Experimental Analysis of Ceiling Temperature Distribution in Sloped Integrated Common Services Tunnels
Abstract
:1. Introduction
2. Experimental Setups
3. Results and Discussion
3.1. Determination of the Maximum Ceiling Temperature
3.2. Correlations for the Maximum Ceiling Excess Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillips, J. A quantitative evaluation of the sustainability or unsustainability of three tunnelling projects. Tunn. Beneathground Space Technol. 2016, 51, 387–404. [Google Scholar] [CrossRef]
- Wang, T.; Tan, L.; Xie, S.; Ma, B. Development and applications of common utility tunnels in China. Tunn. Beneathground Space Technol. 2018, 76, 92–106. [Google Scholar] [CrossRef]
- Venkatesh, G.; Chan, A.; Brattebø, H. Beneathstanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors. Energy 2014, 75, 153–166. [Google Scholar] [CrossRef]
- Matala, A.; Hostikka, S. Probabilistic simulation of cable performance and water based protection in cable tunnel fires. Nucl. Eng. Des. 2011, 241, 5263–5274. [Google Scholar] [CrossRef]
- Ye, K.; Zhou, X.; Yang, L.; Tang, X.; Zheng, Y.; Cao, B.; Peng, Y.; Hong, L.; Ni, Y. A Multi-Scale analysis of the fire problems in an urban utility tunnel. Energies 2019, 12, 1976. [Google Scholar] [CrossRef]
- Liu, C.; Zhong, M.; Tian, X.; Zhang, P.; Xiao, Y.; Mei, Q. Experimental and numerical study on fire-induced smoke temperature in connected area of metro tunnel under natural ventilation. Int. J. Therm. Sci. 2019, 138, 84–97. [Google Scholar] [CrossRef]
- Liu, H.-N.; Zhu, G.-Q.; Pan, R.-L.; Yu, M.-M.; Liang, Z.-H. Experimental investigation of fire temperature distribution and ceiling temperature prediction in closed utility tunnel. Case Stud. Therm. Eng. 2019, 14, 100493. [Google Scholar] [CrossRef]
- Ji, J.; Wan, H.; Li, K.; Han, J.; Sun, J. A numerical study on upstream maximum temperature in inclined urban road tunnel fires. Int. J. Heat Mass Transf. 2015, 88, 516–526. [Google Scholar] [CrossRef]
- Li, Y.Z.; Lei, B.; Ingason, H. The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Saf. J. 2011, 46, 204–210. [Google Scholar]
- Ji, J.; Wang, Z.; Ding, L.; Yu, L.; Gao, Z.; Wan, H. Effects of ambient pressure on smoke movement and temperature distribution in inclined tunnel fires. Int. J. Therm. Sci. 2019, 145, 106006. [Google Scholar]
- Liang, Y.; Yang, Y.; Xu, Z.; Wu, D.; Li, W. Experimental study on the maximum temperature of smoke in the arch of a fire in a longitudinally ventilated highway tunnel. Combust. Sci. Technol. 2011, 17, 109–114. [Google Scholar]
- Canto-Perello, J.; Curiel-Esparza, J. An analysis of utility tunnel viability in urban areas. Civ. Eng. Environ. Syst. 2006, 23, 11–19. [Google Scholar] [CrossRef]
- Han, J.; Liu, F.; Wang, F.; Weng, M.; Wang, J. Study on the smoke movement and downstream temperature distribution in a sloping tunnel with one closed portal. Int. J. Therm. Sci. 2019, 149, 106165. [Google Scholar] [CrossRef]
- Gao, Z.; Li, L.; Zhong, W.; Liu, X. Characterization and prediction of ceiling temperature propagation of thermal plume in confined environment of common services tunnel. Tunn. Beneathground Space Technol. 2021, 110, 103714. [Google Scholar] [CrossRef]
- Ye, K.; Zhou, X.; Zheng, Y.; Liu, H.; Tang, X.; Cao, B.; Huang, Y.; Chen, Y.; Yang, L. Estimating the longitudinal maximum gas temperature attenuation of ceiling jet flows generated by strong fire plumes in an urban utility tunnel. Int. J. Therm. Sci. 2020, 142, 434–448. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, H.; Guo, Q.; Carvel, R.; Yan, Z. The Effect of Technical Installations on Evacuation Performance in Urban Road Tunnel Fires. Tunn. Undergr. Space Technol. 2021, 107, 103608. [Google Scholar] [CrossRef]
