Characteristics of Lightning Ignition and Spatial–Temporal Distributions Linked with Wildfires in the Greater Khingan Mountains
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Lightning Data
2.3. Lightning-Ignited Fire
2.4. Vegetation
2.5. Stroke-to-Flash Grouping Method
2.6. Link Lightning with Fire Ignitions
- Single-parameter methods:
- 2.
- Composite index method
3. Results
3.1. Spatial Distribution of CG Lightning
3.2. Temporal Distribution of CGLightning
3.3. Spatial and Temporal Distribution of Lightning Relative to Wildfire
3.4. Peak Current and Multiplicity of Wildfire-Igniting Lightning Flashes
3.5. Lightning Ignition Efficiency by Vegetation Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bates, B.C.; Dowdy, A.J.; McCaw, L. A Bayesian approach to exploring the influence of climate variability modes on fire weather conditions and lightning-ignited wildfires. Clim. Dyn. 2021, 57, 1207–1225. [Google Scholar] [CrossRef]
- Coogan, S.C.P.; Cai, X.; Jain, P.; Flannigan, M.D. Seasonality and trends in human- and lightning-caused wildfires ≥ 2 ha in Canada, 1959–2018. Int. J. Wildland Fire 2020, 29, 473. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Mills, G.A. Characteristics of lightning-attributed wildland fires in south-east Australia. Int. J. Wildland Fire 2012, 21, 521. [Google Scholar] [CrossRef]
- Wotton, B.M.; Martell, D.L. A lightning fire occurrence model for Ontario. Can. J. For. Res. 2005, 35, 1389–1401. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Pérez-Invernón, F.; Gordillo-Vázquez, F.J.; Huntrieser, H.; Jöckel, P. Variation of lightning-ignited wildfire patterns under climate change. Nat. Commun. 2022, 14, 739. [Google Scholar] [CrossRef]
- Romps, D.M.; Seeley, J.T.; Vollaro, D.; Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 2014, 346, 851–854. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A.; Balch, J.K.; Bradley, B.A. Controls on interannual variability in lightning-caused fire activity in the western US. Environ. Res. Lett. 2016, 11, 045005. [Google Scholar] [CrossRef]
- Ahrens, M. Lightning Fires and Lightning Strikes; National Fire Protection Association: Quincy, MA, USA, 2008. [Google Scholar]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Lafortezza, R.; Chen, J. Managing forest landscapes under global change scenarios. In Landscape Ecology in Forest Management and Conservation: Challenges and Solutions for Global Change; Li, C., Lafortezza, R., Chen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–21. [Google Scholar] [CrossRef]
- Wang, Y.; Anderson, K.R. An evaluation of spatial and temporal patterns of lightning- and human-caused forest fires in Alberta, Canada, 1980–2007. Int. J. Wildland Fire 2010, 19, 1059. [Google Scholar] [CrossRef]
- Egloff, B. Lightning strikes: Rethinking the nexus between Australian Indigenous land management and natural forces. Aust. For. 2017, 80, 275–285. [Google Scholar] [CrossRef]
- Li, W.; Shu, L.; Wang, M. Temporal and Spatial Distribution and Dynamic Characteristics of Lightning Fires in the Daxing’anling Mountains from 1980 to 2021. Sci. Silvae Sin. 2023, 59, 22–30. [Google Scholar]
- Song, Y.; Xu, C.; Li, X.; Oppong, F. Lightning-Induced Wild fires: An Overview. Fire 2024, 7, 79. [Google Scholar] [CrossRef]
- Gyawali, S.S.; Bhusal, R.J.; Sharma, S. Analysis of the Role of Lightning Activity in Triggering Forest Fires in Nepal. Amrit Res. J. 2024, 4, 64–71. [Google Scholar] [CrossRef]
- Hardy, C.C.; Bunnell, D.L.; Menakis, J.; Schmidt, K.; Long, D.; Simmerman, D.; Johnston, C. Coarse-Scale Spatial Data for Wildland Fire and Fuel Management. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. 1999. Available online: http://www.fs.fed.us/fire/fuelman (accessed on 29 June 2006).
- Latham, D.J. Ignition Probabilities of Wildland Fuels Based on Simulated Lightning Discharges; US Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1989; Volume 411.
