Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Species
2.2. Field Sampling
2.3. Dendrochronological Methods
2.4. Statistical Analyses
3. Results
3.1. Tree-Ring Data and Post-Fire Growth Changes
3.2. Growth Responses to Climate Variables in Burnt and Unburnt Stands
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Verdú, M. Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: A phylogenetic approach. Oikos 2005, 109, 196–202. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.; Moreira, F.; Fernandes, P.M.; Pausas, J.G. Post-fire tree mortality in mixed forests of central Portugal. For. Ecol. Manag. 2010, 260, 1184–1192. [Google Scholar] [CrossRef]
- Battipaglia, G.; Savi, T.; Ascoli, D.; Castagneri, D.; Esposito, A.; Mayr, S.; Nardini, A. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L. Tree Physiol. 2016, 36, 1019–1031. [Google Scholar] [CrossRef]
- Battipaglia, G.; Strumia, S.; Esposito, A.; Giuditta, E.; Sirignano, C.; Altieri, S.; Rutigliano, F.A. The effects of prescribed burning on Pinus halepensis Mill. as revealed by dendrochronological and isotopic analyses. For. Ecol. Manag. 2014, 334, 201–208. [Google Scholar] [CrossRef]
- Battipaglia, G.; De Micco, V.; Fournier, T.; Aronne, G.; Carcaillet, C. Isotopic and anatomical signals for interpreting fire-related responses in Pinus halepensis. Trees 2014, 28, 1095–1104. [Google Scholar] [CrossRef]
- Beghin, R.; Cherubini, P.; Battipaglia, G.; Siegwolf, R.; Saurer, M.; Bovio, G. Tree-ring growth and stable isotopes (13C and 15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L. Trees 2011, 25, 627–636. [Google Scholar] [CrossRef]
- Alfaro-Sánchez, R.; Camarero, J.J.; Sánchez-Salguero, R.; Sangüesa-Barreda, G.; Heras, J.D.L. Post-fire Aleppo pine growth, C and N isotope composition depend on site dryness. Trees 2016, 30, 581–595. [Google Scholar] [CrossRef]
- Camarero, J.J.; Díaz-Delgado, R.; Colangelo, M.; Valeriano, C.; Sánchez-Salguero, R.; Madrigal, J. Differential Post-Fire Recovery of Tree and Shrub Growth and Water-Use Efficiency in a Mediterranean Coastal Dune System. Fire 2022, 5, 135. [Google Scholar] [CrossRef]
- Valor, T.; Casals, P.; Altieri, S.; González-Olabarria, J.R.; Piqué, M.; Battipaglia, G. Disentangling the effects of crown scorch and competition release on the physiological and growth response of Pinus halepensis Mill. using δ13C and δ18O isotopes. For. Ecol. Manag. 2018, 424, 276–287. [Google Scholar] [CrossRef]
- Guiterman, C.H.; Margolis, E.Q.; Allen, C.D.; Falk, D.A.; Swetnam, T.W. Long-Term Persistence and Fire Resilience of Oak Shrubfields in Dry Conifer Forests of Northern New Mexico. Ecosystems 2018, 21, 943–959. [Google Scholar] [CrossRef]
- Bravo, S.; Bogino, S.; Leiva, M.; Lepiscopo, M.; Cendoya, M.A.; Kunst, C.; Birrun, F. Wood anatomy, fire wounds and dendrochronological potential of Prosopis pugionata Burkart (Fabaceae) in arid Argentine Chaco. IAWA J. 2021, 42, 101–110. [Google Scholar] [CrossRef]
- Barker, J.S.; Gray, A.N.; Fried, J.S. The effects of crown scorch on post-fire delayed mortality are modified by drought exposure in California (USA). Fire 2022, 5, 21. [Google Scholar] [CrossRef]
- Retana, J.; Riba, M.; Castell, C.; Espelta, J.M. Regeneration by sprouting of holm-oak (Quercus ilex) stands exploited by selection thinning. Vegetatio 1992, 99–100, 355–364. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 2017, 22, 1008–1015. [Google Scholar] [CrossRef]
- Camarero, J.J.; Sánchez-Salguero, R.; Sangüesa-Barreda, G.; Matías, L. Tree species from contrasting hydrological niches show divergent growth and water-use efficiency. Dendrochronologia 2018, 52, 87–95. [Google Scholar] [CrossRef]
- Tavşanoğlu, Ç.; Pausas, J.G. A functional trait database for Mediterranean Basin plants. Sci. Data 2018, 5, 180135. [Google Scholar] [CrossRef]
- Navas, A.; Walling, D.; Quine, T.; Mach’ın, J.; Soto, J. Soil redistribution patterns and factors along a transect in central Ebro basin (NE Spain) and its controls. In Sediment Budgets 1; Walling, D.E., Horowitz, A.J., Eds.; IAHS: Oxfordshire, UK, 2005; Volume 291, pp. 70–77. [Google Scholar]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; Blackburn Press: Caldwell, ID, USA, 2001. [Google Scholar]
- Larsson, L. CDendro & CooRecorder Program Package, Version 9.8.1. 2005. Available online: https://www.cybis.se/forfun/dendro (accessed on 10 September 2024).
