Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America
Abstract
1. Introduction
2. Data and Methods
2.1. Climate Data
2.2. Satellite Based-Fires
2.3. Lightning Datasets
2.4. Soil Data and Evaporation
2.5. Climate Extremes and Statistical Analysis
3. Results and Discussion
3.1. Climate Extremes Indices: CDD, DD, and HW
3.2. Land Surface Characteristics: Soil Moisture (SM), Evaporation (Ea), and Fire Danger (PFI)
3.3. Fires and Lightning
3.4. Fire, Lightning, and Vegetation Cover
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Wang, L.; Xue, N.; Du, Z. Spatiotemporal Analysis of Active Fires in the Arctic Region during 2001–2019 and a Fire Risk Assessment Model. Fire 2021, 4, 57. [Google Scholar] [CrossRef]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef]
- Jain, P.; Castellanos-Acuña, D.; Coogan, S.; Abatzoglou, J.; Flannigan, M. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 2021, 12, 63–70. [Google Scholar] [CrossRef]
- Justino, F.; Bromwich, D.; Silva, A.; Schumacher, V.; Altoff, D.; Shang-Hang, W.; da Silva, A. Arctic Oscillation and Pacific-North American pattern dominated-modulation of fire danger and wildfire occurrence. npj Clim. Atmos. Sci. 2022, 5, 52. [Google Scholar] [CrossRef]
- Canadell, J.G.; Meyer, C.P.M.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 2021, 12, 6921. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Touge, Y. Characterization of global wildfire burned area spatiotemporal patterns and underlying climatic causes. Sci. Rep. 2022, 12, 644. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Li, L.Z.X.; Li, Y.; Huntingford, C.; Ciais, P.; Cescatti, A.; Janssens, I.A.; Peñuelas, J.; Buermann, W.; et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 2020, 6, eaax0255. [Google Scholar] [CrossRef]
- Sungmin, O.; Xinyuan, H.; Rene, O. Observational evidence of wildfire-promoting soil moisture anomalies. Sci. Rep. 2020, 10, 11008. [Google Scholar] [CrossRef] [PubMed]
- Vivoni, E.R.; Moreno, H.A.; Mascaro, G.; Rodriguez, J.C.; Watts, C.J.; Garatuza-Payan, J.; Scott, R.L. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett. 2008, 35, L22403. [Google Scholar] [CrossRef]
- Heim, R.J.; Heim, W.; Darman, G.F.; Heinken, T.; Smirenski, S.M.; Hölzel, N. Litter removal through fire—A key process for wetland vegetation and ecosystem dynamics. Sci. Total Environ. 2021, 755, 142659. [Google Scholar] [CrossRef] [PubMed]
- Collar, N.M.; Saxe, S.; Rust, A.J.; Hogue, T.S. A conus-scale study of wildfire and evapotranspiration: Spatial and temporal response and controlling factors. J. Hydrol. 2021, 603, 127162. [Google Scholar] [CrossRef]
- Justino, F.; Bromwich, D.H.; Wang, S.-H.; Altoff, D.; Schumacher, V.; Da Silva, A. Influence of local scale and oceanic teleconnections on regional fire danger and wildfire trends. Sci. Total Environ. 2023, 1, 163397. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 2017, 7, 529–534. [Google Scholar] [CrossRef]
- da Silva, A.S.; Justino, F.; Setzer, A.W.; Avila-Diaz, A. Vegetation fire activity and the Potential Fire Index (PFIv2) performance in the last two decades (2001–2016). Int. J. Climatol. 2021, 41, E78–E92. [Google Scholar] [CrossRef]
- Jian, M.; Jian, Y.; Zeng, H.; Cao, D.; Cui, X. Current status and prospects of plant flammability measurements. Fire 2024, 7, 266. [Google Scholar] [CrossRef]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A.; Balch, J.K.; Bradley, B.A. Controls on interannual variability in lightning-caused fire activity in the western, U.S. Environ. Res. Lett. 2016, 11, 045005. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The era5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An evaluation of era5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Lei, X.; Xu, W.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M.; et al. How well does the era5 reanalysis capture the extreme climate events over china? Part i: Extreme precipitation. Front. Environ. Sci. 2022, 10, 921658. [Google Scholar] [CrossRef]
