A Model for Fire Departments’ Performance Assessment in Portugal
Abstract
:1. Introduction
2. Research Methodology
2.1. Data-Gathering Stage
- Inputs
- Technical inputs: The available variables for this category in the acquired datasets are the number of fire fighters in FDs and the number of vehicles (engines) in FDs that are compliant with the technical category of inputs in the GFDPAF. Since many of the Portuguese FDs have only one fire station, the number of fire stations was not considered a proper indicator for the PT-FDPA.
- Financial input: The PT FDs have a variety of financial resources that are considered internal data and are not accessible; therefore, with the experts’ confirmation, the most relevant and available data were used, which are on the annual public budget of FDs and were granted to them by the ANEPC.
- Fire risk and socioeconomic index (FSI): From this input of the GFDPAF, the population density was acquired during the domain analysis stage. At the time this study was conducted, the most recent information on the FD population from 2017 was still valid.
- Outputs
- Fire incidents: The applied variables from this category were the number of incidents and the total suppression duration of incidents. However, as mentioned earlier, the response time data, the type of building, and some other frequent FDPA variables were not available for the data collection of this research during the domain analysis stage. Therefore, for building the PT-FDPA model, the first two variables mentioned in this category were selected. In addition, to limit the outliers and incorrect variables, the incidents with negative, less than 3 min, or more than 7200 min durations were excluded from the data processing stage.
- Fire casualties: Among the suggested desirable and undesirable output and outcome variables by the GFDPAF, the number of deaths, number of serious injuries, and number of light injuries, were available in the provided datasets by the ANEPC and were used in the PT-FDPA model.
2.2. Data Preprocessing Stage
- Data Cleansing: In this step, to improve the quality of the data, missing, zero, or unreasonable values were identified and recovered from the ANEPC databases. If any incidents were important but irrecoverable, missing, or noisy data, they were removed. Here is a brief report on the removed incident records:
- Four incidents with suppression durations of more than 7200 min were considered outliers and, after expert confirmation, were excluded;
- Data Integration: Because the incident data supplied to the ANEPC came from several departments, they were kept in various datasets. As a result, in this stage, they were all combined into a single, comprehensive dataset of the 2020 fire occurrences in Portugal that contains all of the necessary information for the PT-FDPA;
- Data Reduction: The ANEPC datasets have some granular details about the incidents that are not useful for the PT-FDPA (e.g., incidents’ exact time and coordinates). Therefore, in these steps, the irrelevant details were removed.
- 32 FDs had no data in the provided datasets;
- 43 FDs has no financial data or had zero or one incident in one year;
- 18 FDs had no population data.
- Data Transformation: In this last step of the preprocessing stage, the cleaned, integrated, and reduced dataset was turned into comma-separated formats for further processing in the analysis stage.
2.3. Analysis Stage
2.4. Data Envelopment Analysis (DEA) Models
- n
- is the number of FDs that were evaluated with respect to one another;
- m
- is the number of inputs;
- s
- is the number of outputs;
- yip
- is the value (≥0) of output measure i (i = 1, …, m) for DMUp (P = 1, …, n);
- xjp
- is the value (≥0) of input measure j (j = 1, …, s) for DMUp;
- uip
- is an unknown weight of input measure i for DMUp;
- vjp
- is an unknown weight of output measure j for DMUp;
- ℇ
- is a very small positive value (0 < ℇ << 1) to prevent zero weights.
