Assembling and Customizing Multiple Fire Weather Forecasts for Burn Probability and Other Fire Management Applications in Ontario, Canada
Abstract
:1. Introduction
Overview of Fire Management Processes and Decisions
2. Methods
- Step 1: Assembling three types and durations of forecasts;
- Step 2: Forecasting FWI System values and fire behaviour prediction values;
- Step 3: Reconciling spatial resolutions;
- Step 4: Communicating forecasts.
2.1. Step 1: Assembling Three Types and Durations of Forecasts
2.2. Step 2: Forecasting FWI System Values and Fire Behaviour Prediction Values
2.3. Step 3: Reconciling Spatial Resolutions
2.4. Step 4: Communicating Forecasts
2.5. Verification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thompson, M.P.; Calkin, D.E. Uncertainty and risk in wildland fire management: A review. J. Environ. Manag. 2011, 92, 1895–1909. [Google Scholar] [CrossRef] [PubMed]
- Wotton, B.M.; Martell, D.L. A lightning fire occurrence model for Ontario. Can. J. For. Res. 2005, 35, 1389–1401. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report; Canada Communication Group Publication: Ottawa, ON, Canada, 1987; ISBN 9780662151982. [Google Scholar]
- Stocks, B.J.; Lynham, T.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.E.V.; McAlpine, R.S.; Dubé, D.E. Canadian Forest Fire Danger Rating System: An Overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, K.; Martell, D. A Review of Initial Attack Fire Crew Productivity and Effectiveness. Int. J. Wildland Fire 1996, 6, 199. [Google Scholar] [CrossRef]
- Johnston, L.M.; Wang, X.; Erni, S.; Taylor, S.W.; McFayden, C.B.; Oliver, J.A.; Stockdale, C.; Christianson, A.; Boulanger, Y.; Gauthier, S.; et al. Wildland fire risk research in Canada. Environ. Rev. 2020, 1–23. [Google Scholar] [CrossRef]
- Calkin, D.E.; Thompson, M.P.; Finney, M.A.; Hyde, K.D. A real-time risk assessment tool supporting wildland fire decision-making. J. For. 2011, 109, 274–280. [Google Scholar]
- Scott, J.H.; Thompson, M.P.; Calkin, D.E. A Wildland Fire Risk Assessment Framework for Land and Resource Management; General Technical Report RMRSGTR-315; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2013.
- Finney, M.A. The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manag. 2005, 211, 97–108. [Google Scholar] [CrossRef]
- McFayden, C.B.; Boychuk, D.; Woolford, D.G.; Wheatley, M.J.; Johnston, L. Impacts of wildland fire effects on resources and assets through expert elicitation to support fire response decisions. Int. J. Wildland Fire 2019, 28, 885. [Google Scholar] [CrossRef]
- Finney, M.A.; Grenfell, I.C.; McHugh, C.W.; Seli, R.C.; Trethewey, D.; Stratton, R.D.; Brittain, S. A Method for Ensemble Wildland Fire Simulation. Environ. Model Assess 2011, 16, 153–167. [Google Scholar] [CrossRef]
- Tymstra, C.; Stocks, B.J.; Cai, X.; Flannigan, M.D. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 2020, 5, 100045. [Google Scholar] [CrossRef]
- Natural Resources Canada, Fire Management. Available online: https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/wildland-fires-insects-disturban/forest-fires/fire-management/13157 (accessed on 17 May 2020).
- Simard, S. Fire Severity, Changing Scales, and How Things Hang Together. Int. J. Wildland Fire 1991, 1, 23. [Google Scholar] [CrossRef]
- Taylor, S.W. Review and discussion of fire management resource demand and capacity planning models. 2011; unpublished. [Google Scholar]
- McFayden, C.; Boychuk, D. Fire Management Decisions. In Workshop on Evolving Marked Point Processes with Application to Wildland Fire Regime Modeling; FIELDS Institute: Toronto, ON, Canada, 2015. [Google Scholar]
- Morin, A.A.; Albert-Green, A.; Woolford, D.G.; Martell, D.L. The use of survival analysis methods to model the control time of forest fires in Ontario, Canada. Int. J. Wildland Fire 2015, 24, 964. [Google Scholar] [CrossRef]
- Boychuk, D.; McFayden, C. Appropriate response—Ontario’s strategic approach to wildland fire. In Canadian Wildland Fire and Smoke Newsletter; Canada Wildfire: Edmonton, AB, Canada, 2017; Available online: https://docs.wixstatic.com/ugd/90df79_bfcc500b532a4e38abaa78e1ecfdd26b.pdf (accessed on 17 May 2020).