- Xin, Y.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Yin, C. Evaluation of IMERG and ERA5 precipitation products over the Mongolian Plateau. Sci. Rep. 2022, 12, 21776. [Google Scholar] [CrossRef]
- Quagraine, K.; Klutse, N.A.B.; Nkrumah, F.; Adukpo, D.; Owusu, K. Changes in rainfall characteristics in Wenchi and Saltpond farming areas of Ghana. Int. J. Geosci. 2017, 8, 305–317. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Bromwich, D.H.; Wilson, A.B.; Justino, F.; Wang, S.H. Climate extremes across the north American arctic in modern reanalyses. J. Clim. 2021, 34, 2385–2410. [Google Scholar] [CrossRef]
- Justino, F.; De Mélo, A.; Setzer, A.; Sismanoglu, R.; Sediyama, G.; Ribeiro, G.; Machado, J.; Sterl, A. Greenhouse gas induced changes in the fire risk in Brazil in ECHAM5/MPI-OM coupled climate model. Clim. Change 2011, 106, 285–302. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Neves, A.K.; Pereira, J.M.; Silva, J.M.; Catarino, S.; Oliva, P.; Chuvieco, E.; Campagnolo, M.L. Active fire-based dating accuracy for landsat burned area maps is high in boreal and mediterranean biomes and low in grasslands and savannas. ISPRS J. Photogramm. Remote Sens. 2024, 209, 461–471. [Google Scholar] [CrossRef]
- Zhu, Y.; Rakov, V.; Tran, M.; Stock, M.; Heckman, S.; Liu, C.; Sloop, C.; Jordan, D.; Uman, M.; Caicedo, J.; et al. Evaluation of entln performance characteristics based on the ground-truth natural and rocket-triggered lightning data acquired in Florida: Evaluation of entln performance. J. Geophys. Res. Atmos. 2017, 122, 9858–9866. [Google Scholar] [CrossRef]
- Sonnenfeld, R.; Lapierre, J.; Contreras Vidal, L.; Zhu, Y.; Stock, M. Earth networks lightning network performance. Earth Space Sci. Open Arch. 2020, preprint. [Google Scholar] [CrossRef]
- Marchand, M.; Hilburn, K.; Miller, S.D. Geostationary lightning mapper and earth networks lightning detection over the contiguous united states and dependence on flash characteristics. J. Geophys. Res. Atmos. 2019, 124, 11552–11567. [Google Scholar] [CrossRef]
- Rodger, C.J.; Brundell, J.B.; Holzworth, R.H.; Lay, E.H. Growing detection efficiency of the world wide lightning location network. AIP Conf. Proc. 2009, 1118, 15–20. [Google Scholar] [CrossRef]
- Mezuman, K.; Price, C.; Galanti, E. On the spatial and temporal distribution of global thunderstorm cells. Environ. Res. Lett. 2014, 9, 124023. [Google Scholar] [CrossRef]
- Pérez-Invernón, F.J.; Huntrieser, H.; Soler, S.; Gordillo-Vázquez, F.J.; Pineda, N.; Navarro-González, J.; Reglero, V.; Montanyà, J.; van der Velde, O.; Koutsias, N. Lightning-ignited wildfires and long-continuing-current lightning in the mediterranean basin: Preferential meteorological conditions. Atmos. Chem. Phys. Discuss. 2021, 2021, 17529–17557. [Google Scholar] [CrossRef]
- Lapierre, J.L.; Laughner, J.L.; Geddes, J.A.; Koshak, W.J.; Cohen, R.C.; Pusede, S.E. Observing us regional variability in lightning no2 production rates. J. Geophys. Res. Atmos. 2020, 125, e2019JD031362. [Google Scholar] [CrossRef]
- Bitzer, P.M. Global distribution and properties of continuing current in lightning. J. Geophys. Res. Atmos. 2017, 122, 1033–1041. [Google Scholar] [CrossRef]
- Miralles, D.G.; Brutsaert, W.; Dolman, A.J.; Gash, J.H. On the use of the term “evapotranspiration”. Water Resour. Res. 2020, 56, e2020WR028055. [Google Scholar] [CrossRef] [PubMed]
- Hamed, K.H.; Rao, A.R. A modified mann-kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Hlinka, J.; Hartman, D.; Vejmelka, M.; Novotná, D.; Paluš, M. Non-linear dependence and teleconnections in climate data: Sources, relevance, nonstationarity. Clim. Dyn. 2014, 42, 1873–1886. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Dvinskaya, M.L.; Im, S.T.; Golyukov, A.S.; Smith, K.T. Wildfires in the Siberian arctic. Fire 2022, 5, 106. [Google Scholar] [CrossRef]
- Justino, F.; Bromwich, D.; Wilson, A.; Silva, A.; Avila-Diaz, A.; Fernandez, A.; Rodrigues, J. Estimates of temporal-spatial variability of wildfire danger across the Pan-Arctic and extra-tropics. Environ. Res. Lett. 2021, 16, 044060. [Google Scholar] [CrossRef]