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Biondi, F.; Qeadan, F. A Theory-Driven Approach to Tree-Ring Standardization: Defining the Biological Trend from Expected Basal Area Increment. Tree Ring Res. 2008, 64, 81–96. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. Am. Meteorol. Soc. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Bunn, A.G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 2010, 28, 251–258. [Google Scholar] [CrossRef]
- Bunn, A.G.; Korpela, M.; Biondi, F.; Campelo, F.; Mérian, P.; Qeadan, F.; Zang, C. dplR: Dendrochronology Program Library in R. R Package Version 1.7.7. 2024. Available online: https://CRAN.R-project.org/package=dplR (accessed on 13 September 2024).
- Zang, C.; Biondi, F. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 13 September 2024).
- Quero, J.L.; Sterck, F.J.; Martínez-Vilalta, J.; Villar, R. Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia 2011, 166, 45–57. [Google Scholar] [CrossRef]
- Brunetti, C.; Tattini, M.; Guidi, L.; Velikova, V.; Ferrini, F.; Fini, A. An integrated overview of physiological and biochemical responses of Celtis australis to drought stress. Urban For. Urban Green. 2019, 46, 126480. [Google Scholar] [CrossRef]
- Lloret, F.; Siscart, D.; Dalmases, C. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob. Chang. Biol. 2004, 10, 2092–2099. [Google Scholar] [CrossRef]
- Camarero, J.J.; Franquesa, M.; Sangüesa-Barreda, G. Timing of drought triggers distinct growth responses in holm oak: Implications to predict warming-induced forest defoliation and growth decline. Forests 2015, 6, 1576–1597. [Google Scholar] [CrossRef]
- Camarero, J.J.; Rubio-Cuadrado, Á. Relating Climate, Drought and Radial Growth in Broadleaf Mediterranean Tree and Shrub Species: A New Approach to Quantify Climate-Growth Relationships. Forests 2020, 11, 1250. [Google Scholar] [CrossRef]
- Baquedano, F.J.; Castillo, F. Drought tolerance in the Mediterranean species Quercus coccifera, Quercus ilex, Pinus halepensis, and Juniperus phoenicea. Photosynthetica 2007, 45, 229–238. [Google Scholar] [CrossRef]
- Baker, W.L.; Ehle, D. Uncertainty in surface-fire history: The case of ponderosa pine forests in the western United States. Can. J. For. Res. 2001, 31, 1205–1226. [Google Scholar] [CrossRef]
- Margolis, E.Q.; Guiterman, C.H.; Chavardès, R.D.; Coop, J.D.; Copes-Gerbitz, K.; Dawe, D.A.; Falk, D.A.; Johnston, J.D.; Larson, E.; Li, H.; et al. The North American tree-ring fire-scar network. Ecosphere 2022, 13, e4159. [Google Scholar] [CrossRef]
- Marschall, J.M.; Stambaugh, M.C.; Jones, B.C.; Abadir, E. Spatial Variability of Historical Fires across a Red Pine–Oak Landscape, Pennsylvania, USA. Ecosphere 2019, 10, e02978. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Batllori, E.; De Cáceres, M.; Brotons, L.; Ackerly, D.D.; Moritz, M.A.; Lloret, F. Compound fire-drought regimes promote ecosystem transitions in Mediterranean ecosystems. J. Ecol. 2019, 107, 1187–1198. [Google Scholar] [CrossRef]
Species | Latitude °N | Longitude °W | Elevation (m a.s.l.) | Slope (°) | Aspect (°) | Dbh (cm) | Crown Defoliation (%) |
---|---|---|---|---|---|---|---|
Q. ilex | 42.1668 | 0.3690 | 604 | 20 | N (30) | 13.8 ± 0.8 | 49.7 ± 5.8 |
C. australis | 42.1838 | 0.3709 | 637 | 5 | N-NE (40) | 23.5 ± 2.0 | −−− |
Species | Fire (F)/No Fire (N) | No. Trees | No. Radii | Timespan | Age at 1.3 m (Years) | Tree-Ring Width (mm) | AR1 | Rbar | EPS |
---|---|---|---|---|---|---|---|---|---|
Q. ilex | F | 15 | 30 | 1963–2022 | 44 ± 8 | 1.06 ± 0.29 | 0.46 ± 0.24 | 0.30 | 0.86 |
N | 15 | 30 | 1942–2022 | 62 ± 12 | 0.92 ± 0.20 | 0.44 ± 0.20 | 0.32 | 0.87 | |
U (p) | 683 (0.11) | 764 (0.18) | 825 (0.46) | – | – | ||||
C. australis | F | 15 | 28 | 1943–2022 | 51 ± 16 | 2.08 ± 0.74 | 0.54 ± 0.15 | 0.34 | 0.89 |
N | 15 | 26 | 1958–2022 | 41 ± 14 | 2.06 ± 0.84 | 0.36 ± 0.28 | 0.36 | 0.90 | |
U (p) | 712 (0.14) | 803 (0.30) | 725 (0.16) | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camarero, J.J.; Valeriano, C.; Ortega, M. Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species. Fire 2024, 7, 400. https://doi.org/10.3390/fire7110400
Camarero JJ, Valeriano C, Ortega M. Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species. Fire. 2024; 7(11):400. https://doi.org/10.3390/fire7110400
Chicago/Turabian StyleCamarero, J. Julio, Cristina Valeriano, and Miguel Ortega. 2024. "Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species" Fire 7, no. 11: 400. https://doi.org/10.3390/fire7110400
APA StyleCamarero, J. J., Valeriano, C., & Ortega, M. (2024). Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species. Fire, 7(11), 400. https://doi.org/10.3390/fire7110400