- Ontario Ministry of Natural Resources and Forestry. Wildland Fire Management Strategy; Queen’s Printer for Ontario: Toronto, ON, Canada, 2014.
- Toth, Z.; Desmarais, J.G.; Brunet, G.; Zhu, Y.; Verret, R.; Wobus, R.; Hogue, R.; Cui, B. The North American ensemble forecast system (NAEFS). Geophys. Res. Abstr. 2005, 7, 02501. [Google Scholar]
- Epstein, E. Long-Range Weather Prediction: Limits of Predictability and Beyond. Weather Forecast. 1988, 3, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Sun, Y.Q.; Magnusson, L.; Buizza, R.; Lin, S.-J.; Chen, J.-H.; Emanuel, K. What Is the Predictability Limit of Midlatitude Weather? J. Atmos. Sci. 2019, 76, 1077–1091. [Google Scholar] [CrossRef] [Green Version]
- McAlpine, R.S. Seasonal Trends in the Drought Code Component of the Canadian Forest Fire Weather Index System; Report. no. PI-X-97E/F; Forestry Canada, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1990. [Google Scholar]
- Anderson, K.R.; Englefield, P.; Carr, R. Predicting fire-weather severity using seasonal forecasts. In Proceedings of the 7th Symposium on Fire and Forest Meteorology, Bar Harbor, ME, USA, 23–25 October 2007; American Meteorological Society: Boston, MA, USA, 2007. [Google Scholar]
- Anderson, K. A climatologically based long-range fire growth model. Int. J. Wildland Fire 2010, 19, 879. [Google Scholar] [CrossRef]
- Pence, M.; Zimmerman, T. The Wildland Fire Decision Support System: Integrating science, technology, and fire management. Fire Manag. Today 2011, 71, 18–22. [Google Scholar]
- Toth, Z. Long-range weather forecasting using an analog approach. J. Clim. 1989, 2, 594–607. [Google Scholar] [CrossRef] [Green Version]
- Bonsal, B.; Lawford, R. Teleconnections between El Niño and La Niña events and summer extended dry spells on the Canadian Prairies. Int. J. Climatol. 1999, 19, 1445–1458. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information, El Niño/Southern Oscillation (ENSO) Technical Discussion. Available online: www.ncdc.noaa.gov/teleconnections/enso/enso-tech.php (accessed on 17 May 2020).
- Skinner, W.R.; Stocks, B.J.; Martell, D.L.; Bonsal, B.; Shabbar, A. The Association Between Circulation Anomalies in the Mid-Troposphere and Area Burned by Wildland Fire in Canada. Theor. Appl. Climatol. 1999, 63, 89–105. [Google Scholar] [CrossRef]
- Wang, Y.; Flannigan, M.; Anderson, K. Correlations between forest fires in British Columbia, Canada, and sea surface temperature of the Pacific Ocean. Ecol. Model. 2010, 221, 122–129. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lawson, B. Weather in the Canadian forest fire danger rating system. In A User Guide to National Standards and Practices; Report. no. BC-X-177; Fisheries and Environment Canada, Canadian Forest Service, Pacific Forest Research Centre: Victoria, BC, Canada, 1978. [Google Scholar]
- Lawson, B.D.; Armitage, O.B.; Northern Forestry Centre (Canada). Weather Guide for the Canadian Forest Fire Danger Rating System; Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 2008; ISBN 9781100115658.
- Forestry Canada Fire Danger Group. Development and Structure of the Canadian Forest Fire Behavior Prediction System; Information report ST-X-3; Forestry Canada, Science and Sustainable Development Directorate: Ottawa, ON, Canada, 1992; ISBN 9780662198123.
