Study on the Performance of Upstream Obstacles Under Different Exit Loads
Abstract
1. Introduction
2. Model
2.1. The Static Floor Field and the Probability of Selecting the Target Cell
2.2. Aggressiveness and Conflict Resolution
3. Simulation and Analysis
4. Discussion and Conclusions
- The upstream obstacles have a small effect on the evacuation efficiency in the low emergency level (walking), but greatly affect the evacuation efficiency in the high emergency level (slow running).
- When the exit load is low, and the “faster is faster” effect exists, the appearance of obstacles will seriously reduce the evacuation efficiency under high emergency levels, and the obstacles placed directly opposite to the emergency exit will reduce the evacuation efficiency more than those placed on both sides of the emergency exit.
- When the exit load is high, and the “faster is slower” effect exists, placing obstacles directly opposite to the exit, both close (Figure 12a) and far away (Figure 12c), will reduce the evacuation efficiency. The evacuation efficiency can be improved by placing obstacles at an appropriate distance (Figure 12b).
- When the exit load is high with a “faster is slower” effect and obstacles are set on both sides, only the obstacles set in the middle position with a longer shape (Figure 14d) can slightly improve the evacuation efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CTBUH. CTBUH 2025 Trends & Forecasts—The Skyscraper Center; Council on Tall Buildings and Urban Habitat: Chicago, IL, USA, 2025. [Google Scholar]
- United Nations. World Population Prospects 2024: Summary of Results; United Nations: New York, NY, USA, 2024. [Google Scholar]
- Qiu, H.; Yang, X.; Chen, X.; Xiong, Y.; Ma, J.; Lin, P. How to avoid the faster-is-slower effect in competitive evacuation? J. Stat. Mech. Theory Exp. 2021, 2021, 123405. [Google Scholar] [CrossRef]
- Yu, H.; Jiang, N.; Yang, H.; Shi, J.; Han, Z.; Lee, E.W.M.; Yang, L. Empirical analysis of pedestrian merging process with different merging angles and merging layouts. Phys. A Stat. Mech. Its Appl. 2024, 656, 130218. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, X.; Li, M.; Jiang, N.; Jia, X.; Yang, L.; Lee, E.W.M. Experimental study on the movement characteristics of pedestrians in asymmetric merging structures. J. Build. Eng. 2024, 84, 108649. [Google Scholar] [CrossRef]
- Xie, W.; Lee, E.W.M.; Cheng, Y.; Shi, M.; Cao, R.; Zhang, Y. Evacuation performance of individuals and social groups under different visibility conditions: Experiments and surveys. Int. J. Disaster Risk Reduct. 2020, 47, 101527. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Zhang, W.; Lee, E.W.; Shi, M. Development of a time pressure-based model for the simulation of an evacuation in a fire emergency. J. Build. Eng. 2024, 87, 109069. [Google Scholar] [CrossRef]
- Qiu, H.; Zhang, W.; Shi, M.; Lee, E.W.M. An improved multi-velocity cellular automaton model that considers psychological impatience. J. Saf. Sci. Resil. 2025. [Google Scholar] [CrossRef]
- Xing, S.; Wang, C.; Wang, W.; Cao, R.F.; Yuen, A.C.Y.; Lee, E.W.M.; Yeoh, G.H.; Chan, Q.N. A fine discrete floor field cellular automaton model with natural step length for pedestrian dynamics. Simul. Model. Pract. Theory 2024, 130, 102841. [Google Scholar] [CrossRef]
- Gao, D.L.; Lee, E.W.M.; Lee, Y.Y. Integration of cumulative prospect theory in cellular automata model for building evacuation. Int. J. Disaster Risk Reduct. 2022, 74, 102904. [Google Scholar] [CrossRef]
- Fruin, J.J. Designing for Pedestrians a Level of Service Concept; Polytechnic University: New York, USA, 1970. [Google Scholar]
- Henderson, L.F. The statistics of crowd fluids. Nature 1971, 229, 381–383. [Google Scholar] [CrossRef]
- Thompson, O.F.; Galea, E.R.; Hulse, L.M. A review of the literature on human behaviour in dwelling fires. Saf. Sci. 2018, 109, 303–312. [Google Scholar] [CrossRef]
