Contemporary Fire Regimes of the Arid Carnarvon Basin Region of Western Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Including Climate
2.2. Vegetation Groups
2.3. Data Sources and Fire Scar Mapping
2.4. Data Analysis
3. Results
3.1. Summary Statistics
3.2. Area Burnt by Vegetation Types
3.3. Weather—Fire Relationships
4. Discussion
4.1. Fire Size
4.2. Hummock Grassland vs. Wooded Vegetation
4.3. Rainfall and Ephemeral Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Russell-Smith, J.; Yates, C.P.; Whitehead, P.J.; Smith, R.; Craig, R.; Allan, G.E.; Thackway, R.; Frakes, I.; Cridland, S.; Meyer, M.C.P.; et al. Bushfires ‘down under’: Patterns and implications of contemporary Australian landscape burning. Int. J. Wildl. Fire 2007, 16, 361–377. [Google Scholar] [CrossRef]
- Turner, D.; Ostendorf, B.; Lewis, M. An introduction to patterns of fire in arid and semi-arid Australia, 1998–2004. Rangel. J. 2008, 30, 95–107. [Google Scholar] [CrossRef]
- Allan, G.E. Managing fire in the southern Tanami Desert. In Desert Fire: Fire and Regional Land Management in the Arid Landscapes of Australia; DKCRC Report 37; Edwards, G.P., Allan, G.E., Eds.; Desert Knowledge Cooperative Research Centre: Alice Springs, Australia, 2009; pp. 17–78. ISBN 174158112. [Google Scholar]
- Van Etten, E.J.B.; Burrows, N.D. Fire regimes and ecology of arid Australia. In On the Ecology of Australia’s Arid Zone; Lambers, H., Ed.; Springer Nature Publishing: Cham, Switzerland, 2018; pp. 243–282. [Google Scholar]
- Wittkuhn, R.S.; Hamilton, T.; McCaw, L. Fire interval sequences to aid in site selection for biodiversity studies: Mapping the fire regime. Proc. R. Soc. Qld. 2009, 115, 101–110. [Google Scholar]
- O’Donnell, A.J.; Boer, M.M.; McCaw, W.L.; Grierson, P.F. Vegetation and landscape connectivity control wildfire intervals in unmanaged semi-arid shrublands and woodlands in Australia. J. Biogeogr. 2011, 38, 112–124. [Google Scholar] [CrossRef]
- Nano, C.E.; Clarke, P.J. Woody-grass ratios in a grassy arid system are limited by multi-causal interactions of abiotic constraint, competition and fire. Oecologia 2010, 162, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Kraaij, T.; Baard, J.A.; Cowling, R.M.; van Wilgen, B.W.; Das, S. Historical fire regimes in a poorly understood, fire-prone ecosystem: Eastern coastal fynbos. Int. J. Wildl. Fire 2013, 22, 277–287. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Pons, X. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: Analysis of vegetation recovery after fire. For. Ecol. Manag. 2001, 147, 67–74. [Google Scholar] [CrossRef]
- Allan, G.E.; Southgate, R.I. Fire regimes in the spinifex landscapes of Australia. In Flammable Australia: The Fire Regimes and Biodiversity of a Continent; Bradstock, R.A., Williams, J.E., Gill, A.M., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 145–176. [Google Scholar]
- O’Donnell, A.J.; Boer, M.M.; McCaw, W.L.; Grierson, P.F. Scale-dependent thresholds in the dominant controls of wildfire size in semi-arid southwest Australia. Ecosphere 2014, 5, 93. [Google Scholar] [CrossRef]
- Griffin, G.F.; Friedel, M.H. Effects of fire on central Australian rangelands. I Fire and fuel characteristics and changes in herbage and nutrients. Aust. J. Ecol. 1984, 9, 381–393. [Google Scholar] [CrossRef]
- Cruz, M.G.; Gould, J.S.; Hollis, J.J.; McCaw, W.L. A Hierarchical classification of wildland fire fuels for Australian vegetation types. Fire 2018, 1, 13. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Hammill, K.A.; Collins, L.; Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 2010, 25, 607–619. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wildl. Fire 2015, 24, 443–460. [Google Scholar] [CrossRef]
- Griffin, G.F.; Price, N.F.; Portlock, H.F. Wildfires in the central Australian rangelands, 1970–1980. J. Environ. Manag. 1983, 17, 311–323. [Google Scholar]
- Greenville, A.C.; Dickman, C.R.; Wardle, G.M.; Letnic, M. The fire history of an arid grassland: The influence of antecedent rainfall and ENSO. Int. J. Wildl. Fire 2009, 18, 631–639. [Google Scholar] [CrossRef]
