Empirical Modelling of Stem Cambium Heating Caused by Prescribed Burning in Mediterranean Pine Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Prescribed Burning Treatment
2.3. Data Collection and Processing
2.4. Statistical Analysis
2.5. Model Assessment and Evaluation
3. Results
3.1. Exploratory Data Analysis
3.2. Hurdle Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindenmayer, D.B.; Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl. Acad. Sci. USA 2020, 117, 12481–12485. [Google Scholar] [CrossRef] [PubMed]
- European Commission; Vallejo Calzada, V.R.; Faivre, N.; Cardoso Castro Rego, F.M.; Moreno Rodríguez, J.M.; Xanthopoulos, G. Sparking firesmart policies in the EU. In Forest Fires; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, K.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing firemanagement in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef]
- Tapias, R.; Climent, J.; Pardos, J.; Gil, L. Life histories of Mediterranean pines. Plant Ecol. 2004, 171, 53–68. [Google Scholar] [CrossRef]
- Fulé, P.; Ribas, M.; Gutiérrez, E.; Vallejo, R.; Kaye, M. Forest structure and fire history in an old Pinus nigra forest, eastern Spain. For. Ecol. Manag. 2008, 255, 1234–1242. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Johnson, E.A. How forest fires kill trees: A review of the fundamental biophysical processes. Scand. J. For. Res. 2007, 22, 500–515. [Google Scholar] [CrossRef]
- Hood, S.M.; Cluck, D.R.; Smith, S.L.; Ryan, K.C. Using bark char codes to predict post-fire cambium mortality. Fire Ecol. 2008, 4, 57–73. [Google Scholar] [CrossRef]
- Kleynhans, E.J.; Atchley, A.L.; Michaletz, S.T. Modeling fire effects on plants: From organs to ecosystems. In Plant Disturbance Ecology; Academic Press: Cambridge, MA, USA, 2021; pp. 383–421. [Google Scholar]
- Vines, R.G. Heat transfer through bark, and the resistance of trees to fire. Aust. J. Bot. 1968, 16, 499–514. [Google Scholar] [CrossRef]
- Bär, A.; Nardini, A.; Mayr, S. Post-fire effects in xylem hydraulics of Picea abies, Pinus sylvestris and Fagus sylvatica. New Phytol. 2018, 217, 1484–1493. [Google Scholar] [CrossRef]
- Madrigal, J.; Souto-García, J.; Calama, R.; Guijarro, M.; Picos, J.; Hernando, C. Resistance of Pinus pinea L. bark to fire. Int. J. Wildland Fire 2019, 28, 342–353. [Google Scholar] [CrossRef]
- Espinosa, J.; Rodríguez de Rivera, O.; Madrigal, J.; Guijarro, M.; Hernando, C. Predicting potential cambium damage and fire resistance in Pinus nigra Arn. ssp. salzmannii. For. Ecol. Manag. 2020, 474, 118372. [Google Scholar] [CrossRef]
- Van Mantgem, P.; Schwartz, M. An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine. Can. J. For. Res. 2004, 34, 1343–1347. [Google Scholar] [CrossRef]
- Balfour, D.A.; Midgley, J.J. Fire induced stem death in an African acacia is not caused by canopy scorching. Austral Ecol. 2006, 31, 892–896. [Google Scholar] [CrossRef]
- Thies, W.G.; Westlind, D.J.; Loewen, M.; Brenner, G. Prediction of delayed mortality of fire-damaged ponderosa pine following prescribed fires in eastern Oregon, USA. Int. J. Wildland Fire 2006, 15, 19–29. [Google Scholar] [CrossRef]
- Hood, S.M.; Varner, J.M.; Van Mantgem, P.; Cansler, C.A. Fire and tree death: Understanding and improving modeling of fire-induced tree mortality. Environ. Res. Lett. 2018, 13, 113004. [Google Scholar] [CrossRef]
- Sevanto, S.; McDowell, N.G.; Dickman, T.; Pangle, R.; Pockman, W.T. How do trees die? A test of hydraulic failure and carbon starvation hypothesis. Plant Cell Environ. 2014, 37, 153–161. [Google Scholar] [CrossRef]
- Michaletz, S.T. Xylem dysfunction in fires: Towards a hydraulic theory of plant responses to multiple disturbance stressors. New Phytol. 2018, 217, 1391–1393. [Google Scholar] [CrossRef]
- O’Brien, J.J.; Hiers, J.K.; Varner, J.M.; Hoffman, C.M.; Dickinson, M.B.; Michaletz, S.T.; Loudermilk, E.L.; Butler, B.W. Advances in mechanistic approaches to quantifying biophysical fire effects. Curr. For. Rep. 2018, 4, 161–177. [Google Scholar] [CrossRef]
- Renninger, H.J.; Clark, K.L.; Skowronski, N.; Schäfer, K.V. Effects of a prescribed fire on water use and photosynthetic capacity of pitch pines. Trees 2013, 27, 1115–1127. [Google Scholar] [CrossRef]
- Battipaglia, G.; De Micco, V.; Fournier, T.; Aronne, G.; Carcaillet, C. Isotopic and anatomical signals for interpreting fire-related responses in Pinus halepensis. Trees Struct. Funct. 2014, 28, 1095–1104. [Google Scholar] [CrossRef]
- Battipaglia, G.; Strumia, S.; Esposito, A.; Giuditta, E.; Sirignano, C.; Altieri, S.; Rutigliano, F.A. The effects of prescribed burning on Pinus halepensis Mill. as revealed by dendrochronological and isotopic analyses. For. Ecol. Manag. 2014, 334, 201–208. [Google Scholar] [CrossRef]