- Hosseini, O.; Maghrebi, M.; Maghrebi, M.F. Determining optimum staged-evacuation schedule considering total evacuation time, congestion severity and fire threats. Saf. Sci. 2021, 139, 105211. [Google Scholar] [CrossRef]
- Tan, L.; Hu, M.; Lin, H. Agent-based simulation of building evacuation: Combining human behavior with predictable spatial accessibility in a fire emergency. Inf. Sci. 2015, 295, 53–66. [Google Scholar] [CrossRef]
- Liu, H.; Xu, B.; Lu, D.; Zhang, G. A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm. Appl. Soft Comput. 2018, 68, 360–376. [Google Scholar] [CrossRef]
- Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002, 99, 7280–7287. [Google Scholar] [CrossRef]
- Hoogendoorn, S.P.; Daamen, W.; Knoop, V.L.; Steenbakkers, J.; Sarvi, M. Macroscopic fundamental diagram for pedestrian networks: Theory and applications. Transp. Res. Procedia 2017, 23, 480–496. [Google Scholar] [CrossRef]
- Twarogowska, M.; Goatin, P.; Duvigneau, R. Comparative study of macroscopic pedestrian models. Transp. Res. Procedia 2014, 2, 477–485. [Google Scholar] [CrossRef]
- Goldstone, R.L.; Janssen, M.A. Computational models of collective behavior. Trends Cogn. Sci. 2005, 9, 424–430. [Google Scholar] [CrossRef]
- Helbing, D.; Isobe, M.; Nagatani, T.; Takimoto, K. Lattice gas simulation of experimentally studied evacuation dynamics. Phys. Rev. E 2003, 67, 067101. [Google Scholar] [CrossRef]
- Muramatsu, M.; Irie, T.; Nagatani, T. Jamming transition in pedestrian counter flow. Phys. A Stat. Mech. Its Appl. 1999, 267, 487–498. [Google Scholar] [CrossRef]
- Wolfram, S. Theory and Applications of Cellular Automata; World Scientific: Singapore, 1986. [Google Scholar]
- Nandi, S.; Kar, B.K.; Chaudhuri, P.P. Theory and applications of cellular automata in cryptography. IEEE Trans. Comput. 1995, 43, 1346–1357. [Google Scholar] [CrossRef]
- Kari, J. Theory of cellular automata: A survey. Theor. Comput. Sci. 2005, 334, 3–33. [Google Scholar] [CrossRef]
- Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lee, E.W.M.; Yuen, R.K.K. Dual effects of pedestrian density on emergency evacuation. Phys. Lett. A 2017, 381, 435–439. [Google Scholar] [CrossRef]
- Wei-Guo, S.; Yan-Fei, Y.; Bing-Hong, W.; Wei-Cheng, F. Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model. Phys. A Stat. Mech. Its Appl. 2006, 371, 658–666. [Google Scholar] [CrossRef]
- Lubaś, R.; Miller, J.; Mycek, M.; Porzycki, J.; Wąs, J. Three different approaches in pedestrian dynamics modeling—A case study. In Proceedings of the New Results in Dependability and Computer Systems: Proceedings of the 8th International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, Brunów, Poland, 9–13 September 2013; pp. 285–294. [Google Scholar]
- Lubaś, R.; Wąs, J.; Porzycki, J. Cellular Automata as the basis of effective and realistic agent-based models of crowd behavior. J. Supercomput. 2016, 72, 2170–2196. [Google Scholar] [CrossRef]
- Song, W.; Yu, Y.; Fan, W.; Zhang, H. A cellular automata evacuation model considering friction and repulsion. Sci. China Ser. E Eng. Mater. Sci. 2005, 48, 403–413. [Google Scholar] [CrossRef]
- Hu, J.; You, L.; Zhang, H.; Wei, J.; Guo, Y. Study on queueing behavior in pedestrian evacuation by extended cellular automata model. Phys. A Stat. Mech. Its Appl. 2018, 489, 112–127. [Google Scholar] [CrossRef]
- Fu, Z.; Zhou, X.; Zhu, K.; Chen, Y.; Zhuang, Y.; Hu, Y.; Yang, L.; Chen, C.; Li, J. A floor field cellular automaton for crowd evacuation considering different walking abilities. Phys. A Stat. Mech. Its Appl. 2015, 420, 294–303. [Google Scholar] [CrossRef]
- Luo, L.; Liu, X.; Fu, Z.; Ma, J.; Liu, F. Modeling following behavior and right-side-preference in multidirectional pedestrian flows by modified FFCA. Phys. A Stat. Mech. Its Appl. 2020, 550, 124149. [Google Scholar] [CrossRef]
- Varas, A.; Cornejo, M.; Mainemer, D.; Toledo, B.; Rogan, J.; Munoz, V.; Valdivia, J. Cellular automaton model for evacuation process with obstacles. Phys. A Stat. Mech. Its Appl. 2007, 382, 631–642. [Google Scholar] [CrossRef]