3. Findings
4. Discussion and Recommendations
- -
- CBV Alvalade in Setúbal (FD code 1525) with 266 appearances;
- -
- CBV Algés in Lisboa (FD code 1116) with 217 appearances;
- -
- CBV Melres in Porto (FD code 1341) with 155 appearances.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eslamzadeh, M.K.; Grilo, A.; Espadinha-Cruz, P. A Framework for Resource Allocation in Fire Departments: A Structured Literature Review. Fire 2022, 5, 109. [Google Scholar] [CrossRef]
- Horwitz, J.R.; McGahan, A.M. Collaborating to manage performance trade-offs: How fire departments preserve life and save property. Strateg. Manag. J. 2019, 40, 408–431. [Google Scholar] [CrossRef]
- Jaldell, H. Measuring productive performance using binary and ordinal output variables: The case of the Swedish fire and rescue services. Int. J. Prod. Res. 2019, 57, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Andrews, R.; Ashworth, R.; Meier, K.J. Representative Bureaucracy and Fire Service Performance. Int. Public Manag. J. 2014, 17, 1–24. [Google Scholar] [CrossRef]
- Eslamzadeh, M.K.; Grilo, A.; Espadinha-Cruz, P.; Rodrigues, J.P.C.; Lopes, J.P. A Framework for Fire Departments’ Performance Assessment: A Systematic Literature Review. Int. J. Public Sect. Manag. 2022, 35, 349–369. [Google Scholar] [CrossRef]
- Lan, C.H.; Chuang, L.L.; Chang, C.C. An Efficiency-Based Approach on Human Resource Management: A Case Study of Tainan County Fire Branches in Taiwan. Public Pers. Manag. 2007, 36, 143–164. [Google Scholar] [CrossRef]
- Peng, M.; Song, L.; Guohui, L.; Sen, L.; Heping, Z. Evaluation of Fire Protection Performance of Eight Countries Based on Fire Statistics: An Application of Data Envelopment Analysis. Fire Technol. 2014, 50, 349–361. [Google Scholar] [CrossRef]
- Garcia Sanchez, I.M. Estimation of the effect of environmental conditions on technical efficiency: The case of fire services. Rev. DÉcon. Rég. Urbaine 2006, 4, 597–614. [Google Scholar] [CrossRef]
- Reiljan, J.; Puolokainen, T.; Ülper, A. Complex Benchmarking and Efficiency Measurement of Public Agencies: The Case of Estonian Rescue Service Brigades. Public Financ. Manag. 2015, 15, 130–152. [Google Scholar]
- Li, F.; Zhu, Q.; Zhuang, J. Analysis of fire protection efficiency in the United States: A two-stage DEA-based approach. OR Spectr. 2018, 40, 23–68. [Google Scholar] [CrossRef]
- Kloot, L. Performance measurement and accountability in an Australian fire service. Int. J. Public Sect. Manag. 2009, 22, 128–145. [Google Scholar] [CrossRef]
- Lim, D.; Kim, M.; Lee, K. A revised dynamic data envelopment analysis model with budget constraints. Int. Trans. Oper. Res. 2020, 29, 1012–1024. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, C.-Q. Resource allocation based on the DEA model. J. Oper. Res. Soc. 2008, 59, 1136–1141. [Google Scholar] [CrossRef]
- Carvalho, J.; Fernandes, M.; Lambert, V.; Lapsley, I. Measuring fire service performance: A comparative study. Int. J. Public Sect. Manag. 2006, 19, 165–179. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Vicente, R.; da Silva, J.A.R.M.; Varum, H.; Costa, A.; Maio, R. Urban fire risk: Evaluation and emergency planning. J. Cult. Herit. 2016, 20, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Granda, S.; Ferreira, T.M. Assessing Vulnerability and Fire Risk in Old Urban Areas: Application to the Historical Centre of Guimarães. Fire Technol. 2019, 55, 105–127. [Google Scholar] [CrossRef]