- Sullivan, A.L.; McCaw, W.L.; Cruz, M.G.; Matthews, S.; Ellis, P.F. Fuel, fire weather and fire behaviour in Australian ecosystems. In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R.A., Gill, A.M., Williams, R.J., Eds.; CSIRO Publishing: Collingwood, Australia, 2012; pp. 51–79. [Google Scholar]
- Ward, B.G.; Bragg, T.B.; Hayes, B.A. Relationship between fire-return interval and mulga (Acacia aneura) regeneration in the Gibson Desert and Gascoyne–Murchison regions of Western Australia. Int. J. Wildl. Fire 2014, 23, 394–402. [Google Scholar] [CrossRef]
- Ward, B.G.; Bragg, T.B.; Hayes, B.A. Effects of chaining and burning in Acacia ramulosa shrublands of the Peron Peninsula, Shark Bay, Western Australia. Int. J. Wildl. Fire 2018, 27, 623–635. [Google Scholar] [CrossRef]
- Enright, N.J.; Keith, D.; Clarke, M.; Miller, B.P. Fire regimes in Australian sclerophyllous shrubby ecosystems: Heathlands, heathy woodlands and mallee woodlands. In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R.A., Gill, A.M., Williams, R.J., Eds.; CSIRO Publishing: Collingwood, Australia, 2012; pp. 215–234. [Google Scholar]
- Dalgleish, S.A.; van Etten, E.J.B.; Stock, W.D.; Knuckey, C. Fuel dynamics and vegetation recovery after fire in a semi-arid Australian shrubland. Int. J. Wildl. Fire 2015, 24, 613–623. [Google Scholar] [CrossRef]
- Nano, C.E.M.; Clarke, P.J.; Pavey, C.R. Fire regimes in arid hummock grasslands and Acacia shrublands. In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R.A., Gill, A.M., Williams, R.J., Eds.; CSIRO Publishing: Collingwood, Australia, 2012; pp. 195–214. [Google Scholar]
- Burrows, N.D.; Ward, B.; Robinson, A. Fuel dynamics and fire spread in spinifex grasslands of the Western Desert. Proc. R. Soc. Qld. 2009, 115, 69–76. [Google Scholar] [CrossRef]
- Burrows, N.D.; Burbidge, A.A.; Fuller, P.J.; Behn, G. Evidence of altered fire regimes in the Western Desert region of Australia. Conserv. Sci. West. Aust. 2006, 5, 272–284. [Google Scholar]
- Burrows, N.D.; van Didden, G. Patch-burning desert nature reserves in Western Australia using aircraft. Int. J. Wildl. Fire 1991, 1, 49–55. [Google Scholar] [CrossRef]
- Van Etten, E.J.B. Inter-annual rainfall variability of arid Australia: Greater than elsewhere? Aust. Geogr. 2009, 40, 109–120. [Google Scholar] [CrossRef]
- Brooks, M.L.; Matchett, J.R. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. J. Arid Environ. 2006, 67, 148–164. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gόmez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Chang. Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Kraaij, T.; van Wilgen, B.W. Drivers, ecology, and management of fire in fynbos. In Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region; Allsopp, N., Colville, J.F., Verboom, G.A., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 47–72. [Google Scholar]
- Brooks, M.L.; Minnich, R.A. Southeastern deserts bioregion. In Fire in California’s Ecosystems; Sugihara, N., Ed.; University of California Press: Berkeley, CA, USA, 2006; pp. 391–414. [Google Scholar]
- Govender, N.; Trollope, W.S.; Van Wilgen, B.W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 2006, 43, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, R.R. Fire in the deserts and desert grassland of North America. In Fire and Ecosystems; Kozlowski, T.T., Ahlgren, C.E., Eds.; Academic Press: New York, NY, USA, 1974; pp. 365–400. [Google Scholar]
- Bendix, J.; Cowell, C.M. Impacts of wildfire on the composition and structure of riparian forests in southern California. Ecosystems 2010, 13, 99–107. [Google Scholar] [CrossRef]
- Hopper, S.D. Biogeographical aspects of speciation in the southwest Australian flora. Ann. Rev. Ecol. Syst. 1979, 10, 399–422. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Kӧppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 4, 439–473. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Climate Statistics for Australian Locations. 2016. Available online: http://www.bom.gov.au/climate/data (accessed on 20 March 2017).