- Qiu, H.; Liang, X.; Chen, Q.; Lee, E.W.M. Effect of Different Time Step Sizes on Pedestrian Evacuation Time under Emergencies Such as Fires Using an Extended Cellular Automata Model. Fire 2024, 7, 100. [Google Scholar] [CrossRef]
- Qiu, H.; Wang, X.; Lin, p.; Lee, E.W.M. Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness. Phys. A Stat. Mech. Its Appl. 2024, 636, 129567. [Google Scholar] [CrossRef]
- Fang, H.; Wang, Q.; Qiu, H.; Yang, C.; Lo, S. Investigation of elevator-aided evacuation strategies for older people in high-rise elderly housing. J. Build. Eng. 2023, 64, 105664. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Dou, Z.; Zheng, X.; Cheng, Y.; Mebarki, A. A review of cellular automata models for crowd evacuation. Phys. A Stat. Mech. Its Appl. 2019, 526, 120752. [Google Scholar] [CrossRef]
- Fu, Z.; Zhan, X.; Luo, L.; Schadschneider, A.; Chen, J. Modeling fatigue of ascending stair evacuation with modified fine discrete floor field cellular automata. Phys. Lett. A 2019, 383, 1897–1906. [Google Scholar] [CrossRef]
- Huang, R.; Zhao, X.; Zhou, C.; Kong, L.; Liu, C.; Yu, Q. Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights. Phys. A Stat. Mech. Its Appl. 2022, 606, 128150. [Google Scholar] [CrossRef]
- Fu, Z.; Xiong, X.; Luo, L.; Yang, Y.; Feng, Y.; Chen, H. Influence of rotation on pedestrian flow considering bipedal features: Modeling using a fine discrete floor field cellular automaton. Phys. A Stat. Mech. Its Appl. 2022, 605, 128027. [Google Scholar] [CrossRef]
- Gwizdałła, T.M. Some properties of the floor field cellular automata evacuation model. Phys. A Stat. Mech. Its Appl. 2015, 419, 718–728. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Rui, Y.; Wang, S.; Zhu, H.; Yan, Z. A modified cellular automaton model of pedestrian evacuation in a tunnel fire. Tunn. Undergr. Space Technol. 2022, 130, 104673. [Google Scholar] [CrossRef]
- Xie, W.; Lee, E.W.M.; Lee, Y.Y. Self-organisation phenomena in pedestrian counter flows and its modelling. Saf. Sci. 2022, 155, 105875. [Google Scholar] [CrossRef]
- Miyagawa, D.; Ichinose, G. Cellular automaton model with turning behavior in crowd evacuation. Phys. A Stat. Mech. Its Appl. 2020, 549, 124376. [Google Scholar] [CrossRef]
- Hu, M.; Cai, W.; Zhao, H. Simulation of Passenger Evacuation Process in Cruise Ships Based on A Multi-Grid Model. Symmetry 2019, 11, 1166. [Google Scholar] [CrossRef]
- Wurzer, G.; Kowarik, K.; Reschreiter, H. Agent-Based Modeling and Simulation in Archaeology; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Kirchner, A.; Nishinari, K.; Schadschneider, A. Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 2003, 67, 056122. [Google Scholar] [CrossRef] [PubMed]
- Burstedde, C.; Klauck, K.; Schadschneider, A.; Zittartz, J. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Its Appl. 2001, 295, 507–525. [Google Scholar] [CrossRef]
- Hu, X.; Chen, T.; Deng, K.; Wang, G. Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model. Phys. A Stat. Mech. Its Appl. 2023, 619, 128731. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Ma, Y.; Lee, E.W.M.; Shi, M. Psychological impatience in pedestrian evacuation: Modelling, simulations and experiments. Phys. A Stat. Mech. Its Appl. 2024, 635, 129472. [Google Scholar] [CrossRef]
- Sirakoulis, G.C. Cellular automata for crowd dynamics. In Proceedings of the Implementation and Application of Automata: 19th International Conference, CIAA 2014, Giessen, Germany, 30 July–2 August 2014; Proceedings 19. pp. 58–69. [Google Scholar]
- Pelechano, N.; Malkawi, A. Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches. Autom. Constr. 2008, 17, 377–385. [Google Scholar] [CrossRef]
- Kirchner, A.; Schadschneider, A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat. Mech. Its Appl. 2002, 312, 260–276. [Google Scholar] [CrossRef]
- Zhang, P.; Jian, X.-X.; Wong, S.; Choi, K. Potential field cellular automata model for pedestrian flow. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2012, 85, 021119. [Google Scholar] [CrossRef]