- Neto, J.T.; Ferreira, T.M. Assessing and mitigating vulnerability and fire risk in historic centres: A cost-benefit analysis. J. Cult. Herit. 2020, 45, 279–290. [Google Scholar] [CrossRef]
- Eslamzadeh, M.K.; Jassbi, J.J.; Cruz-Machado, V. In Light of Industry 4.0: The Trends of the 4th Industrial Revolution’s Key Technologies in Human Well-being Studies. In Proceedings of the ICDSST 2020; Linden, I., Turón, A., Dargam, F.C.C., Jayawickrama, U., Eds.; University of Zaragoza: Zaragoza, Spain, 2020; pp. 159–166. [Google Scholar]
- Sun, W.; Cai, Z.; Li, Y.; Liu, F.; Fang, S.; Wang, G. Data Processing and Text Mining Technologies on Electronic Medical Records: A Review. J. Healthc. Eng. 2018, 2018, 4302425. [Google Scholar] [CrossRef] [Green Version]
- Taleb, I.; Dssouli, R.; Serhani, M.A. Big Data Pre-processing: A Quality Framework. In Proceedings of the 2015 IEEE International Congress on Big Data, New York, NY, USA, 27 June–2 July 2015; pp. 191–198. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Someh, N.G.; Pishvaee, M.S.; Sadjadi, S.J.; Soltani, R. Performance assessment of medical diagnostic laboratories: A network DEA approach. J. Eval. Clin. Pract. 2020, 26, 1504–1511. [Google Scholar] [CrossRef]
- Athanassopoulos, A.D. Decision Support for Target-Based Resource Allocation of Public Services in Multiunit and Multilevel Systems. Manag. Sci. 1998, 44, 173–187. [Google Scholar] [CrossRef]
- Choi, S.O. Relative efficiency of fire and emergency services in Florida: An application and test of data envelopment analysis. Int. J. Emerg. Manag. 2005, 2, 218. [Google Scholar] [CrossRef]
- Sherman, H.D. Hospital Efficiency Measurement and Evaluation: Empirical Test of a New Technique. Med. Care 1984, 22, 922–938. [Google Scholar] [CrossRef] [PubMed]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Taboada, G.L.; Seruca, I.; Sousa, C.; Pereira, Á. Exploratory Data Analysis and Data Envelopment Analysis of Construction and Demolition Waste Management in the European Economic Area. Sustainability 2020, 12, 4995. [Google Scholar] [CrossRef]
- Grilo, A.; Santos, J. Measuring Efficiency and Productivity Growth of New Technology-Based Firms in Business Incubators: The Portuguese Case Study of Madan Parque. Sci. World J. 2015, 2015, 936252. [Google Scholar] [CrossRef] [Green Version]
- Lan, C.H.; Chuang, L.L.; Chen, Y.F. Optimal human resource allocation model: A case study of Taiwan fire service. J. Stat. Manag. Syst. 2011, 14, 187–216. [Google Scholar] [CrossRef]
- Scheel, H. Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 2001, 132, 400–410. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Modeling undesirable factors in efficiency evaluation: Comment. Eur. J. Oper. Res. 2004, 157, 242–245. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry. Eur. J. Oper. Res. 2012, 216, 668–678. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries. Energy Econ. 2012, 34, 686–699. [Google Scholar] [CrossRef]
- Koopmans, T.C. Analysis of production as an efficient combination of activities. In Activity Analysis of Production and Allocation; Koopmans, T.C., Ed.; John Wiley: New York, NY, USA, 1951; pp. 33–97. [Google Scholar]