- Hanes, C.; Wotton, M.; Woolford, D.G.; Martell, D.L.; Flannigan, M. Preceding fall drought conditions and overwinter precipitation effects on spring wildland fire activity in Canada. Fire 2020, 3, 24. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing western us forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Shen, Q.; Liu, L.; Zhao, W.; Yang, J.; Han, X.; Tian, F.; Wu, J. Relationship of surface soil moisture with solar-induced chlorophyll fluorescence and normalized difference vegetation index in different phenological stages: A case study of Northeast China. Environ. Res. Lett. 2021, 16, 024039. [Google Scholar] [CrossRef]
- L’HEureux, M.L.; Kumar, A.; Bell, G.D.; Halpert, M.S.; Higgins, R.W. Role of the pacific-north American (pna) pattern in the 2007 arctic sea ice decline. Geophys. Res. Lett. 2008, 35, L20701. [Google Scholar] [CrossRef]
- Benson, D.O.; Dirmeyer, P.A. Characterizing the Relationship between Temperature and Soil Moisture Extremes and Their Role in the Exacerbation of Heat Waves over the Contiguous United States. J. Clim. 2021, 34, 2175–2187. [Google Scholar] [CrossRef]
- Walsh, J.E.; Brettschneider, B. Attribution of recent warming in Alaska. Polar Sci. 2019, 21, 101–109. [Google Scholar] [CrossRef]
- Shi, S.; Wang, P.; Yu, J. Vegetation greening and climate change promote an increase in evapotranspiration across Siberia. J. Hydrol. 2022, 610, 127965. [Google Scholar] [CrossRef]
- Libonati, R.; Geirinhas, J.L.; Silva, P.S.; Russo, A.; Rodrigues, J.A.; Belém, L.B.; Nogueira, J.; Roque, F.O.; DaCamara, C.C.; Nunes, A.M.; et al. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the pantanal. Environ. Res. Lett. 2022, 17, 015005. [Google Scholar] [CrossRef]
- Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, L13217. [Google Scholar] [CrossRef]
- Adekanmbi, A.A.; Sizmur, T. Importance of diurnal temperature range (DTR) for predicting the temperature sensitivity of soil respiration. Front. Soil Sci. 2022, 2, 969077. [Google Scholar] [CrossRef]
- Tye, M.R.; Dagon, K.; Molina, M.J.; Richter, J.H.; Visioni, D.; Kravitz, B.; Tilmes, S. Indices of extremes: Geographic patterns of change in extremes and associated vegetation impacts under climate intervention. Earth Syst. Dyn. 2022, 13, 1233–1257. [Google Scholar] [CrossRef]
- Dong, Z.; Hu, H.; Wei, Z.; Liu, Y.; Xu, H.; Yan, H.; Chen, L.; Li, H.; Khan, M.Y.A. Estimating the actual evapotranspiration of different vegetation types based on root distribution functions. Front. Earth Sci. 2022, 10, 893388. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Teuling, A.J. Investigating soil moisture–climate interactions. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. Partitioning of evaporation in a gcm. J. Hydrometeorol. 2007, 8, 862–880. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, S.; Gourley, J.; Yu, Z. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef]
- Swenson, S.C.; Lawrence, D.M.; Lee, H. Improved simulation of the seasonal cycle of Northern Hemisphere land water storage with the Community Land Model. Geophys. Res. Lett. 2012, 39, L20404. [Google Scholar]
- Liu, W.; Zhang, Q.; Li, C.; Xiao, W. Granger causality for soil moisture–evaporation. Hydrol. Earth Syst. Sci. 2017, 21, 819–831. [Google Scholar]
- Miralles, D.G.; van Den Berg, M.J.; Teuling, A.J.; de Jeu, R.A.M. Soil moisture-temperature coupling. Nat. Clim. Change 2019, 9, 1–10. [Google Scholar]
- Berg, A.; Sheffield, J. Soil moisture–evapotranspiration coupling in cmip5 models: Relationship with simulated climate and projections. J. Clim. 2018, 31, 4865–4878. [Google Scholar] [CrossRef]
- Western, A.W.; Zhou, S.L.; Grayson, R.B.; McMahon, T.A.; Blöschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- McEvoy, D.J.; Pierce, D.W.; Kalansky, J.F.; Cayan, D.R.; Abatzoglou, J.T. Projected Changes in Reference Evapotranspiration in California and Nevada: Implications for Drought and Wildland Fire Danger. Earth’s Future 2020, 8, e2020EF001736. [Google Scholar] [CrossRef]