- Alonso, M.; Rozados, M.J.; Vega, J.A.; Perez-Gorostiaga, P.; Cuiñas, P.; Fonturbel, M.T.; Fernández, C. Biochemical responses of Pinus pinaster trees to fire-induced trunk girdling and crown scorch: Secondary metabolites and pigments as needle chemical indicators. J. Chem. Ecol. 2002, 28, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Lombardero, M.J.; Ayres, M.P.; Ayres, B.D. Effects of fire and mechanical wounding on Pinus resinosa resin defenses, beetle attacks, and pathogens. For. Ecol. Manag. 2006, 225, 349–358. [Google Scholar] [CrossRef]
- Gutsell, S.L.; Johnson, E.A. How fire scars are formed: Coupling a disturbance process to its ecological effect. Can. J. For. Res. 1996, 26, 166–174. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Johnson, E.A. Fire effects on trees. In Forest Fires: Behavior and Ecological Effects; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: New York, NY, USA, 2001; pp. 477–525. [Google Scholar]
- Reifsnyder, W.E.; Herrington, L.P.; Splat, K.W. Thermophysical Properties of Bark of Shortleaf, Longleaf, and Red Pine; Yale School of Forestry & Environmental Studies Bulletin Series. 80; 1967. [Google Scholar]
- Pinard, M.A.; Huffman, J. Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. J. Trop. Ecol. 1997, 13, 727–740. [Google Scholar] [CrossRef]
- Pausas, J.G. Bark thickness and fire regime: Another twist. New Phytol. 2017, 213, 13–15. [Google Scholar] [CrossRef]
- Espinosa, J.; Madrigal, J.; Pando, V.; De la Cruz, A.C.; Guijarro, M.; Hernando, C. The effect of low-intensity prescribed burns in two seasons on litterfall biomass and nutrient content. Int. J. Wildland Fire 2020, 29, 1029–1041. [Google Scholar] [CrossRef]
- Bär, A.; Mayr, S. Bark insulation: Ten Central Alpine tree species compared. For. Ecol. Manag. 2020, 474, 118361. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Johnson, E.A. A biophysical process model of tree mortality in surface fires. Can. J. For. Res. 2008, 38, 2013–2029. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Johnson, E.A. Temperature-dependent rate models of vascular cambium cell mortality. Can. J. For. Res. 2004, 34, 546–559. [Google Scholar] [CrossRef]
- Chatziefstratiou, E.K.; Bohrer, G.; Bova, A.S.; Subramanian, R.; Frasson, R.P.M.; Scherzer, A.; Butler, B.W.; Dickinson, M.B. FireStem2D—A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires. PLoS ONE 2013, 8, e70110. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.C.; Frandsen, W.H. Basal injury from smoldering fires in mature Pinus ponderosa Laws. Int. J. Wildland Fire 1991, 1, 107–118. [Google Scholar] [CrossRef]
- Guyette, R.P.; Stambaugh, M.C. Post-oak fire scars as a function of diameter, growth, and tree age. For. Ecol. Manag. 2004, 198, 183–192. [Google Scholar] [CrossRef]
- Schwemlein, D.J.; Williams, R.A. Effects of Landscape Position and Season of Burn on Fire Temperature in Southern Ohio’s Mixed Oak Forests; e-Gen. Tech. Rep. SRS–101; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2007; pp. 250–257. [Google Scholar]
- Stevenson, A.P.; Muzika, R.; Guyette, R.P. Fire scars and tree vigor following prescribed fires in Missouri Ozark upland forests. In Proceedings of the 16th Central Hardwood Forest Conference, West Lafayette, IN, USA, 8–9 April 2008; USDA Forest Service Gen. Tech. Rep. NRS-P-24. Northern Research Station: Newtown Square, PA, USA, 2008; pp. 525–534. [Google Scholar]
- Kinkead, C.S.; Stambaugh, M.C.; Kabrick, J.M. Mortality, scarring, and growth in an oak woodland following prescribed fire and commercial thinning in the Ozark Highlands. For. Ecol. Manag. 2017, 403, 12–26. [Google Scholar] [CrossRef]
- Dey, D.; Schweitzer, C. A review on the dynamics of prescribed fire, tree mortality, and injury in managing oak natural communities to minimize economic loss in North America. Forests 2018, 9, 461. [Google Scholar] [CrossRef]
- Marschall, J.M.; Guyette, R.P.; Stambaugh, M.C.; Stevenson, A.P. Fire damage effects on red oak timberproduct value. For. Ecol. Manag. 2014, 320, 182–189. [Google Scholar] [CrossRef]
- Mann, D.P.; Wiedenbeck, J.K.; Dey, D.C.; Saunders, M.R. Evaluating economic impacts of prescribed fire in the Central Hardwood Region. J. For. 2020, 118, 275–288. [Google Scholar] [CrossRef]
- Saunders, M.R.; Mann, D.P.; Stanis, S.; Wiedenbeck, J.K.; Dey, D.C.; Schuler, T.M. Prescribed Fire Causes Wounding and Minor Tree Quality Degradation in Oak Forests. Forests 2023, 14, 227. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Ryan, K.C. Introduction: Strengthening the foundation of wildland fire effects prediction for research and management. Fire Ecol. 2010, 6, 1–12. [Google Scholar] [CrossRef]
- Smith, A.M.; Sparks, A.M.; Kolden, C.A.; Abatzoglou, J.T.; Talhelm, A.F.; Johnson, D.M.; Boschetti, L.; Lutz, J.A.; Apostol, K.G.; Yedinak, K.M.; et al. Towards a new paradigm in fire severity research using dose–response experiments. Int. J. Wildland Fire 2016, 25, 158–166. [Google Scholar] [CrossRef]