- Golany, B.; Roll, Y. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Coelli, T.J. Recent developments in frontier modelling and efficiency measurement. Aust. J. Agric. Econ. 1995, 39, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Mariz, F.B.A.R.; Almeida, M.R.; Aloise, D. A review of Dynamic Data Envelopment Analysis: State of the art and applications. Int. Trans. Oper. Res. 2018, 25, 469–505. [Google Scholar] [CrossRef] [Green Version]
- Steering Committee for the Review of Commonwealth. Data Envelopment Analysis: A Technique for Measuring the Efficiency of Government Service Delivery; AGPS: Canberra, Australia, 1997. [Google Scholar]
- Bolós, V.J.; Benítez, R.; Coll-Serrano, V. Continuous models combining slacks-based measures of efficiency and super-efficiency. Cent. Eur. J. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Guo, I.-L.; Lee, H.-S.; Lee, D. An integrated model for slack-based measure of super-efficiency in additive DEA. Omega 2017, 67, 160–167. [Google Scholar] [CrossRef]
- Statistics Kingdom Statistics Kingdom. 2022. Available online: https://www.statskingdom.com/correlation-calculator.html (accessed on 30 November 2022).
- Benítez, R.; Coll-Serrano, V.; Bolós, V.J. deaR-Shiny: An Interactive Web App for Data Envelopment Analysis. Sustainability 2021, 13, 6774. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2018. Available online: http://qgis.osgeo.org (accessed on 29 October 2022).
Abbreviation | Full Phrase | Abbreviation | Full Phrase |
---|---|---|---|
ANEPC | Autoridade Nacional de Emergência e Proteção Civil | FSI | Fire risk and socioeconomic index |
BCC | Banker, Charnes, and Cooper | GFDPAF | General fire departments’ performance assessment framework |
CCR | Charnes, Cooper, and Rhodes | OTE | Overall technical efficiency |
CRS | Constant return to scale | PA | Performance sssessment |
DEA | Data envelopment analysis | PT | Portuguese/Portugal |
DMU | Decision-making unit | PTE | Pure technical efficiency |
FD | Fire department | SBM | Slack-based model |
FDPA | Fire departments’ performance assessments | SE | Scale efficiency |
FPS | Fire protection services | VRS | Variable returns to scale |
FD Code | FD Name | Efficiency | FD Code | FD Name | Efficiency | FD Code | FD Name | Efficiency | FD Code | FD Name | Efficiency |
---|---|---|---|---|---|---|---|---|---|---|---|
118 | Águeda | 0.244 | 607 | Soure | 0.251 | 1148 | Pontinha | 0.769 | 1405 | Rio.Maior | 0.384 |
109 | Albergaria | 0.280 | 613 | VN.Oliveirinha | 0.440 | 1147 | Caneças | 0.571 | 1412 | Salvat.de.Magos | 0.443 |
117 | Anadia | 0.439 | 614 | Tábua | 0.379 | 1116 | Algés | 1.000 | 1422 | Sardoal | 0.541 |
124 | Arouca | 0.343 | 618 | VN.de.Poiares | 0.422 | 1121 | Dafundo | 0.688 | 1407 | Tomar | 0.584 |
106 | Aveiro.Novos | 0.256 | 713 | Alandroal | 0.875 | 1101 | Barcarena | 0.502 | 1411 | Torres.Novas | 0.312 |
101 | Aveiro.Velhos | 0.344 | 705 | Arraiolos | 0.553 | 1122 | Carnaxide | 0.611 | 1409 | VN.Barquinha | 0.503 |
123 | Castelo.de.Paiva | 0.307 | 709 | Borba | 0.639 | 1110 | Oeiras | 0.529 | 1507 | Alcacér.do.Sal | 0.657 |
108 | Estarreja | 0.316 | 704 | Estremoz | 0.411 | 1111 | Paço.de.Arcos | 0.747 | 1515 | Alcochete | 0.445 |
102 | Ílhavo | 0.362 | 701 | Évora | 0.298 | 1138 | Agualva.Cacém | 0.535 | 1508 | Almada | 0.443 |
112 | Mealhada | 0.467 | 703 | Montemor.Novo | 0.383 | 1144 | Alg.Mem.Martins | 0.358 | 1503 | Cacilhas | 0.268 |