- Löw, F.; Fliemann, E.; Abdullaev, I.; Conrad, C.; Lamers, J.P. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl. Geogr. 2015, 62, 377–390. [Google Scholar] [CrossRef]
- Wilcove, D.S.; Giam, X.; Edwards, D.P.; Fisher, B.; Koh, L.P. Navjot’s nightmare revisited: Logging, agriculture, and biodiversity in southeast Asia. Trends Ecol. Evol. 2013, 28, 531–540. [Google Scholar] [CrossRef]
- Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Field, C.B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 2008, 42, 5791–5794. [Google Scholar] [CrossRef] [PubMed]
- Macander, M.J.; Nelson, P.R.; Nawrocki, T.W.; Frost, G.V.; Orndahl, K.M.; Palm, E.C.; Wells, A.F.; Goetz, S.J. Time-series maps reveal widespread change in plant functional type cover across arctic and boreal Alaska and Yukon. Environ. Res. Lett. 2022, 17, 054042. [Google Scholar] [CrossRef]
- Krause, A.; Kloster, S.; Wilkenskjeld, S.; Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 2014, 119, 312–322. [Google Scholar] [CrossRef]
- Knorr, W.; Kaminski, T.; Arneth, A.; Weber, U. Impact of human population density on fire frequency at the global scale. Biogeosciences 2014, 11, 1085–1102. [Google Scholar] [CrossRef]
- Schumacher, V.; Setzer, A.; Saba, M.M.; Naccarato, K.P.; Mattos, E.; Justino, F. Characteristics of lightning-caused wildfires in central brazil in relation to cloud-ground and dry lightning. Agric. For. Meteorol. 2022, 312, 108723. [Google Scholar] [CrossRef]
- Chen, Y.; Romps, D.; Seeley, J.; Veraverbeke, S.; Riley, W.; Mekonnen, Z.; Randerson, J. Future increases in arctic lightning and fire risk for permafrost carbon. Nat. Clim. Change 2021, 11, 404–410. [Google Scholar] [CrossRef]
- Kaplan, J.O.; Lau, K.H.K. The WWLLN Global Lightning Climatology and Timeseries (WGLC). In This Version the Data for Lightning Stroke Density Have Been Updated to Correctly Reflect the Units in the File Metadata (Strokes km-2 Day-1). 2021. Available online: https://zenodo.org/records/4882792 (accessed on 18 February 2022).
- Kaplan, J.O.; Lau, K.H.K. The WGLC global gridded lightning climatology and time series. Earth Syst. Sci. Data 2021, 13, 3219–3237. [Google Scholar] [CrossRef]
- Pielke, S.; Roger, A. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 2001, 39, 151–177. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Balch, J.K.; Bradley, B.A.; Kolden, C.A. Human-related ignitions concurrent with high winds promote large fires across the USA. Int. J. Wildland Fire 2018, 27, 377–386. [Google Scholar] [CrossRef]
- Kukavskaya, E.A.; Soja, A.J.; Petkov, A.P.; Ponomarev, E.I.; Ivanova, G.A.; Conard, S.G. Fire emissions estimates in Siberia: Evaluation of combustion completeness. Can. J. For. Res. 2013, 43, 493–506. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Schierhorn, F.; Müller, D.; Beringer, T.; Prishchepov, A.V.; Kuemmerle, T.; Balmann, A. Post-soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 2013, 27, 1175–1185. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Müller, D.; Prishchepov, A.V.; Schierhorn, F.; et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 2013, 8, 035035. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justino, F.; Bromwich, D.H.; Rodrigues, J.; Gurjão, C.; Wang, S.-H. Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America. Fire 2025, 8, 282. https://doi.org/10.3390/fire8070282
Justino F, Bromwich DH, Rodrigues J, Gurjão C, Wang S-H. Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America. Fire. 2025; 8(7):282. https://doi.org/10.3390/fire8070282
Chicago/Turabian StyleJustino, Flavio, David H. Bromwich, Jackson Rodrigues, Carlos Gurjão, and Sheng-Hung Wang. 2025. "Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America" Fire 8, no. 7: 282. https://doi.org/10.3390/fire8070282
APA StyleJustino, F., Bromwich, D. H., Rodrigues, J., Gurjão, C., & Wang, S.-H. (2025). Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America. Fire, 8(7), 282. https://doi.org/10.3390/fire8070282