- Beard, J.S. Murchison 1:1 000,000 Vegetation Series: Explanatory Notes to Sheet 5: The Vegetation of the Murchison Area; University of Western Australia Press: Nedlands, Australia, 1976. [Google Scholar]
- Beard, J.S.; Beeston, G.R.; Harvey, J.M.; Hopkins, A.J.M.; Shepherd, D.P. The vegetation of Western Australia at the 1:3,000,000 scale. Explanatory memoir, Second Edition. Conserv. Sci. West. Aust. 2013, 9, 1–152. [Google Scholar]
- Noy-Meir, I. Desert ecosystems: Environment and producers. Ann. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Letnic, M.; Dickman, C.R. The responses of small mammals to patches regenerating after fire and rainfall in the Simpson Desert, central Australia. Austral. Ecol. 2015, 30, 24–39. [Google Scholar]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Geoscience Australia. Aerial Photography—Flight Line Diagrams. Available online: http://www.ga.gov.au/flight-diagrams/ (accessed on 21 June 2016).
- Murphy, B.P.; Bradstock, R.A.; Boer, M.M.; Carter, J.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Russell-Smith, J.; Williamson, G.J.; Bowman, D.M. Fire regimes of Australia: A pyrogeographic model system. J. Biogeogr. 2013, 40, 1048–1058. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Boggs, G.S.; Prior, L.D.; Krull, E.S. Dynamics of Acacia aneura—Triodia boundaries using carbon (14 C and δ13C) and nitrogen (δ15N) in soil organic matter in central Australia. Holocene 2007, 17, 311–318. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Gascoyne River Flood. Available online: http://www.bom.gov.au/announcements/sevwx/wa/gascoyne_river/gascoyne_river.shtml (accessed on 10/09/2017).
- Burnside, D.; Holm, A.; Payne, A.; Wilson, G. Reading the Rangeland: A Guide to the Arid Shrublands of Western Australia; Department of Agriculture and Food: Perth, Australia, 1995. [Google Scholar]
- CSIRO and Bureau of Meteorology. Climate Change in Australia Information for Australia’s Natural Resource Management Regions: Technical Report; CSIRO and Bureau of Meteorology: Canberra, Australia, 2015. [Google Scholar]
Vegetation Group | Description | % of Study Area |
---|---|---|
Acacia shrubland | Open to mid-dense shrublands (2–3 m high) on red sandplains and dunes dominated by Acacia with some Callitris and mallee (both very sparse). Dominated by Acacia ramulosa and A. linophylla, referred to as bowgada by Beard, and A. sclerosperma [39]. Mulga (Acacia aneura) is absent from this vegetation group, or may occur as a minor element only. | 53.7% |
Acacia woodland | Consists of low open woodland with no mulga. The vegetation is low open woodland (2–4 m) on stony plains located mostly in the northern study area adjacent to Acacia shrublands, and often with the same dominant species, mixed with Acacia xiphophylla (snakewood) and A. victoriae. | 11.4% |
Heathland | Comprises heathland and low scrub (<2 m) of proteaceous heath on sandplain, A. rostellifera on coastal dunes and some sparse mallee shrublands located on the coastal plain north of Kalbarri. | 12.6% |
Mulga woodland | Contains low mulga (Acacia aneura s.l.) woodland (2–8 m) with other Acacia species situated mostly west of the Murchison River along floodplains and creeklines, and on washplains, stony plains and red loams. Mulga Woodland is the dominant vegetation on red loamy soil such those as found in the very eastern edge of the study area and on the Yilgarn Craton, whereas the majority of the rest of the study area consists of sandy soils. | 0.6% |