- Hood, S.M. Physiological responses to fire that drive tree mortality. Plant Cell Environ. 2020, 44, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.A.; Miyanishi, K. The need for consideration of fire behavior and effects in prescribed burning. Restor. Ecol. 1995, 3, 271–278. [Google Scholar] [CrossRef]
- Butler, B.W.; Dickinson, M.B. Tree injury and mortality in fires: Developing process-based models. Fire Ecol. 2010, 6, 55–79. [Google Scholar] [CrossRef]
- Kavanagh, K.L.; Dickinson, M.B.; Bova, A.S. A way forward forfire-caused tree mortality prediction: Modeling a physiological consequence of fire. Fire Ecol 2010, 6, 80–94. [Google Scholar] [CrossRef]
- Dickman, L.T.; Jonko, A.K.; Linn, R.R.; Altintas, I.; Atchley, A.L.; Bär, A.; Collins, A.D.; Dupuy, J.-L.; Gallagher, M.R.; Hiers, J.K.; et al. Integrating plant physiology into simulation of fire behavior and effects. New Phytol. 2023, 238, 952–970. [Google Scholar] [CrossRef] [PubMed]
- Hare, R.C. Bark surface and cambium temperatures in simulated forest fires. J. For. 1965, 63, 437–440. [Google Scholar]
- Bauer, G.; Speck, T.; Blömer, J.; Bertling, J.; Speck, O. Insulation capability of the bark of trees with different fire adaptation. J. Mater. Sci. 2010, 45, 5950–5959. [Google Scholar] [CrossRef]
- Subasinghe Achchige, Y.M.S.; Volkova, L.; Filkov, A.I.; Weston, C.J. Effect of bark properties on the cambium cell viability of Eucalyptus species under low radiative heat exposure. For. Ecol. Manag. 2022, 521, 120443. [Google Scholar] [CrossRef]
- Graves, S.J.; Rifai, S.W.; Putz, F.E. Outer bark thickness decreases more with height on stems of fire-resistant than fire-sensitive Floridian oaks (Quercus spp.; Fagaceae). Am. J. Bot. 2014, 101, 2183–2188. [Google Scholar] [CrossRef]
- Peterson, D.L.; Ryan, K.C. Modeling postfire conifer mortality for long-range planning. Environ. Manag. 1986, 10, 797–808. [Google Scholar] [CrossRef]
- Rigolot, E. Predicting postfire mortality of Pinus halepensis Mill. and Pinus pinea L. Plant Ecol. 2004, 171, 139–151. [Google Scholar] [CrossRef]
- Cannac, M.; Pasqualini, V.; Barboni, T.; Morandini, F.; Ferrat, L. Phenolic compounds of Pinus laricio needles: A bioindicator ofthe effects of prescribed burning in function of season. Sci. Total Environ. 2009, 407, 4542–4548. [Google Scholar] [CrossRef] [PubMed]
- Beghin, R.; Cherubini, P.; Battipaglia, G.; Siegwolf, R.; Saurer, M.; Bovio, G. Tree-ring growth and stable isotopes (13 C and 15 N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L. Trees 2011, 25, 627–636. [Google Scholar] [CrossRef]
- Sayer, M.A.S.; Tyree, M.C.; Kuehler, E.A.; Jackson, J.K.; Dillaway, D.N. Physiological mechanisms of foliage recovery after spring or fall crown scorch in young longleaf pine (Pinus palustris Mill.). Forests 2020, 11, 208. [Google Scholar] [CrossRef]
- Harrington, M.G. Ponderosa pine mortality from Spring, Summer, and Fall crown scorching. West. J. Appl. For. 1987, 2, 14–16. [Google Scholar] [CrossRef]
- Valor, T.; González-Olabarria, J.R.; Piqué, M.; Casals, P. The effects of burning season and severity on the mortality over time of Pinus nigra spp. salzmannii (Dunal) Franco and P. sylvestris L. For. Ecol. Manag. 2017, 406, 172–183. [Google Scholar] [CrossRef]
- Sword Sayer, M.A.S.; Haywood, J.D. Fine root production and carbohydrate concentrations of mature longleaf pine (Pinus palustris P. Mill.) as affected by season of prescribed fire and drought. Trees 2006, 20, 165–175. [Google Scholar] [CrossRef]
- Partelli-Feltrin, R.; Johnson, D.M.; Sparks, A.M.; Adams, H.D.; Kolden, C.A.; Nelson, A.S.; Smith, A.M.S. Drought increases vulnerability of Pinus ponderosa saplings to fire-induced mortality. Fire 2020, 3, 56. [Google Scholar] [CrossRef]
- Knapp, B.O.; Marschall, J.M.; Stambaugh, M.C. Effects of long-term prescribed burning on timber value in hardwood forests of the Missouri Ozarks. In Proceedings of the 20th Central Hardwood Forest Conference, Columbia, MO, USA, 28 March–1 April 2016; Kabrick, J.M., Dey, D.C., Knapp, B.O., Larsen, D.R., Shifley, S.R., Stelzer, H.E., Eds.; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2017; pp. 304–313. [Google Scholar]
- Hély, C.; Flannigan, M.; Bergeron, Y. Modeling tree mortality following wildfire in the southeastern Canadian mixed-wood boreal forest. For. Sci. 2003, 49, 566–576. [Google Scholar]
- McHugh, C.W.; Kolb, T.E. Ponderosa pine mortality following fire in northern Arizona. Int. J. Wildland Fire 2003, 12, 7–22. [Google Scholar] [CrossRef]
- González, J.R.; Trasobares, A.; Palahi, M.; Pukkala, T. Predicting stand damage and tree survival in burned forests in Catalonia (North-East Spain). Ann. For. Sci. 2007, 64, 733–742. [Google Scholar] [CrossRef]
