Machine Learning Model Reveals Land Use and Climate’s Role in Amazon Wildfires: Present and Future Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overview
2.3. Fire Occurrence Data
2.4. Environmental and Human Predictors
2.5. Climatic Variables
2.6. Variable Selection
2.7. MaxEnt Modeling for Fire Prediction
2.8. Spatial Fire Distribution of the Baseline Model and Change Analysis
3. Results
3.1. Performance of the Modelling Approaches
3.2. Variable Importance
3.3. Baseline Model of Fire Probability
3.4. Projected Future Fire Probabilities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santín, C.; Moustakas, A.; Doerr, S.H. Searching the flames: Trends in global and regional public interest in wildfires. Environ. Sci. Policy 2023, 146, 151–161. [Google Scholar] [CrossRef]
- Brando, P.M.; Soares-Filho, B.; Rodrigues, L.; Assunçao, A.; Morton, D.; Tuchschneider, D.; Fernandes, E.C.M.; Macedo, M.N.; Oliveira, U.; Coe, M.T. The gathering firestorm in southern Amazonia. Sci. Adv. 2020, 6, eaay1632. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, R.A.; Soares, B.S.; Nepstad, D.; Coe, M.; Rodrigues, H.; Assunçao, R. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol. Appl. 2011, 21, 1573–1590. [Google Scholar] [CrossRef] [PubMed]
- Alencar, A.A.C.; Arruda, V.L.S.; da Silva, W.V.; Conciani, D.E.; Costa, D.P.; Crusco, N.; Duverger, S.G.; Ferreira, N.C.; Franca-Rocha, W.; Hasenack, H.; et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. Remote Sens. 2022, 14, 2510. [Google Scholar] [CrossRef]
- Libonati, R.; Pereira, J.M.C.; Da Camara, C.C.; Peres, L.F.; Oom, D.; Rodrigues, J.A.; Santos, F.L.M.; Trigo, R.M.; Gouveia, C.M.P.; Machado-Silva, F.; et al. Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Sci. Rep. 2021, 11, 4400. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; DeFries, R.S. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 2010, 7, 1171–1186. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Bowman, D.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Chuvieco, E.; Chen, Y.; Yang, H. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 2021, 7, eabh2646. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Laurance, W.F. Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol. 2002, 18, 311–325. [Google Scholar] [CrossRef]
- Aragao, L.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva, C.H.L.; Arai, E.; Aguiar, A.P.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Sayedi, S.S.; Abbott, B.W.; Vannière, B.; Leys, B.; Colombaroli, D.; Romera, G.G.; Slowinski, M.; Aleman, J.C.; Blarquez, O.; Feurdean, A.; et al. Assessing changes in global fire regimes. Fire Ecol. 2024, 20, 18. [Google Scholar] [CrossRef]
- Brando, P.M.; Balch, J.K.; Nepstad, D.C.; Morton, D.C.; Putz, F.E.; Coe, M.T.; Silvério, D.; Macedo, M.N.; Davidson, E.A.; Nóbrega, C.C.; et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl. Acad. Sci. USA 2014, 111, 6347–6352. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, H.; de Oliveira, J.F.; da Silva, M.V.; Jardim, A.; Shah, M.; Gobo, J.P.A.; Blanco, C.J.C.; Pimentel, L.C.G.; da Silva, C.; da Silva, E.B.; et al. Dynamics of Fire Foci in the Amazon Rainforest and Their Consequences on Environmental Degradation. Sustainability 2022, 14, 9419. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- van Marle, M.J.E.; Field, R.D.; van der Werf, G.R.; de Wagt, I.A.E.; Houghton, R.A.; Rizzo, L.V.; Artaxo, P.; Tsigaridis, K. Fire and deforestation dynamics in Amazonia (1973–2014). Glob. Biogeochem. Cycles 2017, 31, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Cano-Crespo, A.; Oliveira, P.J.C.; Boit, A.; Cardoso, M.; Thonicke, K. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures. J. Geophys. Res.-Biogeosci. 2015, 120, 2095–2107. [Google Scholar] [CrossRef]
- Sorrensen, C. Contributions of fire use study to land use/cover change frameworks: Understanding landscape change in agricultural frontiers. Hum. Ecol. 2004, 32, 395–420. [Google Scholar] [CrossRef]
- Barbosa, M.L.F.; Delgado, R.C.; Andrade, C.F.; Teodoro, P.E.; Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Recent trends in the fire dynamics in Brazilian Legal Amazon: Interaction between the ENSO phenomenon, climate and land use. Environ. Dev. 2021, 39, 100648. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Alencar, A.A.; Brando, P.M.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 2015, 25, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Le Page, Y.; Morton, D.; Hartin, C.; Bond-Lamberty, B.; Pereira, J.M.C.; Hurtt, G.; Asrar, G. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dyn. 2017, 8, 1237–1246. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M.A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Mapbiomas_Project. Collection 5. 2022. Available online: http://mapbiomas.org (accessed on 10 November 2023).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Wright, J.S.E.A. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 2017, 114, 8481–8486. [Google Scholar] [CrossRef]
- Valente, F.; Laurini, M. A spatio-temporal analysis of fire occurrence patterns in the Brazilian Amazon. Sci. Rep. 2023, 13, 12727. [Google Scholar] [CrossRef]
- Santana, M.M.M.d.; Vasconcelos, R.N.d.; Mariano-Neto, E. Fire propensity in Amazon savannas and rainforest and effects under future climate change. Int. J. Wildland Fire 2023, 32, 149–163. [Google Scholar] [CrossRef]
- MapBiomas_Project. Fire Collection 3. 2023. Available online: http://mapbiomas.org (accessed on 10 November 2023).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Melo, K.D.; Delgado, R.C.; Pereira, M.G.; Ortega, G.P.; Sirca, C. The Consequences of Climate Change in the Brazilian Western Amazon: A New Proposal for a Fire Risk Model in Rio Branco, Acre. Forests 2024, 15, 211. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M.; Feng, L.; Klein, D.; et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Vignali, S.; Barras, A.G.; Arlettaz, R.; Braunisch, V. SDMtune: An R package to tune and evaluate species distribution models. Ecol. Evol. 2020, 10, 11488–11506. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Parisien, M.A.; Snetsinger, S.; Greenberg, J.A.; Nelson, C.R.; Schoennagel, T.; Dobrowski, S.Z.; Moritz, M.A. Spatial variability in wildfire probability across the western United States. Int. J. Wildland Fire 2012, 21, 313–327. [Google Scholar] [CrossRef]
- Forkel, M.; Wutzler, T. Greenbrown—Land Surface Phenology and Trend Analysis. A Package for the R Software. 2015. Available online: http://greenbrown.r-forge.r-project.org/ (accessed on 11 April 2024).