110 | Pampilhosa | 0.446 | 711 | Mourão | 1.000 | 1150 | Montelavar | 0.570 | 1511 | Trafaria | 0.434 |
125 | Murtosa | 0.508 | 712 | Portel | 0.694 | 1106 | Colares | 0.427 | 1510 | Barreiro | 0.433 |
126 | Fajões | 0.426 | 710 | Redondo | 0.625 | 1128 | Belas | 0.366 | 1504 | CFSS.Barreiro | 0.437 |
105 | Oliv.de.Azeméis | 0.310 | 706 | Regueng.Monsar | 0.468 | 1125 | Queluz | 1.000 | 1516 | Grândola | 0.363 |
122 | Oliv.do.Bairro | 0.388 | 702 | Vendas.Novas | 0.553 | 1119 | S.Pedro.Sintra | 0.312 | 1512 | Moita | 0.475 |
116 | Esmoriz | 0.364 | 714 | Viana.Alentejo | 0.647 | 1107 | Sintra | 0.293 | 1522 | Canha | 0.432 |
104 | Ovar | 0.392 | 707 | Vila.Viçosa. | 0.529 | 1123 | S.Monte.Agraço | 0.501 | 1506 | Montijo | 0.402 |
111 | Arrifana | 0.498 | 814 | Albufeira | 0.203 | 1117 | Torres.Vedras | 0.207 | 1513 | Palmela | 0.364 |
121 | Lourosa | 0.342 | 812 | Aljezur | 0.398 | 1115 | Alhandra | 0.572 | 1517 | Pinhal.Novo | 0.404 |
107 | Feira | 0.432 | 815 | Lagoa | 0.334 | 1130 | Alverca | 0.517 | 1521 | Águas.de.Moura | 0.474 |
114 | SJ.da.Madeira | 0.470 | 802 | Lagos | 0.409 | 1145 | Cast.Ribatejo | 0.679 | 1525 | Alvalade | 1.000 |
119 | Sever.do.Vouga | 0.442 | 808 | Loulé | 0.339 | 1142 | Póvoa.Sta.Iria | 0.680 | 1519 | Cercal.Alentejo | 0.519 |
115 | Vagos | 0.400 | 811 | Monchique | 0.506 | 1146 | Vialonga | 0.671 | 1509 | Santiago.Cacém | 0.556 |
120 | Vale.de.Cambra | 0.340 | 810 | Olhão | 0.438 | 1102 | V.Franca.Xira | 0.509 | 1524 | Santo.André | 0.749 |
204 | Aljustrel | 0.608 | 807 | Portimão | 0.220 | 1207 | Alter.do.Chão | 1.000 | 1526 | Amora | 0.507 |
209 | Almodôvar | 0.760 | 809 | S.Brás.Alportel | 0.506 | 1211 | Arronches | 1.000 | 1520 | Seixal | 0.245 |
201 | Beja | 0.268 | 813 | S.Bart.Messines | 0.379 | 1210 | Avis | 1.000 | 1505 | Sesimbra | 0.347 |
213 | Castro.Verde | 0.650 | 806 | Silves | 0.343 | 1209 | Campo.Maior | 1.000 | 1502 | Setúbal | 0.438 |
206 | Cuba | 1.000 | 816 | Vila.do.Bispo | 0.615 | 1204 | Elvas | 0.334 | 1514 | Sines | 0.528 |
207 | F.do.Alentejo | 0.454 | 804 | VR.S.António | 0.345 | 1206 | Gavião | 1.000 | 1604 | Arcos.Valdevez | 0.338 |
203 | Moura | 0.355 | 915 | Aguiar.da.Beira | 0.540 | 1216 | Marvão | 0.622 | 1605 | Caminha | 0.555 |
202 | Odemira | 0.382 | 908 | Almeida | 0.444 | 1213 | Monforte | 1.000 | 1607 | V.Praia.Âncora | 0.624 |
215 | Vila.Nova.Milfontes | 0.721 | 912 | Celorico.Beira | 0.349 | 1205 | Nisa | 0.513 | 1612 | Melgaço | 0.568 |
210 | Ourique | 0.646 | 905 | F.Cast.Rodrigo | 0.665 | 1203 | Ponte.de.Sôr | 0.292 | 1606 | Monção | 0.413 |
211 | Serpa | 0.437 | 914 | Fornos.Algodres | 0.396 | 1201 | Portalegre | 0.329 | 1609 | P.de.Coura | 0.453 |
214 | Vidigueira | 0.608 | 903 | Gouveia | 0.427 | 1316 | Amarante | 0.261 | 1610 | Ponte.da.Barca | 0.478 |
311 | Amares | 0.425 | 918 | V.Nova.de.Tazem | 0.676 | 1340 | Vila.Meã | 0.358 | 1603 | Ponte.de.Lima | 0.249 |
312 | Barcelinhos | 0.300 | 916 | Manteigas | 0.594 | 1334 | Baião | 0.393 | 1608 | Valença | 0.505 |
305 | Barcelos | 0.318 | 906 | Meda | 0.419 | 1309 | Felgueiras | 0.329 | 1611 | VN.de.Cerveira | 0.547 |
321 | Viatodos | 0.441 | 904 | Pinhel | 0.428 | 1307 | Lixa | 0.374 | 1715 | Alijó | 0.567 |
318 | Cab.de.Ba | 0.413 | 902 | Sabugal | 0.339 | 1339 | S.Pedro.da.Cova | 0.378 | 1707 | Favaios | 1.000 |
