MTTfireCAL Package for R—An Innovative, Comprehensive, and Fast Procedure to Calibrate the MTT Fire Spread Modelling System
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Flowchart of MTTfireCAL
2.3. Data Required
2.3.1. Dated Historical Fires
2.3.2. Study Area Boundaries
2.3.3. Fire Weather
2.3.4. Ignition Probability
2.3.5. Map of Fuel Models
2.3.6. Landscape File
2.4. Fire Weather Data and Classification (Functions get_fire_weather, fire_weather_nc, and build_report)
2.5. Defining the Number of Duration Parameters (Function buid_report)
2.6. Generate Ignitions (Function gen_ign)
2.7. Running FConstMTT (Functions run_fconstmtt and run_fconstmtt_simple)
2.8. Evaluating the Quality of the Calibration
2.8.1. Fire Size Distribution (Function evaluate_fire_size)
2.8.2. Burn Probability vs. Historical Fire Frequency (Function evaluate_BP_nxburned)
2.9. Minimum Number of Fire Runs Required for Calibration
3. Results
3.1. Minimum Number of Fire Runs Required for Calibration
3.2. Validation
4. Discussion and Conclusions
- The minimum number of fire runs (or ignitions) required to reproduce the historical fire patterns during the calibration is dependent on the size of the landscape;
- We suggest a value between 50 and 20 for the ratio between the burnable area in the landscape (in hectares) and the number of ignitions used in the calibration can be used as a rule of thumb to assess the minimum number of ignitions required for calibration;
- The combination of both the MTTfireCAL tool and a low number of ignitions used resulted in a faster and better calibration than the manual trial-and-error process, reducing the amount of time required to calibrate the MTT in one order of magnitude;
- Because MTTfireCAL runs multiple combinations automatically, it releases the user to complete other tasks while calibrating the MTT.
Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merrill, D.F.; Alexander, M.E. Glossary of Forest Fire Management Terms, 4th ed.; Pub. NRCC No. 26516; Canadian Committee on Forest Fire Management, National Research Council of Canada: Ottawa, ON, Canada, 1987.
- Finney, M.A.; McAllister, S.S.; Forthofer, J.M.; Grumstrup, T.P. Wildland Fire Behaviour: Dynamics, Principles and Processes; CSIRO Publishing: Clayton, Australia, 2021. [Google Scholar]
- Finney, M.A. Fire growth using minimum travel time methods. Can. J. For. Res. 2002, 32, 1420–1424. [Google Scholar] [CrossRef]
- Finney, M.A.; Andrews, P.L.; Butler, B.W. An overview of FlamMap fire modeling capabilities. In Fuels Management-How to Measure Success: Conference Proceedings, Proceedings of the RMRS-P-41, Portland, OR, USA, 28–30 March 2006; Andrews, P.L., Butler, B.W., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain: Fort Collins, CO, USA, 2006. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. In Intermountain Forest & Range Experiment Station; Forest Service, US Department of Agriculture: Ogden, UT, USA, 1972. [Google Scholar]
- Byram, G.M. Combustion of forest fuels. In Forest Fire: Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Ager, A.A.; Evers, C.R.; Day, M.A.; Preisler, H.K.; Barros, A.M.G.; Nielsen-Pincus, M. Network analysis of wildfire transmission and implications for risk governance. PLoS ONE 2017, 12, e0172867. [Google Scholar] [CrossRef] [PubMed]
- Sá, A.C.L.; Aparicio, B.A.; Benali, A.; Bruni, C.; Salis, M.; Silva, F.; Marta-Almeida, M.; Pereira, S.; Rocha, A.; Pereira, J.M.C. Coupling wildfire spread simulations and connectivity analysis for hazard assessment: A case study in Serra da Cabreira, Portugal. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 22, 3917–3938. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Bailey, J.D.; Pineda, N.; Vega-García, C. Towards a comprehensive wildfire management strategy for Mediterranean areas: Framework development and implementation in Catalonia, Spain. J. Environ. Manag. 2019, 231, 303–320. [Google Scholar] [CrossRef]
- Salis, M.; Arca, B.; Del Giudice, L.; Palaiologou, P.; Alcasena-Urdiroz, F.; Ager, A.; Fiori, M.; Pellizzaro, G.; Scarpa, C.; Schirru, M.; et al. Application of simulation modeling for wildfire exposure and transmission assessment in Sardinia, Italy. Int. J. Disaster Risk Reduct. 2021, 58, 102189. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Day, M.A. Development of Comprehensive Fuel Management Strategies for Reducing Wildfire Risk in Greece. Forests 2020, 11, 789. [Google Scholar] [CrossRef]