- Schultz, C.J.; Nauslar, N.J.; Wachter, J.B.; Hain, C.R.; Bell, J.R. Spatial, Temporal and Electrical Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events. Fire 2019, 2, 18. [Google Scholar] [CrossRef]
- MacNamara, B.R.; Schultz, C.J.; Fuelberg, H.E. Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from 2017. Fire 2020, 3, 5. [Google Scholar] [CrossRef]
- Moris, J.V.; Álvarez-Álvarez, P.; Conedera, M.; Dorph, A.; Hessilt, T.D.; Hunt, H.G.; Libonati, R.; Menezes, L.S.; Müller, M.M.; Pérez-Invernón, F.J. A global database on holdover time of lightning-ignited wildfires. Earth Syst. Sci. Data 2023, 15, 1151–1163. [Google Scholar] [CrossRef]
- Vant-Hull, B.; Koshak, W. Spatial Structure of Lightning and Precipitation Associated with Lightning-Caused Wildfires in the Central to Eastern United States. Fire 2023, 6, 262. [Google Scholar] [CrossRef]
- Müller, M.M.; Vacik, H. Characteristics of lightnings igniting forest fires in Austria. Agricultural and Forest Meteorology 2017, 240-241, 26–34. [Google Scholar] [CrossRef]
- Nampak, H.; Love, P.; Fox-Hughes, P.; Watson, C.; Aryal, J.; Harris, R.M.B. Characterizing Spatial and Temporal Variability of Lightning Activity Associated with Wildfire over Tasmania, Australia. Fire 2021, 4, 10. [Google Scholar] [CrossRef]
- Aftergood, O.S.R.; Flannigan, M.D. Identifying and analyzing spatial and temporal patterns of lightning-ignited wildfires in Western Canada from 1981 to 2018. Can. J. For. Res. 2022, 52, 1399–1411. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M. Lightning-ignited forest fires in northwestern Ontario. Can. J. For. Res. 1991, 21, 277–287. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. What determines the cloud-to-ground lightning fraction in thunderstorms? Geophys. Res. Lett. 1993, 20, 463–466. [Google Scholar] [CrossRef]
- Hall, B.L.; Brown, T.J. Climatology of positive polarity flashes and multiplicity and their relation to natural wildfire ignitions. In Proceedings of the 19th International Lightning Detection Conference, Tucson, AZ, USA, 24–25 April 2006; pp. 24–27. [Google Scholar]
- Wang, M.; Yuan, S.; Li, W.; Li, W.; Song, J.; Si, L.; Wang, Y.; Zhao, F.; Tian, X.; Li, X.; et al. Process and Influencing Factors of Mass Lightning Fires Caused by Dense Lightning in Daxing’ anling Mountains. Sci. Silvae Sin. 2022, 58, 10–20. [Google Scholar] [CrossRef]
- Li, W.; Si, L.; Yuan, S.; Song, J.; Li, W.; Si, L.; Zhao, F.; Wang, Y.; Wang, M. Temporal and Spatial Distribution Characteristics of Lightning in Daxing’ anling Mountains Based on VLF/LF 3D Lightning Location System. Sci. Silvae Sin. 2022, 58, 21–30. [Google Scholar] [CrossRef]
- Tian, X.; Shu, L.; Wang, M.; Zhao, F.; Chen, L. The fire danger and fire regime for the Daxing’anling region for 1987-2010. Procedia Eng. 2013, 62, 1023–1031. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Zhang, J.; Wei, R.; Liu, L.; Zhang, M.; Chen, F. Research on daily prediction model of lightning fi res in Daxing’an ling Region based on lightning location data. J. Cent. South Univ. For. Technol. 2017, 37, 44–48. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Q.; Ma, Q.; Chang, S.; He, J.; Wang, H.; Zhou, X.; Xiao, F.; Gao, C. Classification of VLF/LF Lightning Signals Using Sensors and Deep Learning Methods. Sensors 2020, 20, 1030. [Google Scholar] [CrossRef]
- Meng, X.; Wang, J.; Ma, Q.; Yuan, S.; Song, J.; Zhou, X.; Xiao, F.; Wang, Y. A dataset of lightning in China Based on VLF/LF Lightning Location Monitoring System. China Sci. Data 2022, 7, 31–44. [Google Scholar] [CrossRef]
- Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences. 1:1 Million Vegetation Data Set in China. Available online: https://www.ncdc.ac.cn/portal/metadata/20d2728d-8845-4a8b-a546-5f4f50fb036d (accessed on 18 April 2025).
- GB/T 37047-2018; Lightning Density Based on Lightning Location Systems (LLS)—General Principles. Standardization Administration of China: Beijing, China, 2018.