- Vilar, L.; Gómez, I.; Martínez-Vega, J.; Echavarría, P.; Riaño, D.; Martín, P. Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms. PLoS ONE 2016, 11, e0161344. [Google Scholar] [CrossRef]
- Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2015, 24, 77–86. [Google Scholar] [CrossRef]
- Ferreira, I.J.M.; Campanharo, W.A.; Barbosa, M.L.F.; da Silva, S.S.; Selaya, G.; Aragao, L.; Anderson, L.O. Assessment of fire hazard in Southwestern Amazon. Front. For. Glob. Chang. 2023, 6, 1107417. [Google Scholar] [CrossRef]
- Fonseca, M.G.; Alves, L.M.; Aguiar, A.P.D.; Arai, E.; Anderson, L.O.; Rosan, T.M.; Shimabukuro, Y.E.; de Aragao, L. Effects of climate and land-use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Chang. Biol. 2019, 25, 2931–2946. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.G.; Anderson, L.O.; Arai, E.; Shimabukuro, Y.E.; Xaud, H.A.M.; Xaud, M.R.; Madani, N.; Wagner, F.H.; Aragao, L. Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Nino event. Ecol. Appl. 2017, 27, 2514–2527. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.G.; Aragao, L.; Lima, A.; Shimabukuro, Y.E.; Arai, E.; Anderson, L.O. Modelling fire probability in the Brazilian Amazon using the maximum entropy method. Int. J. Wildland Fire 2016, 25, 955–969. [Google Scholar] [CrossRef]
- Devisscher, T.; Anderson, L.O.; Aragao, L.; Galván, L.; Malhi, Y. Increased Wildfire Risk Driven by Climate and Development Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE 2016, 11, e0161323. [Google Scholar] [CrossRef]
- Morton, D.C.; Defries, R.S.; Randerson, J.T.; Giglio, L.; Schroeder, W.; van Der Werf, G.R. Agricultural intensification increases deforestation fire activity in Amazonia. Glob. Chang. Biol. 2008, 14, 2262–2275. [Google Scholar] [CrossRef]
- Ribeiro, A.F.S.; Santos, L.; Randerson, J.T.; Uribe, M.R.; Alencar, A.A.C.; Macedo, M.N.; Morton, D.C.; Zscheischler, J.; Silvestrini, R.A.; Rattis, L.; et al. The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region. Commun. Earth Environ. 2024, 5, 96. [Google Scholar] [CrossRef]
- Ray, D.; Nepstad, D.; Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 2005, 15, 1664–1678. [Google Scholar] [CrossRef]
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol. 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. 2011, 38, L12703. [Google Scholar] [CrossRef]
- Marengo, J.A.; Souza, C.A.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 228. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaria-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; van der Schrier, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Nino 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef] [PubMed]
- Panisset, J.S.; Libonati, R.; Gouveia, C.M.P.; Machado-Silva, F.; França, D.A.; França, J.R.A.; Peres, L.F. Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin. Int. J. Climatol. 2018, 38, 1096–1104. [Google Scholar] [CrossRef]
- Bedia, J.; Herrera, S.; Gutiérrez, J.M.; Benali, A.; Brands, S.; Mota, B.; Moreno, J.M. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric. For. Meteorol. 2015, 214, 369–379. [Google Scholar] [CrossRef]
- Baijnath-Rodino, J.A.; Le, P.V.V.; Foufoula-Georgiou, E.; Banerjee, T. Historical spatiotemporal changes in fire danger potential across biomes. Sci. Total Environ. 2023, 870, 161954. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.F.S.; Brando, P.M.; Santos, L.; Rattis, L.; Hirschi, M.; Hauser, M.; Seneviratne, S.I.; Zscheischler, J. A compound event-oriented framework to tropical fire risk assessment in a changing climate. Environ. Res. Lett. 2022, 17, 065015. [Google Scholar] [CrossRef]
- Balch, J.K.; Nepstad, D.C.; Curran, L.M.; Brando, P.M.; Portela, O.; Guilherme, P.; Reuning-Scherer, J.D.; de Carvalho, O. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For. Ecol. Manag. 2011, 261, 68–77. [Google Scholar] [CrossRef]