- Bian, H.; Zhu, Z.; Zang, X.; Luo, X.; Jiang, M. A CNN based anomaly detection network for utility tunnel fire protection. Fire 2022, 5, 212. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, G.; Zhu, G.; Jia, B.; Zhang, P. Applicability of liquid nitrogen fire extinguishing in urban underground utility tunnel. Case Stud. Therm. Eng. 2020, 21, 100657. [Google Scholar] [CrossRef]
- Hu, L.H.; Huo, R.; Wang, H.B.; Yang, R.X. Experimental and numerical studies on longitudinal smoke temperature distribution upstream and downstream from the fire in a road tunnel. J. Fire Sci. 2007, 25, 23–43. [Google Scholar] [CrossRef]
- Chen, C.; Nie, Y.; Zhang, Y.; Lei, P.; Fan, C.; Wang, Z. Experimental Investigation on the Influence of Ramp Slope on Fire Behaviors in a Bifurcated Tunnel. Tunn. Undergr. Space Technol. 2020, 104, 103522. [Google Scholar] [CrossRef]
- Huo, Y.; Gao, Y.; Chow, W. A study on ceiling jet characteristics in an inclined tunnel. Tunn. Undergr. Space Technol. 2015, 50, 32–46. [Google Scholar] [CrossRef]
- Ingason, H.; Li, Y.Z. Model scale tunnel fire tests with point extraction ventilation. J. Fire Prot. Eng. 2011, 21, 5–36. [Google Scholar] [CrossRef]
- Oka, Y.; Kakae, N.; Imazeki, O.; Inagaki, K. Temperature property of ceiling jet in an inclined tunnel. Procedia Eng. 2013, 62, 234–241. [Google Scholar] [CrossRef]
- Han, J.; Wang, Z.; Geng, P.; Wang, F.; Wen, J.; Liu, F. The effect of blockage and tunnel slope on smoke spread and ceiling temperature distribution in a natural-ventilated metro depot. Energy Build. 2021, 253, 111540. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, X.; Zhang, S.; Zhu, K.; Zhang, H.; Shi, L. Maximum smoke temperature beneath the ceiling in an enclosed channel with different fire locations. Appl. Therm. Eng. 2017, 111, 30–38. [Google Scholar] [CrossRef]
- Yao, Y.; He, K.; Peng, M.; Shi, L.; Cheng, X.; Zhang, H. Maximum gas temperature rise beneath the ceiling in a portals-sealed tunnel fire. Tunn. Undergr. Space Technol. 2018, 80, 10–15. [Google Scholar] [CrossRef]
- Ji, J.; Zhong, W.; Li, K.; Shen, X.; Zhang, Y.; Huo, R. A simplified calculation method on maximum smoke temperature under the ceiling in subway station fires. Tunn. Undergr. Space Technol. 2011, 26, 490–496. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Gao, Z.; Yang, L.; Du, F.; Wang, L.; Wei, L.; Huang, F. Experimental study on the maximum temperature beneath the ceiling in a metro depot with one end closed. Tunn. Undergr. Space Technol. 2023, 134, 104968. [Google Scholar] [CrossRef]
Parameter | Proportional Relationship |
---|---|
HRR (kW) | Qs = Qm (ls/lm)5/2 |
Temperature (K) | Ts = Tm |
Heat flow (kW/m2) | qs = qm (ls/lm)1/2 |
Slope of Integrated Common Services Tunnel i | Heat Release Rates Q (kW) | Distance between the Fire Source and the Closed End d (CM) |
---|---|---|
1.32 | 29, 42 | |
0% | ||
1.59 | 55, 68 | |
2% | ||
1.99 | 103, 126 | |
5% | ||
2.38 | 146, 169 | |
6% | ||
2.91 | 192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wu, G.; Wu, Z.; Huang, H.; Zhang, H.; Gao, Z. Experimental Analysis of Ceiling Temperature Distribution in Sloped Integrated Common Services Tunnels. Fire 2024, 7, 320. https://doi.org/10.3390/fire7090320
Li L, Wu G, Wu Z, Huang H, Zhang H, Gao Z. Experimental Analysis of Ceiling Temperature Distribution in Sloped Integrated Common Services Tunnels. Fire. 2024; 7(9):320. https://doi.org/10.3390/fire7090320
Chicago/Turabian StyleLi, Linjie, Guang Wu, Zhaoguo Wu, Huixian Huang, Haibing Zhang, and Zihe Gao. 2024. "Experimental Analysis of Ceiling Temperature Distribution in Sloped Integrated Common Services Tunnels" Fire 7, no. 9: 320. https://doi.org/10.3390/fire7090320
APA StyleLi, L., Wu, G., Wu, Z., Huang, H., Zhang, H., & Gao, Z. (2024). Experimental Analysis of Ceiling Temperature Distribution in Sloped Integrated Common Services Tunnels. Fire, 7(9), 320. https://doi.org/10.3390/fire7090320