- Flannigan, M.D.; Wotton, B.M. A study of interpolation methods for forest fire danger rating in Canada. Can. J. For. Res. 1989, 19, 1059–1066. [Google Scholar] [CrossRef]
- Jain, P.; Flannigan, M.D. Comparison of methods for spatial interpolation of fire weather in Alberta, Canada. Can. J. For. Res. 2017, 47, 1646–1658. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Judgment under uncertainty: Heuristics and biases. In Utility, Probability, and Human Decision Making; Springer: Dordrecht, The Netherlands, 1975; pp. 141–162. [Google Scholar]
- Maguire, L.A.; Albright, E.A. Can behavioral decision theory explain risk-averse fire management decisions? For. Ecol. Manag. 2005, 211, 47–58. [Google Scholar] [CrossRef]
- Boychuk, D.; Evens, J.; Leonard, D.; McFayden, C.; McLarty, D.; Wotton, M. FireSTARR: Automated Burn Probability Maps within Minutes of Every Fire Report in Ontario, Canada. Presented at Wildland Fire Canada, Ottawa, ON, Canada, 18–21 November 2019. [Google Scholar]
- Tymstra, C.; Bryce, R.W.; Wotton, B.M.; Taylor, S.W.; Armitage, O.B. Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model; Northern Forestry Centre: Edmonton, AB, Canada, 2010; p. 102.
- Shields, J. The Future of Fire Weather Forecasting: Human vs. Computer Forecasting; Wildland Fire Canada: Kelowna, BC, Canada, 2016; Available online: http://www.wildlandfire2016.ca/wp-content/uploads/2017/02/Future-of-Fire-Weather-Forecasting-Shields.pdf (accessed on 17 May 2020).
- Candille, G. The Multiensemble Approach: The NAEFS Example. Mon. Weather Rev. 2009, 137, 1655–1665. [Google Scholar] [CrossRef]
- Gneiting, T.; Balabdaoui, F.; Raftery, A.E. Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. B 2007, 69, 243–268. [Google Scholar] [CrossRef] [Green Version]
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; ISBN 9780471722144. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; International Geophysics Series; Elsevier/Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2011; ISBN 9780123850225. [Google Scholar]
- Government of Canada. Canadian Climate Normals. Available online: https://climate.weather.gc.ca/climate_normals (accessed on 17 May 2020).
- NOAA. Climate Normals. Available online: https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals (accessed on 17 May 2020).
- Government of Canada. Technical Documentation Climate Normals. Available online: https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/display-download/technical-documentation-climate-normals.html#toc1 (accessed on 17 May 2020).
- World Climate Research Program. WWRP/WGNE Joint Working Group on Forecast Verification Research. Available online: https://www.cawcr.gov.au/projects/verification (accessed on 17 May 2020).
- Flannigan, M.D.; Logan, K.A.; Amiro, B.D.; Skinner, W.R.; Stocks, B.J. Future Area Burned in Canada. Clim. Chang. 2005, 72, 1–16. [Google Scholar] [CrossRef]
- Wotton, B.; Martell, D.; Logan, K. Climate change and people-caused forest fire occurrence in Ontario. Clim. Chang. 2003, 60, 275–295. [Google Scholar] [CrossRef]
- Wotton, M.; Logan, K.; McAlpine, R.S. Climate Change and the Future Fire Environment in Ontario: Fire Occurrence and Fire Management Impacts; Applied Research and Development Branch, Ontario Ministry of Natural Resources: Sault Ste. Marie, ON, Canada, 2010; ISBN 9780779455621. [Google Scholar]
- Jianping, H.; Yuhong, Y.; Shaowu, W.; Jifen, C. An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution. Q. J. R. Meteorol. Soc. 1993, 119, 547–565. [Google Scholar] [CrossRef]
- Government of Canada. NAEFS Probability Maps of Weather Events over Time Intervals. Available online: https://weather.gc.ca/ensemble/naefs/produits_e.html (accessed on 17 May 2020).
