Rigid Protection System of Infrastructures against Forest Fires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protective Device
2.2. Laboratory Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, L.; Lopes, V.; Baptista, C. Modernized Forest Fire Risk Assessment model based on the case study of three Portuguese Municipalities frequently affected by forest fires. Environ. Sci. Proc. 2020, 3, 30. [Google Scholar]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global Burned Area and Biomass Burning Emissions from Small Fires. J. Geophys. Res. G Biogeosciences 2012, 117. [Google Scholar] [CrossRef]
- Sfetsos, A.; Giroud, F.; Clemencau, A.; Varela, V.; Freissinet, C.; Lecroart, J.; Vlachogiannis, D.; Politi, N.; Karozis, S.; Gkotsis, I.; et al. Assessing the Effects of Forest Fires on Interconnected Critical Infrastructures under Climate Change. Evidence from South France. Infrastructures 2021, 6, 16. [Google Scholar] [CrossRef]
- Efthimiou, N.; Psomiadis, E.; Panagos, P. Fire Severity and Soil Erosion Susceptibility Mapping Using Multi-Temporal Earth Observation Data: The Case of Mati Fatal Wildfire in Eastern Attica, Greece. Catena 2020, 187, 104320. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Luiz Mincato, R. Critical success factors of small and medium wildfire effects on soil erosion dynamics: The case of 2021 megafires in greece. J. Agric. For. 2022, 68, 49–63. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Ghosal, K. Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece. Sustainability 2022, 14, 2738. [Google Scholar] [CrossRef]
- Köninger, J.; Panagos, P.; Jones, A.; Briones, M.J.I.; Orgiazzi, A. In Defence of Soil Biodiversity: Towards an Inclusive Protection in the European Union. Biol. Conserv. 2022, 268, 109475. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human Exposure and Sensitivity to Globally Extreme Wildfire Events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef]
- Moreno, M.V.; Conedera, M.; Chuvieco, E.; Pezzatti, G.B. Fire Regime Changes and Major Driving Forces in Spain from 1968 to 2010. Environ. Sci. Policy 2014, 37, 11–22. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid Growth of the US Wildland-Urban Interface Raises Wildfire Risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef]
- Johnston, L.M.; Flannigan, M.D. Mapping Canadian Wildland Fire Interface Areas. Int. J. Wildland Fire 2018, 27, 1–14. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Barber, Q.E.; Hirsch, K.G.; Stockdale, C.A.; Erni, S.; Wang, X.; Arseneault, D.; Parks, S.A. Fire Deficit Increases Wildfire Risk for Many Communities in the Canadian Boreal Forest. Nat. Commun. 2020, 11, 2121. [Google Scholar] [CrossRef]
- Sarricolea, P.; Serrano-Notivoli, R.; Fuentealba, M.; Hernández-Mora, M.; de la Barrera, F.; Smith, P.; Meseguer-Ruiz, Ó. Recent Wildfires in Central Chile: Detecting Links between Burned Areas and Population Exposure in the Wildland Urban Interface. Sci. Total Environ. 2020, 706, 135894. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Radeloff, V.C.; Bar-Massada, A.; Gavier-Pizarro, G.I.; Scavuzzo, C.M.; Bellis, L.M. Assessing Wildfire Exposure in the Wildland-Urban Interface Area of the Mountains of Central Argentina. J. Environ. Manag. 2017, 196, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, V.P. The Wildland–Urban Interface: Evaluating the Definition Effect. J. For. 2010, 108, 9–15. [Google Scholar] [CrossRef]