315 | Celorico.Ba | 0.390 | 919 | Soito | 0.346 | 1313 | Gondomar | 0.492 | 1704 | Sanfins.Douro | 0.695 |
314 | Fão | 0.621 | 920 | Loriga | 0.516 | 1324 | Valbom | 0.465 | 1722 | Boticas | 0.437 |
309 | Esposende | 0.581 | 917 | .Romão | 0.407 | 1341 | Melres | 1.000 | 1702 | Flaviense | 0.310 |
307 | Fafe | 0.310 | 910 | Seia | 0.319 | 1318 | Areosa.Rio.Tinto | 0.659 | 1717 | SP.Chaves | 0.557 |
303 | Guimarães | 0.317 | 907 | Trancoso | 0.338 | 1327 | Lousada | 0.332 | 1721 | Vidago | 0.327 |
310 | Póvoa.Lanhoso | 0.314 | 922 | V.Franca.Naves | 0.520 | 1323 | Moreira.da.Maia | 0.318 | 1718 | Me.Frio | 0.609 |
322 | Terras.do.Bouro | 0.434 | 909 | VN.de.Foz.Côa | 0.566 | 1344 | Pedrouços | 1.000 | 1709 | Mondim.de.Ba | 0.413 |
317 | Vieira.do.Minho | 0.414 | 1001 | Alcobaça | 0.347 | 1320 | Marco.Canaveses | 0.280 | 1719 | Montalegre | 0.443 |
319 | Riba.de.Ave | 0.439 | 1024 | Benedita | 0.418 | 1332 | Leça.do.Balio | 0.841 | 1727 | Salto | 0.543 |
308 | VN.Famalicão | 0.281 | 1019 | Pataias | 0.644 | 1302 | Matosinhos.Leça | 0.524 | 1711 | Murça | 0.510 |
316 | Famalicenses | 0.252 | 1005 | S.Martinh.Porto | 0.428 | 1329 | Leixões | 1.000 | 1701 | Peso.da.Régua | 0.389 |
313 | Vila.Verde | 0.358 | 1012 | Alvaiázere | 0.410 | 1315 | .Mamede.Infesta | 0.533 | 1725 | de.Cerva | 0.750 |
304 | Vizela | 0.366 | 1016 | Ansião | 0.369 | 1328 | Freamunde | 0.326 | 1724 | Ribeira.da.Pena | 0.515 |
409 | Alfândega.da.Fé | 0.415 | 1018 | Batalha | 0.318 | 1330 | Paços.de.Ferreira | 0.472 | 1713 | Provesende | 0.620 |
402 | Bragança | 0.241 | 1007 | Bombarral | 0.445 | 1325 | Baltar | 0.412 | 1705 | Sabrosa | 0.591 |
405 | Carrazeda.Ansiães | 0.494 | 1003 | Caldas.Rainha | 0.273 | 1322 | Cête | 0.452 | 1720 | Fontes | 0.600 |
404 | Freixo.Espada.Cinta | 0.388 | 1014 | Cast.de.Pêra | 0.495 | 1335 | Lordelo | 0.508 | 1726 | Sta.M.Penaguião | 0.866 |
403 | Macedo.Cavaleiros | 0.298 | 1011 | Figueiró.Vinhos | 0.343 | 1306 | Paredes | 0.396 | 1714 | C.de.Montenegro | 0.638 |
412 | Miranda.do.Douro | 0.602 | 1022 | Leiria | 0.199 | 1338 | Rebordosa | 0.412 | 1716 | Valpaços | 0.386 |
414 | Sendim | 0.539 | 1020 | Maceira | 0.299 | 1319 | Entre.os.Rios | 0.477 | 1708 | V.Pouca.Aguiar | 0.319 |
401 | Mirandela | 0.301 | 1025 | Ortigosa | 0.472 | 1333 | Paço.de.Sousa | 0.435 | 1706 | C.Branca.V.Real | 0.193 |
413 | Torre.Dona.Chama | 0.543 | 1004 | Marinha.Grande | 0.384 | 1305 | Penafiel | 0.340 | 1703 | C.Verde.V.Real | 0.286 |
406 | Mogadouro | 0.389 | 1013 | Vieira.Leiria | 0.447 | 2203 | Portuenses | 1.000 | 1818 | Armamar | 0.655 |
408 | Torre.de.Moncorvo | 0.353 | 1009 | Nazaré | 0.459 | 1303 | Póvoa.de.Varzim | 0.391 | 1819 | Cabanas.Viriato | 0.572 |
411 | Vila.Flor | 0.371 | 1008 | Óbidos | 0.326 | 1337 | Vila.das.Aves | 0.485 | 1821 | Carregal.do.Sal | 0.668 |
407 | Vimioso | 0.572 | 1017 | Pedrógão.Grande | 0.374 | 1304 | Santo.Tirso | 0.452 | 1803 | Castro.D’Aire | 0.320 |
410 | Vinhais | 0.324 | 1010 | Peniche | 0.335 | 1326 | Tirsenses | 0.367 | 1815 | Farejinhas | 0.720 |
510 | Belmonte | 0.518 | 1006 | Pombal | 0.186 | 1336 | Trofa | 0.352 | 1826 | Cinfães | 0.401 |
504 | Castelo.Branco | 0.167 | 1023 | Juncal | 0.630 | 1317 | Ermesinde | 0.400 | 1828 | Nespereira | 0.549 |
501 | Covilhã | 0.211 | 1021 | Mira.de.Aire | 0.547 | 1308 | Valongo | 0.372 | 1802 | Lamego | 0.358 |