- Jahdi, R.; Salis, M.; Alcasena, F.; Del Giudice, L. Assessing the Effectiveness of Silvicultural Treatments on Fire Behavior in the Hyrcanian Temperate Forests of Northern Iran. Environ. Manag. 2023, 1–16. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Barros, A.M.; Ager, A.A.; Fernandes, P.M. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. Int. J. Wildland Fire 2016, 25, 619–632. [Google Scholar] [CrossRef]
- Alcasena, F.; Ager, A.A.; Belavenutti, P.; Krawchuk, M.; Day, M.A. Contrasting the efficiency of landscape versus community protection fuel treatment strategies to reduce wildfire exposure and risk. J. Environ. Manag. 2022, 309, 114650. [Google Scholar] [CrossRef]
- Galizia, L.F.; Alcasena, F.; Prata, G.; Rodrigues, M. Assessing expected economic losses from wildfires in eucalypt plantations of western Brazil. For. Policy Econ. 2021, 125, 102405. [Google Scholar] [CrossRef]
- Aparício, B.A.; Alcasena, F.; Ager, A.; Chung, W.; Pereira, J.M.; Sá, A.C. Evaluating priority locations and potential benefits for building a nation-wide fuel break network in Portugal. J. Environ. Manag. 2022, 320, 115920. [Google Scholar] [CrossRef] [PubMed]
- Ager, A.A.; Evers, C.R.; Day, M.A.; Alcasena, F.J.; Houtman, R. Planning for future fire: Scenario analysis of an accelerated fuel reduction plan for the western United States. Landsc. Urban Plan. 2021, 215, 104212. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Galatsidas, S.; Papalampros, L.; Day, M.A. Spatial optimization and tradeoffs of alternative forest management scenarios in Macedonia, Greece. Forests 2021, 12, 697. [Google Scholar] [CrossRef]
- Cardil, A.; Monedero, S.; Schag, G.; de-Miguel, S.; Tapia, M.; Stoof, C.R.; Silva, C.A.; Mohan, M.; Cardil, A.; Ramirez, J. Fire behavior modeling for operational decision-making. Curr. Opin. Environ. Sci. Health 2021, 23, 100291. [Google Scholar] [CrossRef]
- Massada, A.B.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C. Effects of ignition location models on the burn patterns of simulated wildfires. Environ. Model. Softw. 2011, 26, 583–592. [Google Scholar] [CrossRef]
- Salis, M.; Ager, A.A.; Arca, B.; Finney, M.A.; Bacciu, V.; Duce, P.; Spano, D. Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. Int. J. Wildland Fire 2012, 22, 549–565. [Google Scholar] [CrossRef]
- Benali, A.; Sá, A.C.L.; Pinho, J.; Fernandes, P.M.; Pereira, J.M.C. Understanding the Impact of Different Landscape-Level Fuel Management Strategies on Wildfire Hazard in Central Portugal. Forests 2021, 12, 522. [Google Scholar] [CrossRef]
- Benali, A.; Russo, A.; Sá, A.C.; Pinto, R.M.; Price, O.; Koutsias, N.; Pereira, J.M. Determining fire dates and locating ignition points with satellite data. Remote Sens. 2016, 8, 326. [Google Scholar] [CrossRef]
- Salis, M.; Laconi, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Lozano, O.; de Oliveira, A.F.; Spano, D. Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. For. Ecol. Manag. 2016, 368, 207–221. [Google Scholar] [CrossRef]
- Senande-Rivera, M.; Insua-Costa, D.; Miguez-Macho, G. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 2022, 13, 1208. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Pereira, J.M.C.; Silva, P.C.; Melo, I.; Oom, D.; Baldassarre, G.; Pereira, M.G. Cartografia de Regimes de Fogo à Escala da Freguesia (1980–2017). ForestWISE (Coord.)-Projetos AGIF 2021 (P32100231), Vila Real, Portugal. Available online: https://www.agif.pt/app/uploads/2022/05/Relat%C3%B3rio-Regimes-do-Fogo-%C3%A0-escala-da-freguesia-1980_2017_FW_vs_final.pdf (accessed on 21 May 2023).
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; Van Der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef]
- Mahood, A.L.; Lindrooth, E.J.; Cook, M.C.; Balch, J.K. Country-level fire perimeter datasets (2001–2021). Sci. Data 2022, 9, 458. [Google Scholar] [CrossRef]
- Alcasena, F.; Ager, A.; Le Page, Y.; Bessa, P.; Loureiro, C.; Oliveira, T. Assessing wildfire exposure to communities and protected areas in Portugal. Fire 2021, 4, 82. [Google Scholar] [CrossRef]
- Hufkens, K.; Stauffer, R.; Campitelli, E. Ecmwfr: Programmatic Interface to the Two European Centre for Medium-Range Weather Forecasts API Services; Version v1.2.0; Zenodo: Meyrin, Switzerland, 2019. [Google Scholar]
- Pierce, D. Ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R Package Version 1.16. 2021. Available online: https://CRAN.R-project.org/package=ncdf4 (accessed on 21 May 2023).