- Vacca, P.; Caballero, D.; Pastor, E.; Planas, E. WUI Fire Risk Mitigation in Europe: A Performance-Based Design Approach at Home-Owner Level. J. Saf. Sci. Resil. 2020, 1, 97–105. [Google Scholar] [CrossRef]
- Rodriguez, B.; Lareau, N.P.; Kingsmill, D.E.; Clements, C.B. Extreme Pyroconvective Updrafts During a Megafire. Geophys. Res. Lett. 2020, 47, e2020GL089001. [Google Scholar] [CrossRef]
- Petroliagkis, T.; Liberta, G.; Artes, T.; Rodriguez-Aseretto, D.; di Leo, M.; San-Miguel-Ayanz, J. Stability of Atmospheric Flow and Low-Level Jets Influencing Forest Fire Behavior—An EFFIS Report. EUR—Sci. Tech. Res. Ser. 2015, 27362, 30. [Google Scholar] [CrossRef]
- Viegas, D.X.; Ribeiro, L.M.; Rossa, C. Incêndios Florestais; Viegas, D.X., Ed.; Verlag Dashöfer: Lisbon, Portugal, 2011; ISBN 9789896421397. [Google Scholar]
- Viegas, D.X.; Raposo, J.R.N.; Almeida, M. Experimental Forest Fire Research. In Proceedings of the 15th International Conference on Experimental Mechanics, Edições INEGI, Porto, Portugal, 22–27 July 2012. [Google Scholar]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.; Delogu, G.; Fernandes, P.; Ferreira, C.; McCaffrey, S.; McGee, T.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- Pastor, E.; Muñoz, J.A.; Caballero, D.; Àgueda, A.; Dalmau, F.; Planas, E. Wildland–Urban Interface Fires in Spain: Summary of the Policy Framework and Recommendations for Improvement. Fire Technol. 2020, 56, 1831–1851. [Google Scholar] [CrossRef]
- Oliveira, R.; Oliveira, S.; Zêzere, J.L.; Viegas, D.X. Uncovering the Perception Regarding Wildfires of Residents with Different Characteristics. Int. J. Disaster Risk Reduct. 2019, 43, 101370. [Google Scholar] [CrossRef]
- Ribeiro, L.M.; Rodrigues, A.; Lucas, D.; Viegas, D.X. The Impact on Structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal). Fire 2020, 3, 57. [Google Scholar] [CrossRef]
- Viegas, D.X.; Rodrigues, A.; Abouali, A.; Almeida, M.; Raposo, J. Fire Downwind a Flat Surface Entering a Canyon by Lateral Spread. Fire Saf. J. 2021, 122, 103349. [Google Scholar] [CrossRef]
- Baum, M.R. Failure of a Horizontal Pressure Vessel Containing a High Temperature Liquid: The Velocity of End-Cap and Rocket Missiles. J. Loss Prev. Process Ind. 1999, 12, 137–145. [Google Scholar] [CrossRef]
- Pinto, C.; Viegas, D.; Almeida, M.; Raposo, J. Fire Whirls in Forest Fires: An Experimental Analysis. Fire Saf. J. 2017, 87, 37–48. [Google Scholar] [CrossRef]
- Barbosa, T.F.; Reis, L.; Raposo, J.; Viegas, D.X. A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire. Fire 2022, 5, 63. [Google Scholar] [CrossRef]
- Andrade, C.C.; Souza, J.C. Incêndios Florestais - Medidas de Proteção e Resiliência de Infraestruturas de Comunicações Eletrónicas. 2017. Available online: https://www.anacom.pt/streaming/IncendiosFlorestaisMedidasProtecao19out2017.pdf?contentId=1419800&field=ATTACHED_FILE (accessed on 7 July 2022).
- Viegas, D.X.; Almeida, M.; Ribeiro, L.; Raposo, J.; Viegas, M.T.; Oliveira, R.; Alves, D.; Pinto, C.; Humberto, J.; Rodrigues, A.; et al. O Complexo de Incêndios de Pedrógão Grande e Concelhos Limítrofes, Iniciado a 17 de Junho de 2017; CEIF/ADAI/LAETA: Coimbra, Portugal, 2017. [Google Scholar]
- Old Fire in Calabasas Burns More than 500 Acres, Threatens Thousands of Homes—Daily News. Available online: https://www.dailynews.com/2016/06/04/old-fire-in-calabasas-burns-more-than-500-acres-threatens-thousands-of-homes/ (accessed on 26 August 2022).