503 | Fundão | 0.215 | 1015 | Porto.de.Mós | 0.366 | 1312 | Vila.do.Conde | 0.306 | 1814 | Mangualde | 0.375 |
508 | Idanha.a.Nova | 1.000 | 1149 | Merceana | 0.546 | 1321 | Aguda | 0.481 | 1813 | Moimenta.Beira | 0.390 |
506 | Oleiros | 0.355 | 1141 | Alenquer | 0.299 | 1331 | Avintes | 0.680 | 1811 | Mortágua | 0.387 |
505 | Penamacor | 0.548 | 1118 | Amadora | 0.392 | 1311 | Carvalhos | 0.423 | 1817 | Canas.Senhorim | 0.543 |
507 | Proença.a.Nova | 0.284 | 1105 | Arruda.Vinhos | 0.530 | 1314 | Valadares | 0.518 | 1809 | Nelas | 0.398 |
512 | Cern.Bonjardim | 0.353 | 1140 | Alcoentre | 0.512 | 1343 | Crestuma | 1.000 | 1816 | Oliveira.Frades | 0.629 |
502 | Sertã | 0.202 | 1139 | Azambuja | 0.465 | 1310 | Coimbrões | 0.549 | 1822 | Penalva.Castelo | 0.606 |
511 | Vila.de.Rei | 0.627 | 1124 | Cadaval | 0.488 | 1429 | Abrantes | 0.278 | 1827 | Penedono | 0.737 |
509 | V.Velha.Ródão | 0.661 | 1131 | Alcabideche | 0.345 | 1420 | Almeirim | 0.427 | 1823 | Resende | 0.509 |
612 | Arganil | 0.534 | 1129 | Parede | 0.498 | 1419 | Alpiarça | 0.847 | 1808 | Santa.Comba.Dão | 0.349 |
620 | Coja | 0.410 | 1120 | Carcavelos.SDR | 0.500 | 1404 | Benavente | 0.381 | 1824 | Ervedosa.Douro | 1.000 |
605 | Cantanhede | 0.272 | 1103 | Cascais | 0.553 | 1426 | Samora.Correia | 0.376 | 1807 | SJ.Pesqueira | 0.518 |
615 | Brasfemes | 1.000 | 1109 | Bucelas | 0.628 | 1413 | Cartaxo | 0.628 | 1804 | S.Pedro.do.Sul | 0.513 |
604 | Coimbra | 1.000 | 1127 | Camarate | 0.591 | 1421 | Chamusca | 0.537 | 1833 | Sta.Cruz.Trapa | 0.773 |
609 | Condeixa.a.Nova | 0.322 | 1135 | Fanhões | 0.578 | 1408 | Constância | 0.330 | 1831 | Sátão | 0.513 |
623 | Mira | 0.434 | 1104 | Loures | 0.322 | 1410 | Coruche | 0.766 | 1825 | Sernancelhe | 0.681 |
617 | Miranda.Corvo | 0.321 | 1132 | Moscavide | 1.000 | 1418 | Entroncamento | 0.600 | 1820 | Tabuaço | 0.480 |
611 | Montemor.o.Velho | 0.306 | 1114 | Sacavém | 0.380 | 1417 | Ferreira.Zêzere | 0.549 | 1829 | Tarouca | 0.569 |
616 | Lagares.Beira | 0.543 | 1134 | Lourinhã | 0.343 | 1416 | Golegã | 0.736 | 1832 | Vale.Besteiros | 0.659 |
608 | Oliv.Hospital | 0.310 | 1137 | Ericeira | 0.499 | 1414 | Mação | 0.444 | 1810 | Tondela | 0.349 |
621 | Pampilhosa.Serra | 0.335 | 1133 | Mafra | 0.344 | 1425 | Caxarias | 0.454 | 1830 | V.Nova.de.Paiva | 0.566 |
610 | Penacova | 0.293 | 1143 | Malveira | 0.335 | 1428 | Fátima | 0.382 | 1806 | Viseu | 0.315 |
622 | Penela | 0.332 | 1113 | Odivelas | 0.476 | 1406 | Ourém | 0.243 | 1805 | Vouzela | 0.326 |
FD Code | District | FD Name | Fin Euro | FF | FE | PD p/km2 | Dur min | Inc | D | SI | LI |
---|---|---|---|---|---|---|---|---|---|---|---|
206 | BEJA | Cuba | 107,166.41 | 34 | 11 | 28.35 | 288 | 6 | 0 | 0 | 0 |
508 | CASTELO BRANCO | Idanha a Nova | 376,369.99 | 94 | 18 | 6.86 | 791 | 11 | 0 | 0 | 0 |
615 | COIMBRA | Brasfemes | 199,608.75 | 89 | 18 | 296.02 | 66 | 2 | 0 | 0 | 0 |
604 | COIMBRA | Coimbra | 218,623.71 | 76 | 14 | 497.86 | 81 | 2 | 0 | 0 | 0 |
711 | ÉVORA | Mourão | 155,848.61 | 31 | 11 | 9.56 | 76 | 2 | 0 | 0 | 0 |
1132 | LISBOA | Moscavide | 122,128.83 | 50 | 16 | 12,519.81 | 573 | 8 | 0 | 1 | 1 |
1116 | LISBOA | Algés | 159,553.91 | 63 | 15 | 10,555.39 | 869 | 20 | 0 | 0 | 0 |
1125 | LISBOA | Queluz | 296,119.84 | 85 | 22 | 11,191.53 | 3360 | 52 | 0 | 0 | 15 |
1207 | PORTALEGRE | Alter do Chão | 107,260.24 | 44 | 9 | 9.84 | 169 | 2 | 0 | 0 | 0 |