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Hassler, B.; Lauer, A. Comparison of Reanalysis and Observational Precipitation Datasets Including ERA5 and WFDE5. Atmosphere 2021, 12, 1462. [Google Scholar] [CrossRef]
- Mistry, M.N.; Schneider, R.; Masselot, P.; Royé, D.; Armstrong, B.; Kyselý, J.; Orru, H.; Sera, F.; Tong, S.; Lavigne, É.; et al. Comparison of weather station and climate reanalysis data for modelling temperature-related mortality. Sci. Rep. 2022, 12, 5178. [Google Scholar] [CrossRef]
- Aragoneses, E.; García, M.; Salis, M.; Ribeiro, L.M.; Chuvieco, E. Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system. Earth Syst. Sci. Data 2023, 15, 1287–1315. [Google Scholar] [CrossRef]
- EFFIS. European Fuel Map, Based on JRC Contract Number 384347 on the “Development of a European Fuel Map”; European Commission: Luxembourg, 2017. [Google Scholar]
- Fernandes, P.; Gonçalves, H.; Loureiro, C.; Fernandes, M.; Costa, T.; Cruz, M.G.; Botelho, H. Modelos de combustível florestal para Portugal. In Actas do 6° Congresso Florestal Nacional. Sociedade Portuguesa de Ciências Florestais; SPCF: Lisboa, Portugal, 2009. [Google Scholar]
- MacQueen, J. Classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January 1966; University of California: Los Angeles, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Stahl, D.; Sallis, H. Model-based cluster analysis. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 341–358. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2013, 1, 90–95. [Google Scholar]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 21 May 2023).
- Lai, K.; Twine, N.; O’brien, A.; Guo, Y.; Bauer, D. Artificial intelligence and machine learning in bioinformatics. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 272–286. [Google Scholar]
- Banfield, J.D.; Raftery, A.E. Model-Based Gaussian and Non-Gaussian Clustering. Biometrics 1993, 49, 803. [Google Scholar] [CrossRef]
- Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. Mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R J. 2016, 8, 28. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wildland Fire 2015, 24, 443–460. [Google Scholar] [CrossRef]
- Vertii, A.; Ou, J.; Yu, J.; Yan, A.; Pagès, H.; Liu, H.; Zhu, L.J.; Kaufman, P.D. Two contrasting classes of nucleolus-associated domains in mouse fibroblast heterochromatin. Genome Res. 2019, 29, 1235–1249. [Google Scholar] [CrossRef]
- Bachantourian, M.; Kalabokidis, K.; Palaiologou, P.; Chaleplis, K. Optimizing Fuel Treatments Allocation to Protect the Wildland–Urban Interface from Large-Scale Wildfires in Greece. Fire 2023, 6, 75. [Google Scholar] [CrossRef]
- Braga, S.R.; de Oliveira, M.L.R.; Gorgens, E.B. Forestmangr: Forest Mensuration and Management. R Package Version 0.9.3. 2021. Available online: https://cran.r-project.org/package=forestmangr (accessed on 21 May 2023).
- Hamner, B.; Frasco, M.; Dell, E. Metrics: Evaluation Metrics for Machine Learning. 2022. Available online: https://cran.r-project.org/web/packages/Metrics/Metrics.pdf (accessed on 21 May 2023).
- Embry, I.; Hoos, A.; Diehl, T.H. Ie2misc: Irucka Embry’s Miscellaneous USGS Functions. 2022. Available online: https://cran.r-project.org/package=ie2misc (accessed on 21 May 2023).
- Janssen, P.H.; Heuberger, P.S. Calibration of process-oriented models. Ecol. Model. 1995, 83, 55–66. [Google Scholar] [CrossRef]
- Lourenço, B. Gestão do Risco de Incêndio em Plantações Florestais das Empresas de Celulose. Master’s Thesis, School of Agriculture, University of Lisbon, Lisboa, Portugal, 2022. [Google Scholar]
- Bruni, C.; Aparício, B.; Lourenço, B.; Marta-Almeida, M.; Benali, A.; Barreiro, S.; Rocha, A.; Sá, A.C.L. Wildfire Exposure and Risk in Pulp Paper Companies’ Plantations under Extreme Weather Conditions: A Case Study in NORTH-Western Portugal. Manuscript Submitted for Publication. 2023. Available online: https://ssrn.com/abstract=4104359 (accessed on 21 May 2023).