- Caballero, D.; Beltrán, I.; Velasco, A. Forest Fires and Wildland-Urban Interface in Spain: Types and Risk Distribution. In Proceedings of the 4th International Wildland Fire Conference, Seville, Spain, 13–17 May 2007; ISBN 978-84-8014-691-3. [Google Scholar]
- San-Miguel-Ayanz, J.; Oom, D.; Artès, T.; Viegas, D.X.; Fernandes, P.; Faivre, N.; Freire, S.; Moore, P.; Rego, F.; Castellnou, M. Forest Fires in Portugal in 2017. In Science for Disaster Risk Management 2020: Acting Today, Protecting Tomorrow; Joint Research Centre, Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Viegas, D.X.; Almeida, M.A.; Ribeiro, L.M.; Raposo, J.; Viegas, M.T.; Oliveira, R.; Alves, D.; Pinto, C.; Rodrigues, A.; Ribeiro, C.; et al. Análise Dos Incêndios Florestais Ocorridos a 15 de Outubro de 2017; CEIF/ADAI/LAETA: Coimbra, Portugal, 2019. [Google Scholar]
- Rahman, S.; Rahman, S. Defensible Spaces and Home Ignition Zones of Wildland-Urban Interfaces in the Fire-Prone Areas of the World. Preprints 2019. [Google Scholar] [CrossRef]
- Vaz, G.C.; André, J.C.S.; Viegas, D.X. Fire spread model for a linear front in a horizontal solid porous fuel bed in still air. Combust. Sci. Technol. 2004, 176, 135–182. [Google Scholar] [CrossRef]
- Takahashi, F. Whole-House Fire Blanket Protection from Wildland-Urban Interface Fires. Front. Mech. Eng. 2019, 5, 60. [Google Scholar] [CrossRef]
- Pereira, D.J.S.; Viegas, C.; Panão, M.R.O. Heat Transfer Model of Fire Protection Fiberglass Thermal Barrier Coated with Thin Aluminium Layer. Int. J. Heat Mass Transf. 2022, 184, 122301. [Google Scholar] [CrossRef]
- Viegas, C.; Batista, R.; Albino, A.; Coelho, M.; Andrade, J.; Alves, D.; Viegas, D.X. Active Barrier Combining Fire-Resistant Fiberglass Fabric and Water Sprinkler System for Protection Against Forest Fires. Fire Technol. 2021, 57, 189–206. [Google Scholar] [CrossRef]
- Brinca, A. Protection of Telecommunications Stations against Forest Fires; University of Coimbra: Coimbra, Portugal, 2020. [Google Scholar]
- Ficha-Técnica-Placa-MAGOXX-9mm. 2020. Available online: https://mgoboard.pt/fichastecnicas/Ficha-Técnica-Placa-MAGOXX-9mm-Março-2020.pdf (accessed on 7 July 2022).
- Raposo, J.R.; Viegas, D.X.; Xie, X.; Almeida, M.; Figueiredo, A.; Porto, L.; Sharples, J. Analysis of the Physical Processes Associated with Junction Fires at Laboratory and Field Scales. Int. J. Wildland Fire 2018, 27, 52. [Google Scholar] [CrossRef]
- Ribeiro, C.; Reis, L.; Raposo, J.; Rodrigues, A.; Viegas, D.X.; Sharples, J. Interaction between Two Parallel Fire Fronts under Different Wind Conditions. Int. J. Wildland Fire 2022, 31, 492–506. [Google Scholar] [CrossRef]
- Abouali, A.; Viegas, D.X.; Raposo, J.R. Analysis of the Wind Flow and Fire Spread Dynamics over a Sloped–Ridgeline Hill. Combust. Flame 2021, 234, 111724. [Google Scholar] [CrossRef]
- JCGM. Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement Évaluation des Données de Mesure-Guide Pour l’expression de l’incertitude de Mesure; Joint Committee for Guides in Metrology. 2008. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (accessed on 7 July 2022).
- NI-9211—NI. Available online: https://www.ni.com/pt-pt/support/model.ni-9211.html (accessed on 17 August 2022).
- Thermocouple Selection Guide. Available online: https://docs.rs-online.com/96d5/0900766b815e5302.pdf (accessed on 7 July 2022).
- NI-9213—NI. Available online: https://www.ni.com/pt-pt/support/model.ni-9213.html (accessed on 17 August 2022).
