Lin, H.; Xu, Y. A Semi-Supervised Wildfire Image Segmentation Network with Multi-Scale Structural Fusion and Pixel-Level Contrastive Consistency. Fire 2025, 8, 313. https://doi.org/10.3390/fire8080313
Sun Y, Wei W, Guo J, Lin H, Xu Y. A Semi-Supervised Wildfire Image Segmentation Network with Multi-Scale Structural Fusion and Pixel-Level Contrastive Consistency. Fire. 2025; 8(8):313. https://doi.org/10.3390/fire8080313
Chicago/Turabian StyleSun, Yong, Wei Wei, Jia Guo, Haifeng Lin, and Yiqing Xu. 2025. "A Semi-Supervised Wildfire Image Segmentation Network with Multi-Scale Structural Fusion and Pixel-Level Contrastive Consistency" Fire 8, no. 8: 313. https://doi.org/10.3390/fire8080313
APA StyleSun, Y., Wei, W., Guo, J., Lin, H., & Xu, Y. (2025). A Semi-Supervised Wildfire Image Segmentation Network with Multi-Scale Structural Fusion and Pixel-Level Contrastive Consistency. Fire, 8(8), 313. https://doi.org/10.3390/fire8080313