- Vega, J.; Jimenez, E.; Vega, D.; Ortiz, L.; Pérez, J.R. Pinus pinaster Ait. tree mortality following wildfire in Spain. For. Ecol. Manag. 2011, 261, 2232–2242. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Fernandes, M.M.; Loureiro, C. Survival to prescribed fire of plantation-grown Corsican black pine in northern Portugal. Ann. For. Sci. 2012, 69, 813–820. [Google Scholar] [CrossRef]
- Botequim, B.; Arias-Rodil, M.; Garcia-Gonzalo, J.; Silva, A.; Marques, S.; Borges, J.G.; Oliveira, M.M.; Tomé, M. Modeling post-fire mortality in pure and mixed forest stands in Portugal—A forest planning-oriented model. Sustainability 2017, 9, 390. [Google Scholar] [CrossRef]
- Harrington, M.G. Predicting Pinus ponderosa mortality from dormant season and growing-season fire injury. Int. J. Wildland Fire 1993, 3, 65–72. [Google Scholar] [CrossRef]
- Woolley, T.; Shaw, D.C.; Ganio, L.M.; Fitzgerald, S. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers. Int. J. Wildland Fire 2012, 21, 1. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Falk, D.A.; Williams, E.C.; Das, A.J.; Stephenson, N.L. Pre-fire drought and competition mediate post-fire conifer mortality in western US National Parks. Ecol. Appl. 2018, 28, 1730–1739. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M. Combining Forest structure data and fuel modelling to classify fire hazard in Portugal. Ann. For. Sci. 2009, 66, 415. [Google Scholar]
- Fernandes, P.M.; Luz, A.; Loureiro, C. Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal. For. Ecol. Manag. 2010, 260, 883–892. [Google Scholar] [CrossRef]
- Fernández-Alonso, J.M.; Vega, J.A.; Jiménez, E.; Ruiz-González, A.D.; Álvarez-González, J.G. Spatially modeling wildland fire severity in pine forests of Galicia, Spain. Eur. J. For. Res. 2017, 136, 105–121. [Google Scholar]
- Hood, S.; Bentz, B. Predicting postfire Douglas-fir beetle attacks and tree mortality in the northern Rocky Mountains. Can. J. For. Res. 2007, 37, 1058–1069. [Google Scholar] [CrossRef]
- Ryan, K.C.; Reinhardt, E.D. Predicting postfire mortality of seven western conifers. Can. J. For. Res. 1988, 18, 1291–1297. [Google Scholar] [CrossRef]
- Regelbrugge, J.C.; Conard, S.G. Modeling tree mortality following wildfire in Pinus ponderosa forests in the central Sierra-Nevada of California. Int. J. Wildland Fire 1993, 3, 139–148. [Google Scholar] [CrossRef]
- Sieg, C.; McMillin, J.D.; Fowler, J.F.; Allen, K.K.; Negron, J.F.; Wadleigh, L.L.; Anhold, J.A.; Gibson, K.E. Best predictors for postfire mortality of ponderosa pine trees in the Intermountain West. For. Sci. 2006, 52, 718–728. [Google Scholar]
- Catry, F.X.; Pausas, J.G.; Moreira, F.; Fernandes, P.M.; Rego, F. Post-fire response variability in Mediterranean Basin tree species in Portugal. Int. J. Wildland Fire 2013, 22, 919–932. [Google Scholar] [CrossRef]
- Shearman, T.M.; Varner, J.M.; Hood, S.M.; van Mantgem, P.J.; Cansler, C.A.; Wright, M. Predictive accuracy of post-fire conifer death declines over time in models based on crown and bole injury. Ecol. Appl. 2022, 33, e2760. [Google Scholar] [CrossRef]
- Camarero, J.J.; Díaz-Delgado, R.; Colangelo, M.; Valeriano, C.; Sánchez-Salguero, R.; Madrigal, J. Differential Post-Fire Recovery of Tree and Shrub Growth and Water-Use Efficiency in a Mediterranean Coastal Dune System. Fire 2022, 5, 135. [Google Scholar] [CrossRef]
- Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C. Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests. Int. J. Wildland Fire 2006, 15, 463–478. [Google Scholar] [CrossRef]
- Ryan, K.C. Evaluating potential tree mortality from prescribed burning. In Proceedings of the Symposium on Site Preparation and Fuels Management on Steep Terrain, Spokane, WA, USA, 15–17 February 1982; Baumgartner, D.M., Ed.; Washington State University: Pullman, WA, USA, 1982; pp. 167–179. [Google Scholar]
- Barker, J.S.; Gray, A.N.; Fried, J.S. The effects of crown scorch on post-fire delayed mortality are modified by drought exposure in California (USA). Fire 2022, 5, 21. [Google Scholar] [CrossRef]
- Varner, J.M.; Hood, S.M.; Aubrey, D.P.; Yedinak, K.; Hiers, J.K.; Jolly, W.M.; Shearman, T.M.; McDaniel, J.K.; O’Brien, J.J.; Rowell, E.M. Tree crown injury from wildland fires: Causes, measurement and ecological and physiological consequences. New Phytol. 2021, 231, 1676–1685. [Google Scholar] [CrossRef]
- Schwilk, D.W.; Knapp, E.E.; Ferrenberg, S.M.; Keeley, J.E.; Caprio, A.C. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest. For. Ecol. Manag. 2006, 232, 36–45. [Google Scholar] [CrossRef]
- Grayson, L.M.; Progar, R.A.; Hood, S.M. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds. For. Ecol. Manag. 2017, 399, 213–226. [Google Scholar] [CrossRef]
- Espinosa, J.; Rodríguez De Rivera, O.; Madrigal, J.; Guijarro, M.; Hernando, C. Use of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of Pinus nigra and Pinus pinaster stands. Forests 2020, 11, 1006. [Google Scholar] [CrossRef]
- Waldrop, T.A.; Goodrick, S.L. Introduction to Prescribed Fires in Southern Ecosystems; Science Update SRS-054; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2012; 80p. [Google Scholar]