- Cardil, A.; Monedero, S.; Silva, C.A.; Ramirez, J. Adjusting the rate of spread of fire simulations in real-time. Ecol. Model. 2019, 395, 39–44. [Google Scholar] [CrossRef]
- Benali, A.; Guiomar, N.; Gonçalves, H.; Mota, B.; Silva, F.; Fernandes, P.M.; Mota, C.; Penha, A.; Santos, J.; Pereira, J.M.C.; et al. The Portuguese Large Wildfire Spread Database (PT-FireSprd). Earth Syst. Sci. Data 2023, preprint. [Google Scholar] [CrossRef]
- Storey, M.A.; Bedward, M.; Price, O.F.; Bradstock, R.A.; Sharples, J.J. Derivation of a Bayesian fire spread model 896 using large-scale wildfire observations. Environ. Model. Softw. 2021, 144, 105127. [Google Scholar] [CrossRef]
- Lozano, O.M.; Salis, M.; Ager, A.A.; Arca, B.; Alcasena, F.J.; Monteiro, A.T.; Finney, M.A.; Del Giudice, L.; Scoccimarro, E.; Spano, D. Assessing climate change impacts on wildfire exposure in Mediterranean areas. Risk Anal. 2017, 37, 1898–1916. [Google Scholar] [CrossRef]
Cluster | T | RH | WS | RF |
---|---|---|---|---|
1 | 34 | 24 | 20 | 0.59 |
2 | 27 | 40 | 27 | 0.41 |
Cluster ID | Wind Direction | Relative Frequency (%) |
---|---|---|
1 | N | 12 |
E | 0.9 | |
SE | 8.5 | |
S | 3.1 | |
SW | 1.4 | |
W | 6.8 | |
NW | 26.2 | |
2 | N | 2.3 |
E | 0.6 | |
SE | 12.3 | |
S | 0.3 | |
SW | 0.9 | |
W | 0.9 | |
NW | 23.9 |
Duration Class | Size Interval (ha) | Relative Frequency (%) |
---|---|---|
1 | 100–600 | 70.7 |
2 | 600–1000 | 8.6 |
3 | 1000–10,000 | 17 |
4 | >10,000 | 3.7 |
Duration Class 1 | Duration Class 2 | Duration Class 3 | Duration Class 4 | |
---|---|---|---|---|
Minimum | 100 | 250 | 600 | 1750 |
Maximum | 200 | 400 | 900 | 2500 |
Step | 50 | 25 | 100 | 250 |
Combination | NRMSE (%) | RMSE | Pearson Correlation | MAE | RAE | NSE |
---|---|---|---|---|---|---|
1 | 38 | 0.029 | 0.974 | 0.019 | 0.281 | 0.91 |
2 | 47 | 0.036 | 0.955 | 0.027 | 0.409 | 0.87 |
3 | 91 | 0.070 | 0.722 | 0.043 | 0.650 | 0.5 |
4 | 116 | 0.089 | 0.510 | 0.051 | 0.775 | 0.19 |
5 | 116 | 0.089 | 0.519 | 0.056 | 0.849 | 0.2 |
6 | 116 | 0.089 | 0.508 | 0.055 | 0.829 | 0.19 |
Study Area | NRMSE (%) | Pearson Correlation | RAE | NSE | Spatial Correlation |
---|---|---|---|---|---|
AM Porto | 68 | 0.95 | 0.33 | 0.87 | 0.4 |
102 | 0.86 | 0.43 | 0.70 | 0.41 | |
Médio Tejo | 6 | 1 | 0.092 | 0.99 | 0.44 |
15 | 0.99 | 0.15 | 0.95 | 0.38 | |
Barlavento Algarvio | 38 | 0.97 | 0.281 | 0.91 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparício, B.A.; Benali, A.; Pereira, J.M.C.; Sá, A.C.L. MTTfireCAL Package for R—An Innovative, Comprehensive, and Fast Procedure to Calibrate the MTT Fire Spread Modelling System. Fire 2023, 6, 219. https://doi.org/10.3390/fire6060219
Aparício BA, Benali A, Pereira JMC, Sá ACL. MTTfireCAL Package for R—An Innovative, Comprehensive, and Fast Procedure to Calibrate the MTT Fire Spread Modelling System. Fire. 2023; 6(6):219. https://doi.org/10.3390/fire6060219
Chicago/Turabian StyleAparício, Bruno A., Akli Benali, José M. C. Pereira, and Ana C. L. Sá. 2023. "MTTfireCAL Package for R—An Innovative, Comprehensive, and Fast Procedure to Calibrate the MTT Fire Spread Modelling System" Fire 6, no. 6: 219. https://doi.org/10.3390/fire6060219
APA StyleAparício, B. A., Benali, A., Pereira, J. M. C., & Sá, A. C. L. (2023). MTTfireCAL Package for R—An Innovative, Comprehensive, and Fast Procedure to Calibrate the MTT Fire Spread Modelling System. Fire, 6(6), 219. https://doi.org/10.3390/fire6060219