Class | Variable (Unit) | Description of Data | Resolution | Type 1 | Source |
---|---|---|---|---|---|
Climate normals | Tavg (°C) | Annual Mean Temperature | 30 arc-seconds | Cont | [32] for the period 1971–2000 and [33] for future fire models |
ΔTdiurnal (°C) | Annual Mean Diurnal Range (Mean of monthly (max temp − min)) temp)) | 30 arc-seconds | Cont | ||
Isother (%) | Isothermality (ΔTdiurnal/ΔTannual × 100) | 30 arc-seconds | Cont | ||
Tseason (°C) | Temperature Seasonality (Standard Deviation) | 30 arc-seconds | Cont | ||
Tmax (°C) | Max Temperature of Warmest Month | 30 arc-seconds | Cont | ||
Tmin (°C) | Min Temperature of Coldest Month | 30 arc-seconds | Cont | ||
ΔTannual (°C) | Annual Temperature Range | 30 arc-seconds | Cont | ||
Twet (°C) | Mean Temperature of Wettest Quarter | 30 arc-seconds | Cont | ||
Tdry (°C) | Mean Temperature of Driest Quarter | 30 arc-seconds | Cont | ||
Twarm (°C) | Mean Temperature of Warmest Quarter | 30 arc-seconds | Cont | ||
Tcold (°C) | Mean Temperature of Coldest Quarter | 30 arc-seconds | Cont | ||
PPT (mm) | Annual Precipitation | 30 arc-seconds | Cont | ||
PPTwet (mm) | Precipitation of Wettest Month (max([PPTi, …, PPT12])) | 30 arc-seconds | Cont | ||
PPTdry (mm) | Precipitation of Driest Month (min([PPTi, …, PPT12])) | 30 arc-seconds | Cont | ||
PPTseason (%) | Precipitation Seasonality (coefficient of variation) | 30 arc-seconds | Cont | ||
PPTwet (mm) | Precipitation of Wettest Quarter | 30 arc-seconds | Cont | ||
PPTdry (mm) | Precipitation of Driest Quarter | 30 arc-seconds | Cont | ||
PPTwar (mm) | Precipitation of Warmest Quarter | 30 arc-seconds | Cont | ||
PPTcold (mm) | Precipitation of Coldest Quarter | 30 arc-seconds | Cont | ||
Land use and land cover | LULC (class) | Landsat-based classification of Pan-Amazonian for 2022 | 30 m resampling for 30 arc-seconds | Cat | [26] |
Vegetation | Dis_Veget (km) | Euclidean distance calculated from a binary vegetation raster Forest Natural Formation | 30 arc-seconds | Cont | [26] |
Anthropogenic factor | Dist_Nonveg (km) | Euclidian distance calculated from a binary non vegetated area raster | 30 arc-seconds | Cont | [26] |
Dist_water (km) | Euclidian distance calculated from a binary water raster | 30 arc-seconds | Cont | [26] | |
Dist_urban (km) | Euclidian distance calculated from a binary urban raster | 30 arc-seconds | Cont | [26] | |
Dist_Farming (km) | Euclidian distance calculated from a binary farming raster | 30 arc-seconds | Cont | [26] |
Variable | Permutation Importance (%) |
---|---|
Dist_Farming | 53.4 |
Dist_Nonveg | 11.2 |
Tseason (°C) | 9.3 |
PPTcold (mm) | 9.0 |
Tmax (°C) | 4.6 |
PPT (mm) | 3.8 |
PPTwet (mm) | 3.3 |
PPTwar (mm) | 2.9 |
Isother (%) | 1.9 |
LULC | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Santana, M.M.M.; de Vasconcelos, R.N.; Mariano Neto, E.; da Franca Rocha, W.d.J.S. Machine Learning Model Reveals Land Use and Climate’s Role in Amazon Wildfires: Present and Future Scenarios. Fire 2024, 7, 338. https://doi.org/10.3390/fire7100338
de Santana MMM, de Vasconcelos RN, Mariano Neto E, da Franca Rocha WdJS. Machine Learning Model Reveals Land Use and Climate’s Role in Amazon Wildfires: Present and Future Scenarios. Fire. 2024; 7(10):338. https://doi.org/10.3390/fire7100338
Chicago/Turabian Stylede Santana, Mariana Martins Medeiros, Rodrigo Nogueira de Vasconcelos, Eduardo Mariano Neto, and Washington de Jesus Sant’Anna da Franca Rocha. 2024. "Machine Learning Model Reveals Land Use and Climate’s Role in Amazon Wildfires: Present and Future Scenarios" Fire 7, no. 10: 338. https://doi.org/10.3390/fire7100338
APA Stylede Santana, M. M. M., de Vasconcelos, R. N., Mariano Neto, E., & da Franca Rocha, W. d. J. S. (2024). Machine Learning Model Reveals Land Use and Climate’s Role in Amazon Wildfires: Present and Future Scenarios. Fire, 7(10), 338. https://doi.org/10.3390/fire7100338