- Gould, J.S.; Sullivan, A.L. Two methods for calculating wildland fire rate of forward spread. Int. J. Wildland Fire 2020, 29, 272–281. [Google Scholar] [CrossRef]
- Butler, B.W.; Webb, B.W.; Jimenez, D.; Reardon, J.A.; Jones, J.L. Thermally induced bark swelling in four North American tree species. Can. J. For. Res. 2005, 35, 452–460. [Google Scholar] [CrossRef]
- Hernando, C.; Guijarro, M. Temperature Regime in Pinus pinaster and P. halepensis Trunks. In Proceedings of the III International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Luso, Portugal, 16–20 November 1998; Viegas, D.X., Ed.; ADAI: Luso-Coimbra, Portugal, 1998; pp. 801–813. [Google Scholar]
- Ganz, S.; Käber, Y.; Adler, P. Measuring tree height with remote sensing—A comparison of photogrammetric and LiDAR data with different field measurements. Forests 2019, 10, 694. [Google Scholar] [CrossRef]
- Wotton, B.M.; Gould, J.S.; McCaw, W.L.; Cheney, N.P.; Taylor, S.W. Flame temperature and residence time of fires in dry eucalypt forest. Int. J. Wildland Fire 2011, 21, 270–281. [Google Scholar] [CrossRef]
- Cantoni, E.; Mills Flemming, J.; Welsh, A.H. A Random-Effects Hurdle Model for Predicting Bycatch of Endangered Marine Species. Ann. Appl. Stat. 2017, 11, 2178–2199. [Google Scholar] [CrossRef]
- Mullahy, J. Specification and testing of some modified count data models. J. Econom. 1986, 33, 341–365. [Google Scholar] [CrossRef]
- Heilbron, D.C. Zero-altered and other regression models for count data with added zeros. Biom. J. 1994, 36, 531–547. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Gelfand, A.E.; Citron-Pousty, S. Zero-inflated models with application to spatial count data. Environ. Ecol. Stat. 2002, 9, 341–355. [Google Scholar] [CrossRef]
- Rathbun, S.L.; Fei, S. A spatial zero-inflated Poisson regression model for oak regeneration. Environ. Ecol. Stat. 2006, 13, 409–426. [Google Scholar] [CrossRef]
- Feng, C.X.; Dean, C.B. Joint analysis of multivariate spatial count and zero-heavy count outcomes using common spatial factor models. Environmetrics 2012, 23, 493–508. [Google Scholar] [CrossRef]
- Feng, C.X. A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. J. Stat. Distrib. Appl. 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Rizopoulos, D. Package ‘GLMMadaptive’. 2022. [Google Scholar]
- Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 2012, 17, 228. [Google Scholar] [CrossRef]
- Pan, W. Akaike’s information criterion in generalized estimating equations. Biometrics 2001, 57, 120–125. [Google Scholar] [CrossRef]
- Van Mantgem, P.; Schwartz, M. Bark heat resistance of small trees in Californian mixed conifer forests: Testing some model assumptions. For. Ecol. Manag. 2003, 178, 341–352. [Google Scholar] [CrossRef]
- Partelli-Feltrin, R.; Smith, A.M.; Adams, H.D.; Thompson, R.A.; Kolden, C.A.; Yedinak, K.M.; Johnson, D.M. Death from hunger or thirst? Phloem death, rather than xylem hydraulic failure, as a driver of fire-induced conifer mortality. New Phytol. 2023, 237, 1154–1163. [Google Scholar] [CrossRef]
- Kerns, B.K.; Day, M.A. Prescribed fire regimes subtly alter ponderosa pine forest plant community structure. Ecosphere 2018, 9, e02529. [Google Scholar] [CrossRef]
- Santoro, A.E.; Lombardero, M.J.; Ayres, M.P.; Ruel, J.J. Interactions between fire and bark beetles in an old growth pine forest. For. Ecol. Manag. 2001, 144, 245–254. [Google Scholar] [CrossRef]
- Filip, G.M.; Schmitt, C.L.; Scott, D.W.; Fitzgerald, S.A. Understanding and defining mortality in western conifer forests. West. J. Appl. For. 2007, 22, 105–115. [Google Scholar] [CrossRef]
- Santolamazza-Carbone, S.; Pestaña, M.; Vega, J.A. Post-fire attractiveness of maritime pines (Pinus pinaster Ait.) to xylophagous insects. J. Pest Sci. 2011, 84, 343. [Google Scholar] [CrossRef]
- Thies, W.G.; Westlind, D.J.; Loewen, M. Season of prescribed burn in ponderosa pine forests in eastern Oregon: Impact on pine mortality. Int. J. Wildland Fire 2005, 14, 223–231. [Google Scholar] [CrossRef]
- Hough, W.A. Carbohydrate reserves of saw-palmetto: Seasonal variation and effects of burning. For. Sci. 1968, 14, 399–405. [Google Scholar]
- Garrison, G.A. Carbohydrate Reserves and Response to Use; USDA For. Serv. Gen. Tech. Rep. GTR-INT-1; 1972. [Google Scholar]
- Ryan, K.C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fenn. 2002, 36, 13–39. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Gower, S.T. Estimation of stand-level carbon pools in boreal forests: A comparison of hyperspectral optical and LiDAR remote sensing approaches. Environ. Res. Lett. 2010, 5, 014003. [Google Scholar]
- Swezy, D.M.; Agee, J.K. Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can. J. For. Res. 1991, 21, 626–634. [Google Scholar] [CrossRef]