- Bogdos, N.; Manolakos, E.S. A tool for simulation and geo-animation of wildfires with fuel editing and hotspot monitoring capabilities. Environ. Model. Softw. 2013, 46, 182–195. [Google Scholar] [CrossRef]
- Mylne, K.R. Decision-making from probability forecasts based on forecast value. Meteorol. Appl. 2002, 9, 307–315. [Google Scholar] [CrossRef]
- Taber, M.A.; Elenz, L.M.; Langowski, P.G. Decision Making for Wildfires: A Guide for Applying a Risk Management Process at the Incident Level; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013; p. 59, RMRS-GTR-298WWW.
- Lipshitz, R.; Strauss, O. Coping with Uncertainty: A Naturalistic Decision-Making Analysis. Organ. Behav. Hum. Decis. Process. 1997, 69, 149–163. [Google Scholar] [CrossRef]
- Noble, P.; Paveglio, T.B. Exploring Adoption of the Wildland Fire Decision Support System: End User Perspectives. J. For. 2020, 118, 154–171. [Google Scholar] [CrossRef]
- Martell, D. The development and implementation of forest and wildland fire management decision support systems: Reflections on past practices and emerging needs and challenges. Math. Comput. For. Nat. Resour. Sci. 2011, 3, 18. [Google Scholar]
- Hutton, R.J.; Klein, G. Expert decision making. Syst. Eng. 1999, 2, 32–45. [Google Scholar] [CrossRef]
Component Forecast, Fire Weather Input | Grid Resolution, Station Location |
---|---|
AFFES forecast | 20 km × 20 km grid |
North American Ensemble Forecast System | 1 degree (where degree lines intersect ~111 km) |
Historical analogue years (Reanalysis 1) | 2.5 degrees (where degree lines intersect ~277 km) |
FWI System starting values | Closest operating AFFES weather station within 80 km (or from spring start-up rules) |
Metric | Brier < Climate | ROC AUC > Climate and ROC AUC > 0.6 | ||
---|---|---|---|---|
Score Sum | 2.1 | 5.1 | 2.1 | 5.1 |
Temperature | 15 | 15 | 15 | 15 |
Wind Speed | 5 | 5 | 8 | 8 |
Relative Humidity | 3 | 3 | 10 | 10 |
Accumulated Precipitation | 12 | 12 | 12 | 12 |
FFMC | 16 | 80 | 15 | 15 |
DMC | 30 | 90 | 21 | 22 |
DC | 56 | 58 | 32 | 30 |
Initial Spread Index | 15 | 16 | 15 | 15 |
BUI | 31 | 90 | 21 | 21 |
FWI | 18 | 29 | 15 | 16 |
Score Sum 2.1 to Select Historical Analogue Years | All Historical Years (1948–2019) | |
---|---|---|
Number of simulations | 4200 | 56,280 |
Time to run simulations (h:min:s) | 00:15:19 | 06:12:05 |
Day 30 median fire size (ha) | 18,649 | 18,000 |
Burn probability map on day 30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boychuk, D.; McFayden, C.B.; Evens, J.; Shields, J.; Stacey, A.; Woolford, D.G.; Wotton, M.; Johnston, D.; Leonard, D.; McLarty, D. Assembling and Customizing Multiple Fire Weather Forecasts for Burn Probability and Other Fire Management Applications in Ontario, Canada. Fire 2020, 3, 16. https://doi.org/10.3390/fire3020016
Boychuk D, McFayden CB, Evens J, Shields J, Stacey A, Woolford DG, Wotton M, Johnston D, Leonard D, McLarty D. Assembling and Customizing Multiple Fire Weather Forecasts for Burn Probability and Other Fire Management Applications in Ontario, Canada. Fire. 2020; 3(2):16. https://doi.org/10.3390/fire3020016
Chicago/Turabian StyleBoychuk, Den, Colin B. McFayden, Jordan Evens, Jerry Shields, Aaron Stacey, Douglas G. Woolford, Mike Wotton, Dan Johnston, Dan Leonard, and Darren McLarty. 2020. "Assembling and Customizing Multiple Fire Weather Forecasts for Burn Probability and Other Fire Management Applications in Ontario, Canada" Fire 3, no. 2: 16. https://doi.org/10.3390/fire3020016