- Viegas, D.X.F.C.; Raposo, J.R.N.; Ribeiro, C.F.M.; Reis, L.C.D.; Abouali, A.; Viegas, C.X.P. On the Non-Monotonic Behaviour of Fire Spread. Int. J. Wildland Fire 2021, 30, 702–719. [Google Scholar] [CrossRef]
Commercial Name | DuraSteel | Promatec-XW | WeatherKem | SpeedPanel | MAGOOX Board | TriplacM |
---|---|---|---|---|---|---|
Composition | 2 perforated steel plates and fiber reinforced cement core | Gypsum board with mat reinforcement | Mixture of cement, cellulose fibers, and silicon-based binders | Cement core and galvanized steel cladding | Magnesium oxide reinforced with fiberglass mesh | Magnesium, fiber reinforced, and other refractory materials |
Thickness [mm] | 9.5 | 15 | 6–18 | 51; 64; 78; | 4–18 | 24–30 |
Fire resistance [min] | 240 | ≤60 | are completely non-combustible | Varies with thickness (60; 90; 120) | 60–90 | 180–240 |
Resistance to climatic adversities | Yes | Yes | Yes | Yes | Yes | Yes |
Impact resistance | Yes | Yes | Yes | Yes | Yes | Yes |
Thermal conductivity (20 °C approx.) [W/m.K] | 0.55 | 0.264 | 0.24 | Varies with cement densities | 0.213 | 0.29 |
Ref. | Wind Speed (U [m·s−1]) | Protection | Sidewalls |
---|---|---|---|
01 | 0 | Yes | No |
02 | 1 | Yes | No |
03 | 3 | Yes | No |
04 | 0 | Yes | Yes |
05 | 1 | Yes | Yes |
06 | 3 | Yes | Yes |
07 | 0 | No | No |
08 | 1 | No | No |
09 | 0 | No | Yes |
10 | 1 | No | Yes |
11 | 3 | No | Yes |
Test Reference | Protection | Wind Speed [m·s−1] | Side Walls | Max Dimensionless Rate of Spread | Maximum Fireline Intensity [MW·m−1] | T3 [°C] | T1 [°C] | PE | Max Heat Flux [kW·m−2] |
---|---|---|---|---|---|---|---|---|---|
01 | Yes | 0 | No | 1.95 | 0.59 | 90.63 | 24.10 | 0.99 | 0.85 |
02 | Yes | 1 | No | 7.73 | 2.34 | 158.90 | 26.97 | 0.99 | 4.87 |
03 | Yes | 3 | No | 18.10 | 5.48 | 188.63 | 29.72 | 0.98 | 9.07 |
04 | Yes | 0 | Yes | 1.68 | 0.51 | 61.87 | 26.37 | 0.99 | 1.14 |
05 | Yes | 1 | Yes | 5.71 | 1.73 | 144.86 | 29.02 | 1.00 | 2.79 |
06 | Yes | 3 | Yes | 14.96 | 4.53 | 179.24 | 33.72 | 0.98 | 9.12 |
07 | No | 0 | No | 1.65 | 0.50 | 113.51 | 30.20 | 0.95 | 1.43 |
08 | No | 1 | No | 6.80 | 2.06 | 70.37 | 33.46 | 0.87 | 0.31 |
09 | No | 0 | Yes | 1.63 | 0.49 | 108.89 | 34.60 | 0.95 | 1.54 |
10 | No | 1 | Yes | 4.56 | 1.38 | 196.22 | 42.64 | 0.93 | 0.34 |
11 | No | 3 | Yes | 19.85 | 6.01 | 168.67 | 63.03 | 0.77 | 9.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaz, G.; Raposo, J.; Reis, L.; Monteiro, P.; Viegas, D. Rigid Protection System of Infrastructures against Forest Fires. Fire 2022, 5, 145. https://doi.org/10.3390/fire5050145
Vaz G, Raposo J, Reis L, Monteiro P, Viegas D. Rigid Protection System of Infrastructures against Forest Fires. Fire. 2022; 5(5):145. https://doi.org/10.3390/fire5050145
Chicago/Turabian StyleVaz, Gilberto, Jorge Raposo, Luís Reis, Pedro Monteiro, and Domingos Viegas. 2022. "Rigid Protection System of Infrastructures against Forest Fires" Fire 5, no. 5: 145. https://doi.org/10.3390/fire5050145
APA StyleVaz, G., Raposo, J., Reis, L., Monteiro, P., & Viegas, D. (2022). Rigid Protection System of Infrastructures against Forest Fires. Fire, 5(5), 145. https://doi.org/10.3390/fire5050145