1211 | PORTALEGRE | Arronches | 184,260.33 | 27 | 6 | 10.06 | 61 | 2 | 0 | 0 | 0 |
1210 | PORTALEGRE | Avis | 139,682.14 | 43 | 10 | 7.54 | 153 | 3 | 0 | 0 | 0 |
1209 | PORTALEGRE | Campo Maior | 170,077.62 | 23 | 5 | 34.21 | 158 | 3 | 0 | 0 | 1 |
1206 | PORTALEGRE | Gavião | 2360.00 | 62 | 12 | 14.03 | 215 | 3 | 0 | 0 | 1 |
1213 | PORTALEGRE | Monforte | 151,916.01 | 40 | 7 | 7.92 | 400 | 4 | 0 | 0 | 0 |
1341 | PORTO | Melres | 65,939.14 | 21 | 10 | 174.66 | 184 | 2 | 0 | 0 | 0 |
1344 | PORTO | Pedrouços | 103,529.12 | 77 | 12 | 4722.09 | 370 | 5 | 0 | 0 | 0 |
1329 | PORTO | Leixões | 92,680.88 | 45 | 9 | 4640.32 | 1072 | 14 | 0 | 1 | 5 |
2203 | PORTO | Portuenses | 205,889.08 | 61 | 8 | 6045.54 | 3373 | 49 | 0 | 0 | 1 |
1343 | PORTO | Crestuma | 100,074.69 | 38 | 9 | 483.73 | 79 | 2 | 0 | 0 | 0 |
1525 | SETÚBAL | Alvalade | 123,599.20 | 17 | 6 | 13.70 | 172 | 2 | 0 | 0 | 0 |
1707 | VILA REAL | Favaios | 111,104.46 | 41 | 10 | 29.90 | 101 | 2 | 0 | 0 | 0 |
1824 | VISEU | Ervedosa Douro | 148,347.47 | 40 | 3 | 28.27 | 157 | 3 | 0 | 0 | 0 |
Minimums | 2360.00 | 17 | 3 | 6.86 | 61 | 2 | 0 | 0 | 0 |
District | Number of FDs | Number of Efficient FDs | % of Efficient FDs |
---|---|---|---|
AVEIRO | 24 | 0 | 0.00% |
BEJA | 12 | 1 | 8.33% |
BRAGA | 18 | 0 | 0.00% |
BRAGANÇA | 14 | 0 | 0.00% |
CASTELO BRANCO | 12 | 1 | 8.33% |
COIMBRA | 18 | 2 | 11.11% |
ÉVORA | 13 | 1 | 7.69% |
FARO | 13 | 0 | 0.00% |
GUARDA | 18 | 0 | 0.00% |
LEIRIA | 24 | 0 | 0.00% |
LISBOA | 46 | 3 | 6.52% |
PORTALEGRE | 11 | 6 | 54.55% |
PORTO | 43 | 5 | 11.63% |
SANTARÉM | 22 | 0 | 0.00% |
SETÚBAL | 23 | 1 | 4.35% |
VIANA DO CASTELO | 10 | 0 | 0.00% |
VILA REAL | 24 | 1 | 4.17% |
VISEU | 31 | 1 | 3.23% |
District | FDs with Below 50% Efficiency | % of FDs with Below 50% Efficiency | FDs with Over 50% Efficiency | %of FDs with Over 50% Efficiency |
---|---|---|---|---|
AVEIRO | 23 | 95.83% | 1 | 4.17% |
BEJA | 5 | 41.67% | 7 | 58.33% |
BRAGA | 16 | 88.89% | 2 | 11.11% |
BRAGANÇA | 10 | 71.43% | 4 | 28.57% |
CASTELO BRANCO | 7 | 58.33% | 5 | 41.67% |
COIMBRA | 14 | 77.78% | 4 | 22.22% |
ÉVORA | 4 | 30.77% | 9 | 69.23% |
FARO | 10 | 76.92% | 3 | 23.08% |
GUARDA | 11 | 61.11% | 7 | 38.89% |
LEIRIA | 21 | 87.50% | 3 | 12.50% |
LISBOA | 20 | 43.48% | 26 | 56.52% |
PORTALEGRE | 3 | 27.27% | 8 | 72.73% |
PORTO | 30 | 69.77% | 13 | 30.23% |
SANTARÉM | 12 | 54.55% | 10 | 45.45% |
SETÚBAL | 16 | 69.57% | 7 | 30.43% |
VIANA DO CASTELO | 5 | 50.00% | 5 | 50.00% |
VILA REAL | 10 | 41.67% | 14 | 58.33% |
VISEU | 12 | 38.71% | 19 | 61.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eslamzadeh, M.K.; Grilo, A.; Espadinha-Cruz, P. A Model for Fire Departments’ Performance Assessment in Portugal. Fire 2023, 6, 31. https://doi.org/10.3390/fire6010031
Eslamzadeh MK, Grilo A, Espadinha-Cruz P. A Model for Fire Departments’ Performance Assessment in Portugal. Fire. 2023; 6(1):31. https://doi.org/10.3390/fire6010031
Chicago/Turabian StyleEslamzadeh, Milad K., António Grilo, and Pedro Espadinha-Cruz. 2023. "A Model for Fire Departments’ Performance Assessment in Portugal" Fire 6, no. 1: 31. https://doi.org/10.3390/fire6010031
APA StyleEslamzadeh, M. K., Grilo, A., & Espadinha-Cruz, P. (2023). A Model for Fire Departments’ Performance Assessment in Portugal. Fire, 6(1), 31. https://doi.org/10.3390/fire6010031