- Skinner, C.N.; Chang, C. Fire regimes, past and present. In Sierra Nevada Ecosystem Project: Final Report to Congress; Vol. II. Assessments and Scientific Basis for Management Options. Wildland Resources Center Report No. 37; Centers for Water and Wildland Resources, University of California: Davis, CA, USA, 1996; Volume 2, pp. 1041–1069. [Google Scholar]
- Progar, R.A.; Hrinkevich, K.H.; Clark, E.S.; Rinella, M.J. Prescribed burning in ponderosa pine: Fuel reductions and redistributing fuels near boles to prevent injury. Fire Ecol. 2017, 13, 149–161. [Google Scholar] [CrossRef]
- Westlind, D.J.; Kelsey, R.G. Predicting post-fire attack of red turpentine or western pine beetle on ponderosa pine and its impact on mortality probability in Pacific Northwest forests. For. Ecol. Manag. 2019, 434, 181–192. [Google Scholar] [CrossRef]
- Menges, E.S.; Deyrup, M.A. Postfire survival in south Florida slash pine: Interacting effects of fire intensity, fire season, vegetation, burn size, and bark beetles. Int. J. Wildland Fire 2001, 10, 53–63. [Google Scholar] [CrossRef]
- Knapp, E.E.; Estes Becky, L.; Skinner, C.N. Ecological Effects of Prescribed Fire Season: A Literature Review and Synthesis for Managers; Gen.Tech. Rep. PSW-GTR-224; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2009; 80p. [Google Scholar]
- Fernandes, P.M.; Vega, J.A.; Jimenez, E.; Rigolot, E. Fire resistance of European pines. For. Ecol. Manag. 2008, 256, 246–255. [Google Scholar] [CrossRef]
- Tapias, R.; Gil, L.; Fuentes-Utrilla, P.; Pardos, J.A. Canopy seed banks in Mediterranean pines of south-eastern Spain: A comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. J. Ecol. 2001, 89, 629–638. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Rigolot, E. The fire ecology and management of maritime pine (Pinus pinaster Ait.). For. Ecol. Manag. 2007, 241, 1–13. [Google Scholar] [CrossRef]
- López-Serrano, F.R.; Rubio Caballero, E.; Andrés Abellán, M.; Del Cerro Barja, A.; García Morote, F.A.; De las Heras Ibañez, J.; Lucas-Borja, M.E.; Moya Navarro, D.; Odi Lara, M. Efectos del cambio climático en los bosques castellanomanchegos. In Impactos del Cambio Climático en Castilla-La Mancha; Rodríguez Torres, A., Fernández Castro, H., Rojano Saura, I., Eds.; Fundación General de Medio Ambiente: Castilla-La Mancha, Spain, 2009; pp. 162–204. [Google Scholar]
- Fernández-Manso, A.; Quintano, C.; Suarez-Seoane, S.; Marcos, E.; Calvo, L. Remote Sensing Techniques for Monitoring Fire Damage and Recovery of Mediterranean Pine Forests: Pinus pinaster and Pinus halepensis as Case Studies. Pines Their Mix. For. Ecosyst. Mediterr. Basin 2021, 585–599. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Jing, X.; Candel-Perez, D.; Parhizkar, M.; Rocha, F.; Heydari, M.; Muñoz-Rojas, M.; Zema, D.A. Afforestation with Pinus nigra Arn ssp salzmannii along an elevation gradient: Controlling factors and implications for climate change adaptation. Trees 2022, 36, 93–102. [Google Scholar] [CrossRef]
- Espinosa, J.; Palheiro, P.; Loureiro, C.; Ascoli, D.; Esposito, A.; Fernandes, P.M. Fire-severity mitigation by prescribed burning assessed from fire-treatment encounters in maritime pine stands. Can. J. For. Res. 2019, 49, 205–211. [Google Scholar] [CrossRef]
- Young, D.J.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 2017, 20, 78–86. [Google Scholar] [CrossRef]
- Lawes, M.J.; Adie, H.; Russell-Smith, J.; Murphy, B.; Midgley, J.J. How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2011, 2, 1–13. [Google Scholar] [CrossRef]
- Brando, P.M.; Nepstad, D.C.; Balch, J.K.; Bolker, B.; Christman, M.C.; Coe, M.; Putz, F.E. Fire-induced tree mortality in a neotropical forest: The roles of bark traits, tree size, wood density and fire behavior. Glob. Chang. Biol. 2012, 18, 630–641. [Google Scholar] [CrossRef]
- Jackson, J.F.; Adams, D.C.; Jackson, U.B. Allometry of constitutive defense: A model and a comparative test with tree bark and fire regime. Am. Nat. 1999, 153, 614–632. [Google Scholar] [CrossRef]
- Midgley, J.J.; Lawes, M.J. Relative bark thickness: Towards standardised measurement and analysis. Plant Ecol. 2016, 217, 677–681. [Google Scholar] [CrossRef]
- Hengst, G.E.; Dawson, J.O. Bark properties and fire resistance of selected tree species from the central hardwood region of North America. Can. J. For. Res. 1994, 24, 688–696. [Google Scholar] [CrossRef]
- Gignoux, J.; Clobert, J.; Menaut, J.C. Alternative fire resistance strategies in savanna trees. Oecologia 1997, 110, 576–583. [Google Scholar] [CrossRef]
- VanderWeide, B.L.; Hartnett, D.C. Fire resistance of tree species explains historical gallery forest community composition. For. Ecol. Manag. 2011, 261, 1530–1538. [Google Scholar] [CrossRef]
- Odhiambo, B.; Meincken, M.; Seifert, T. The protective role of bark against fire damage: A comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees 2014, 28, 555–565. [Google Scholar] [CrossRef]