- Moris, J.V.; Conedera, M.; Nisi, L.; Bernardi, M.; Cesti, G.; Pezzatti, G.B. Lightning-caused fires in the Alps: Identifying the igniting strokes. Agric. For. Meteorol. 2020, 290, 107990. [Google Scholar] [CrossRef]
- Li, W.; Shu, L.; Wang, M.; Si, L.; Li, W.; Song, J.; Yuan, S.; Wang, Y.; Zhao, F. Investigating the Latency of Lightning-Caused Fires in Boreal Coniferous Forests Using Random Forest Methodology. Fire 2025, 8, 84. [Google Scholar] [CrossRef]
- Yang, X.; Sun, J.; Li, W. An analysis of cloud-to-ground lightning in China during 2010–2013. Weather Forecast. 2015, 30, 1537–1550. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, J.; Tuo, Y.; Kong, X.; Bi, L. Analysis of the Relationship between the Spatiotemporal Distribution of Land Lightning and Atmospheric Environmental Factors in China. Chin. J. Atmos. Sci. 2025, 49, 313–324. [Google Scholar]
- Terrell, G.R.; Scott, D.W. Variable kernel density estimation. Ann. Stat. 1992, 20, 1236–1265. [Google Scholar] [CrossRef]
- Węglarczyk, S. Kernel density estimation and its application. In Proceedings of the ITM Web Conferences, Girne, Turkey, 4–6 May 2018; p. 00037. [Google Scholar]
- Sivrikaya, F.; Küçük, Ö. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol. Inform. 2022, 68, 101537. [Google Scholar] [CrossRef]
- Richi, S.M.; Maya, R.; Ghribi, M. Forest fire susceptibility modeling in the Eastern Mediterranean: A machine learning assessment. DYSONA-Appl. Sci. 2026, 7, 88–97. [Google Scholar]





| Population | Number of Lightning Flashes | Percentage (%) | Average Multiplicity | Proportion of Multiple-Stroke Flashes (%) | Maximum Observed Multiplicity | Average Inter-Stroke Distance (km) |
|---|---|---|---|---|---|---|
| −AIC | 353 | 84.86 | 2.60 | 56.52 | 25 | 1.45 km |
| +AIG | 60 | 15.14 | 1.27 | 26.92 | 2 | 0.98 km |
| −CG | 565,185 | 65.72 | 2.47 | 50.31 | 41 | 1.29 km |
| +CG | 228,218 | 34.28 | 1.20 | 15.19 | 16 | 0.34 km |
| Vegetation | Number of Lightning Flashes | Number of Wildfires | LIE (%) |
|---|---|---|---|
| Needleleaf forests in cold-temperate zone and on mountains in temperate zone | 441,951 | 263 | 0.06 |
| Broadleaf deciduous forests in temperate zone | 84,901 | 12 | 0.01 |
| Cold-temperate and temperate marshes | 77,684 | 38 | 0.05 |
| Grass and forb meadows | 59,020 | 23 | 0.04 |
| Grass, Carex and forb swamp meadows | 58,041 | 60 | 0.10 |
| Deciduous scrubs in temperate zone | 8257 | 3 | 0.04 |
| One year one ripe fields with cold-tolerant crops of short growth duration | 6870 | 2 | 0.03 |
| Temperate grass, forb meadow steppes | 1090 | 0 | 0.00 |
| One year one ripe grain fields and cold-tolerant economic crop fields | 527 | 0 | 0.00 |
| Needleleaf and deciduous broadleaf mixed forests in temperate zone | 102 | 0 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Wang, M.; Shu, L.; Ma, Q.; Song, J.; Xiao, F.; Zhou, X.; Wang, J. Characteristics of Lightning Ignition and Spatial–Temporal Distributions Linked with Wildfires in the Greater Khingan Mountains. Fire 2025, 8, 474. https://doi.org/10.3390/fire8120474
Yuan S, Wang M, Shu L, Ma Q, Song J, Xiao F, Zhou X, Wang J. Characteristics of Lightning Ignition and Spatial–Temporal Distributions Linked with Wildfires in the Greater Khingan Mountains. Fire. 2025; 8(12):474. https://doi.org/10.3390/fire8120474
Chicago/Turabian StyleYuan, Shangbo, Mingyu Wang, Lifu Shu, Qiming Ma, Jiajun Song, Fang Xiao, Xiao Zhou, and Jiaquan Wang. 2025. "Characteristics of Lightning Ignition and Spatial–Temporal Distributions Linked with Wildfires in the Greater Khingan Mountains" Fire 8, no. 12: 474. https://doi.org/10.3390/fire8120474
APA StyleYuan, S., Wang, M., Shu, L., Ma, Q., Song, J., Xiao, F., Zhou, X., & Wang, J. (2025). Characteristics of Lightning Ignition and Spatial–Temporal Distributions Linked with Wildfires in the Greater Khingan Mountains. Fire, 8(12), 474. https://doi.org/10.3390/fire8120474