- Georgoudas, I.G.; Kyriakos, P.; Sirakoulis, G.C.; Andreadis, I.T. An FPGA implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocess. Microsyst. 2010, 34, 285–300. [Google Scholar] [CrossRef]
- Guo, R.-Y.; Huang, H.-J. Route choice in pedestrian evacuation: Formulated using a potential field. J. Stat. Mech. Theory Exp. 2011, 2011, P04018. [Google Scholar] [CrossRef]
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ye, Z.; Shiwakoti, N.; Tang, D.; Lin, J. Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck. Phys. A Stat. Mech. Its Appl. 2019, 522, 350–364. [Google Scholar] [CrossRef]
- Jia, X.; Murakami, H.; Feliciani, C.; Yanagisawa, D.; Nishinari, K. Pedestrian lane formation and its influence on egress efficiency in the presence of an obstacle. Saf. Sci. 2021, 144, 105455. [Google Scholar] [CrossRef]
- Feliciani, C.; Zuriguel, I.; Garcimartín, A.; Maza, D.; Nishinari, K. Systematic experimental investigation of the obstacle effect during non-competitive and extremely competitive evacuations. Sci. Rep. 2020, 10, 15947. [Google Scholar] [CrossRef]
- Frank, G.A.; Dorso, C.O. Room evacuation in the presence of an obstacle. Phys. A Stat. Mech. Its Appl. 2011, 390, 2135–2145. [Google Scholar] [CrossRef]
- Parisi, D.R.; Patterson, G.A. Influence of bottleneck lengths and position on simulated pedestrian egress. Pap. Phys. 2017, 9, 090001. [Google Scholar] [CrossRef]
- Shiwakoti, N.; Sarvi, M.; Burd, M. Using non-human biological entities to understand pedestrian crowd behaviour under emergency conditions. Saf. Sci. 2014, 66, 1–8. [Google Scholar] [CrossRef]
- Escobar, R.; De La Rosa, A. Architectural design for the survival optimization of panicking fleeing victims. In Proceedings of the Advances in Artificial Life: 7th European Conference, ECAL 2003, Dortmund, Germany, 14–17 September 2003; Proceedings 7. pp. 97–106. [Google Scholar]
- Zhao, Y.; Li, M.; Lu, X.; Tian, L.; Yu, Z.; Huang, K.; Wang, Y.; Li, T. Optimal layout design of obstacles for panic evacuation using differential evolution. Phys. A Stat. Mech. Its Appl. 2017, 465, 175–194. [Google Scholar] [CrossRef]
- Shiwakoti, N.; Shi, X.; Ye, Z. A review on the performance of an obstacle near an exit on pedestrian crowd evacuation. Saf. Sci. 2019, 113, 54–67. [Google Scholar] [CrossRef]
- Qiu, H.; Fang, Z.; Lee, E.W.M. Simulation study on the effect of obstacles upstream of the building exit on evacuation efficiency. Phys. A Stat. Mech. Its Appl. 2025, 666, 130547. [Google Scholar] [CrossRef]
- Kirchner, A.; Klüpfel, H.; Nishinari, K.; Schadschneider, A.; Schreckenberg, M. Simulation of competitive egress behavior: Comparison with aircraft evacuation data. Phys. A Stat. Mech. Its Appl. 2003, 324, 689–697. [Google Scholar] [CrossRef]
- Alonso-Marroquin, F.; Azeezullah, S.; Galindo-Torres, S.; Olsen-Kettle, L. Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass? Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2012, 85, 020301. [Google Scholar] [CrossRef] [PubMed]
- Helbing, D.; Farkas, I.J.; Molnar, P.; Vicsek, T. Simulation of pedestrian crowds in normal and evacuation situations. Pedestr. Evacuation Dyn. 2002, 21, 21–58. [Google Scholar]
- Helbing, D.; Buzna, L.; Johansson, A.; Werner, T. Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transp. Sci. 2005, 39, 1–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, H.; Fang, Z.; Yu, H. Study on the Performance of Upstream Obstacles Under Different Exit Loads. Fire 2025, 8, 174. https://doi.org/10.3390/fire8050174
Qiu H, Fang Z, Yu H. Study on the Performance of Upstream Obstacles Under Different Exit Loads. Fire. 2025; 8(5):174. https://doi.org/10.3390/fire8050174
Chicago/Turabian StyleQiu, Hongpeng, Zheng Fang, and Hanchen Yu. 2025. "Study on the Performance of Upstream Obstacles Under Different Exit Loads" Fire 8, no. 5: 174. https://doi.org/10.3390/fire8050174
APA StyleQiu, H., Fang, Z., & Yu, H. (2025). Study on the Performance of Upstream Obstacles Under Different Exit Loads. Fire, 8(5), 174. https://doi.org/10.3390/fire8050174