- Rosell, J.A.; Olson, M.E. The evolution of bark mechanics and storage across habitats in a clade of tropical trees. Am. J. Bot. 2014, 101, 764–777. [Google Scholar] [CrossRef]
- Cansler, C.A.; Hood, S.M.; Varner, J.M.; van Mantgem, P.J.; Agne, M.C.; Andrus, R.A.; Ayres, M.P.; Ayres, B.D.; Bakker, J.D.; Battaglia, M.; et al. The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Sci. Data 2020, 7, 194. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Height of crown scorch in forest fires. Can. J. For. Res. 1973, 3, 373–378. [Google Scholar] [CrossRef]
- Molina, J.R.; Ortega, M.; Silva, F.R. Scorch height and volume modeling in prescribed fires: Effects of canopy gaps in Pinus pinaster stands in Southern Europe. For. Ecol. Manag. 2022, 506, 119979. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Johnson, E.A. A heat transfer model of crown scorch in forest fires. Can. J. For. Res. 2006, 36, 2839–2851. [Google Scholar] [CrossRef]
- Jiménez, E.; Vega, J.A.; Fernández, C. Response of Pinus pinaster Ait. trees to controlled localized application of heat to stem and crown. Trees 2017, 31, 1203–1213. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.L.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Espinosa, J.; Madrigal, J.; De La Cruz, A.C.; Guijarro, M.; Jimenez, E.; Hernando, C. Short-term effects of prescribed burning on litterfall biomass in mixed stands of Pinus nigra and Pinus pinaster and pure stands of Pinus nigra in the Cuenca Mountains (Central-Eastern Spain). Sci. Total Environ. 2018, 618, 941–951. [Google Scholar] [CrossRef]
- Ganio, L.M.; Progar, R.A. Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA. For. Ecol. Manag. 2017, 390, 47–67. [Google Scholar] [CrossRef]
- Westlind, D.J.; Kerns, B.K. Long-Term Effects of Burn Season and Frequency on Ponderosa Pine Forest Fuels and Seedlings. Fire Ecol. 2017, 13, 42–61. [Google Scholar] [CrossRef]
- Ducrey, M.; Duhoux, F.; Huc, R.; Rigolot, E. The ecophysiological and growth responses of Aleppo pine (Pinus halepensis) to controlled heating applied to the base of the trunk. Can. J. For. Res. 1996, 26, 1366–1374. [Google Scholar] [CrossRef]
- Costa, J.J.; Oliveira, L.A.; Viegas, D.X.; Neto, L.P. On the temperature distribution inside a tree under fire conditions. Int. J. Wildland Fire 1991, 1, 87–96. [Google Scholar] [CrossRef]
Species | Stand Type | Site | Elevation | D | Percentage of Species | DBH | D60 | HT | H1 | H1V | BT | CV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
-- | -- | -- | m a.s.l. | Trees ha−1 | % | cm | cm | m | m | % | cm | -- |
Pinus nigra | Pure | BE | 1232 | 1059 ± 34 | 100 ± 00 | 21.1 ± 10.8 | 23.1 ± 11.5 | 13.8 ± 5.0 | 8.5 ± 3.7 | 39 ± 13 | 2.1 ± 0.9 | 0.36 ± 0.16 |
Mixed | EP | 1015 | 695 ± 30 | 84 ± 14 | 18.9 ± 10.4 | 20.5 ± 11.2 | 12.1 ± 5.2 | 6.4 ± 3.4 | 47 ± 15 | 1.8 ± 0.9 | 0.33 ± 0.17 | |
Pinus pinaster | Pure | QR | 977 | 394 ± 17 | 100 ± 0 | 40.3 ± 5.4 | 41.8 ± 6.6 | 16.6 ± 2.2 | 9.8 ± 2.2 | 41 ± 9 | 4.8 ± 0.8 | 0.39 ± 0.09 |
Pure | CR | 641 | 968 ± 21 | 100 ± 0 | 19.4 ± 5.8 | 21.8 ± 6.2 | 13.2 ± 2.3 | 8.3 ± 1.4 | 37 ± 6 | 2.0 ± 0.5 | -- | |
Mixed | EP | 1015 | 695 ± 30 | 14 ± 14 | 30.0 ± 9.3 | 32.3 ± 9.0 | 16.8 ± 2.9 | 10.3 ± 2.4 | 38 ± 13 | 3.1 ± 0.8 | 0.28 ± 0.15 | |
Mixed | GR | 436 | 355 ± 20 | 82 ± 31 | -- | -- | -- | -- | -- | 3.4 ± 0.7 | -- | |
Pinus pinea | Mixed | GR | 436 | 355 ± 20 | 18 ± 31 | -- | -- | -- | -- | -- | 2.8 ± 0.5 | -- |
BE | BE | BE | EP | EP | EP | QR | QR | CR | GR | ||
---|---|---|---|---|---|---|---|---|---|---|---|
May | November | June | May | November | June | March | April | April | November | ||
2016 | 2016 | 2019 | 2016 | 2016 | 2019 | 2015 | 2018 | 1996 | 2015 | ||
T | °C | 20.4 ± 1.5 | 12.0 ± 0.9 | 29.0 ± 5.4 | 21.5 ± 1.2 | 11.9 ± 0.4 | 27.6 ± 5.8 | 8.0 ± 1.4 | 18.9 ± 0.4 | 15.4 ± 3.5 | -- |
RH | % | 32.7 ± 2.3 | 43.5 ± 0.8 | 21.0 ± 4.9 | 47.7 ± 5.3 | 67.0 ± 1.3 | 34.6 ± 10.8 | -- | 38.0 ± 1.5 | 61.7 ± 15.8 | -- |
WS | m s−1 | 0.8 ± 0.1 | 0.1 ± 0.1 | 1.8 ± 1.1 | 0.8 ± 0.6 | 0.3 ± 0.3 | 0.8 ± 0.5 | 2.3 ± 0.8 | 3.2 ± 0.5 | 0.4 ± 0.4 | -- |
RS | m min−1 | 0.8 ± 0.2 | 0.7 ± 0.2 | 1.6 ± 0.1 | 0.7 ± 0.2 | 0.6 ± 0.3 | 1.9 ± 0.4 | 0.7 ± 0.3 | 0.9 ± 0.1 | 0.7 ± 0.5 | -- |
FH | cm | 43 ± 8 | 26 ± 13 | 49 ± 20 | 53 ± 15 | 17 ± 10 | 53 ±18.8 | 57.7 ± 15.2 | 37.6 ± 17.1 | 90 ± 0.4 | -- |
SMX | Cm | 198.7 ± 206.6 | 49.3 ± 43.8 | 539.2 ± 391.5 | 53.7 ± 51.6 | 34.6 ± 37.0 | 322.4 ± 166.0 | -- | 79.2 ± 65.2 | 101.7 ± 43.9 | -- |
SMN | cm | 36.7 ± 54.6 | 3.2 ± 7.1 | 172.1 ± 227.5 | 10.7 ± 16.5 | 4.1 ± 11.8 | 139.2 ± 120.1 | -- | -- | 47.5 ± 32.4 | -- |
SV | % | 9.0 ± 8.1 | 1.9 ± 1.5 | 24.7 ± 16.7 | 3.2 ± 3.1 | 1.5 ± 1.5 | 16.8 ± 12.9 | -- | 5.0 ± 4.7 | 5.8 ± 3.1 | -- |
CSV | % | 0.0 ± 0.0 | 0.0 ± 0.0 | 46.9 ± 39.0 | 2.2 ± 14.9 | 0.0 ± 0.0 | 48.8 ± 38.1 | -- | -- | 1.8 ± 7.8 | -- |
CSH | m | 0.0 ± 0.0 | 0.3 ± 1.7 | 9.9 ± 4.7 | 0.3 ± 1.1 | 0.0 ± 0.0 | 11.0 ± 3.0 | -- | -- | 0.4 ± 1.7 | -- |
L | kg ha−1 | 3482 ± 106 | 3629 ± 435 | 4876 ± 1438 | 3253 ± 494 | 2732 ± 269 | 6188 ± 2699 | -- | -- | -- | -- |
TCMX | °C | 40.7 ± 45.0 | 39.3 ± 11.0 | 66.3 ± 49.7 | 48.4 ± 77.8 | 47.0 ± 10.1 | 69.7 ± 80.1 | 22.8 ± 15.1 | 41.2 ± 24.1 | 31.4 ± 9.1 | 51.0 ± 71.5 |
TBMX | °C | 279.0± 207.9 | 94.8 ± 107.9 | 514.7 ± 270.5 | 211.4 ± 199.0 | 128.8 ± 116.1 | 528.6 ± 240.9 | 291.5 ± 278.6 | 131.9 ± 86.2 | 442.5 ± 222.4 | 242.8 ± 252.1 |
tC60 | s | 27.8 ± 101.0 | 0.0 ± 0.0 | 104.3 ± 249.4 | 26.9 ± 77.3 | 0.1 ± 0.3 | 179.3 ± 375.6 | 0.1 ± 0.3 | 11.8 ± 74.5 | 0.0 ± 0.0 | 24.6 ± 96.1 |
tC60C | s | 250.6 ± 206.1 | 0.0 ± 0.0 | 214.1 ± 326.4 | 144.8 ± 127.7 | 1.0 ± 0.0 | 657.3 ± 456.8 | 1.0 ± 0.0 | 82.3 ± 196.3 | 0.0 ± 0.0 | 254.0 ± 226.0 |
tB300 | s | 53.9 ± 181.4 | 2.0 ± 12.0 | 146.7 ± 150.1 | 11.7 ± 29.5 | 2.0 ± 8.4 | 177.5 ± 467.6 | 2.9 ± 4.9 | 0.7 ± 4.5 | 30.6 ± 36.5 | 12.4 ± 26.1 |
tB300C | s | 121.2 ± 260 | 45.0 ± 49.5 | 190.1 ± 144.5 | 52.7 ± 43.0 | 22.3 ± 20.6 | 229.7 ± 522.0 | 8.8 ± 4.6 | 15.0 ± 19.8 | 45.9 ± 36.0 | 39.6 ± 33.8 |
PC60 | % | 11 | 0 | 49 | 16 | 11 | 27 | 9 | 12 | 0 | 13 |
PB300 | % | 42 | 4 | 74 | 22 | 9 | 77 | 33 | 5 | 67 | 31 |
Abbreviation | Variable | Unit | Variables Selected |
---|---|---|---|
Tree and stand variables | |||
SN (Pinus nigra); SP (Pinus pinaster); SI (Pinus pinea); | Species | -- | * |
TP (pure); TM (mixed) | Stand type | -- | * |
D | Density | Trees ha−1 | -- |
DBH | Diameter at breast height | cm | -- |
D60 | Diameter at 60 cm from the base | cm | -- |
HT | Total height | m | -- |
H1 | Height at which first live branch appears | m | * |
H1V | Percentage of crown | % | -- |
BT | Bark thickness | cm | * |
CV | Coefficient of variation of bark thickness | -- | -- |
Fire prescription variable | |||
SB (spring burning); AB (autumn burning); MB (summer burning) | Treatment | -- | * |
Fire severity variables | |||
SMX | Maximum height of charred stem | cm | * |
SMN | Minimum height of charred stem | cm | -- |
SV | Percentage height of charred stem | % | * |
CSV | Crown scorch volume | % | -- |
CSH | Crown scorch height | m | -- |
L | Total litterfall one year after burn | kg ha−1 | * |
TCMX | Mean absolute maximum cambium temperature | °C | -- |
TBMX | Mean absolute maximum outer bark temperature | °C | * |
tC60 | Duration of temperature above 60 °C in the cambium | s | Response variable |
tB300 | Duration of temperature above 300 °C at the bark surface | s | -- |
Fit statistics: | |||
log.Lik | −3180.254 | -- | -- |
AIC | 6388.507 | -- | -- |
BIC | 6375.888 | -- | -- |
StdDev | Corr | -- | |
(Intercept) | 4.4393 | -- | -- |
zi_(intercept) | 0.8847 | −0.8358 | -- |
Random effects: | Estimate | -- | -- |
AB intercept | −2.754651 | -- | -- |
MB intercept | 4.721976 | -- | -- |
SB intercept | 4.661960 | -- | -- |
Count model coefficients (truncated Poisson with log link) | |||
Fixed effects: | Estimate | Standard error | p-value |
(Intercept) | 3.6895 | 3.1436 | 0.24053 |
H1 | 1.1310 | 0.0933 | <0.0001 |
BT | −0.5250 | 0.1191 | <0.0001 |
CSV | 1.0832 | 0.0419 | <0.0001 |
L | −0.7861 | 0.0397 | <0.0001 |
TBMX | 1.8383 | 0.0620 | <0.0001 |
SP (Pinus pinaster) | 0.2793 | 0.0534 | <0.0001 |
TP (pure stand) | −0.8917 | 0.0254 | <0.0001 |
Zero hurdle model coefficients (binomial with logit link): | |||
Fixed effects | Estimate | Standard error | p-value |
(Intercept) | 1.1849 | 0.7020 | 0.091432 |
SMX | 6.5511 | 2.7162 | 0.015871 |
SV | −6.2635 | 2.9560 | 0.034097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrigal, J.; Rodríguez de Rivera, Ó.; Carrillo, C.; Guijarro, M.; Hernando, C.; Vega, J.A.; Martin-Pinto, P.; Molina, J.R.; Fernández, C.; Espinosa, J. Empirical Modelling of Stem Cambium Heating Caused by Prescribed Burning in Mediterranean Pine Forest. Fire 2023, 6, 430. https://doi.org/10.3390/fire6110430
Madrigal J, Rodríguez de Rivera Ó, Carrillo C, Guijarro M, Hernando C, Vega JA, Martin-Pinto P, Molina JR, Fernández C, Espinosa J. Empirical Modelling of Stem Cambium Heating Caused by Prescribed Burning in Mediterranean Pine Forest. Fire. 2023; 6(11):430. https://doi.org/10.3390/fire6110430
Chicago/Turabian StyleMadrigal, Javier, Óscar Rodríguez de Rivera, Cristina Carrillo, Mercedes Guijarro, Carmen Hernando, José A. Vega, Pablo Martin-Pinto, Juan R. Molina, Cristina Fernández, and Juncal Espinosa. 2023. "Empirical Modelling of Stem Cambium Heating Caused by Prescribed Burning in Mediterranean Pine Forest" Fire 6, no. 11: 430. https://doi.org/10.3390/fire6110430
APA StyleMadrigal, J., Rodríguez de Rivera, Ó., Carrillo, C., Guijarro, M., Hernando, C., Vega, J. A., Martin-Pinto, P., Molina, J. R., Fernández, C., & Espinosa, J. (2023). Empirical Modelling of Stem Cambium Heating Caused by Prescribed Burning in Mediterranean Pine Forest. Fire, 6(11), 430. https://doi.org/10.3390/fire6110430