Hummock grassland | Found on sandplains and dunes in the northern study area with isolated areas in the southern study area. The two main areas of hummock grassland in the northern study area are on sand dunes of the Kennedy Range where mid-dense Triodia basedowii occurs with scattered shrubs of Grevillea, Hakea and Hibbertia, and on the coastal plain on the west side of Lake Macleod where T. basedowii is also dominant but with very sparse Acacia shrubs. | 4.4% |
Succulent shrubland | The vegetation contains samphire shrubland dominated by Tecticornia species around salt lakes as well as Atriplex species and Maireana species on mudflats and low floodplains, sometimes mixed with islands of Acacia shrubs [39]. | 13.7% |
Other | Includes mangrove and other (minor) miscellaneous types such as bare areas (e.g., salt lake flats) and York gum woodlands. | 3.6% |
Vegetation Group | Study Area km2 | % of Study Area | Burnt Area km2 | % of Burnt Area | % Vegetation Burnt |
---|---|---|---|---|---|
Northern Study Area | |||||
Acacia Shrubland | 15,711 | 42.6 | 4467 | 41.6 | 28.4 |
Acacia Woodland | 7437 | 20.2 | 3379 | 31.5 | 45.4 |
Mulga Woodland | 399 | 1.1 | 0 | 0.0 | 0.0 |
Hummock Grassland | 2460 | 6.7 | 1669 | 15.5 | 67.9 |
Succulent Shrubland | 8555 | 23.2 | 1210 | 11.3 | 14.1 |
Other | 2286 | 6.2 | 14 | 0.1 | 0.6 |
TOTAL | 36,848 | 100.0 | 10,739 | 100 | 29.1 |
Southern Study Area | |||||
Acacia Shrubland | 19,604 | 67.9 | 393 | 8.0 | 2.0 |
Heathland | 8281 | 28.7 | 4496 | 91.9 | 54.3 |
Hummock Grassland | 424 | 1.5 | 0 | 0.0 | 0.0 |
Succulent Shrubland | 442 | 1.5 | 0 | 0.0 | 0.0 |
Other | 126 | 0.4 | 3 | 0.1 | 2.4 |
TOTAL | 28,876 | 100.0 | 4893 | 100 | 16.9 |
Study Area | Northern | Southern | |||
---|---|---|---|---|---|
Variable | Period | Correlation | p Value | Correlation | p Value |
Rainfall | Month | −0.126 | 0.58 | 0.042 | 0.85 |
(cumulative) | 3 months | −0.068 | 0.76 | −0.012 | 0.96 |
6 months | 0.144 | 0.52 | 0.328 | 0.12 | |
1 year | 0.652 | <0.001 | 0.619 | <0.001 | |
2 years | 0.309 | 0.16 | 0.322 | 0.12 | |
4 years | 0.282 | 0.20 | 0.193 | 0.37 | |
Temperature | Month | −0.016 | 0.94 | 0.176 | 0.41 |
(average maximum) | 3 months | −0.073 | 0.75 | 0.083 | 0.70 |
6 months | −0.187 | 0.41 | −0.060 | 0.78 | |
1 year | −0.140 | 0.53 | −0.133 | 0.54 | |
P-E (cumulative) | 3 months | 0.020 | 0.93 | −0.119 | 0.58 |
6 months | 0.209 | 0.35 | 0.048 | 0.82 | |
1 year | 0.582 | 0.005 | 0.218 | 0.31 |
Study Area | Dependent Variable | Predictors | Coefficient | t | Prob. | AICC | Adj R2 |
---|---|---|---|---|---|---|---|
Northern | Fire size | 1 year Rain | 10.56 | 4.0 | 0.001 | 320.9 | 0.48 |
2 year Rain | −3.74 | −1.8 | 0.088 | ||||
Fire size | 1 year Rain | 6.95 | 3.8 | 0.001 | 321.7 | 0.40 | |
Northern | Ln (Fire size) | 1 year Rain | 0.007 | 5.1 | <0.001 | 7.01 | 0.54 |
Ln (Fire size) | 1 Year Rain | 0.006 | 4.3 | 0.001 | 8.41 | 0.59 | |
6 month Temp | −0.395 | −2.2 | 0.044 | ||||
3 month Temp | 0.480 | 2.1 | 0.052 | ||||
Ln (Fire size) | 1 Year Rain | 0.008 | 5.1 | <0.001 | 8.70 | 0.57 | |
3 month Temp | 0.059 | 2.7 | 0.039 | ||||
Southern | Fire size | 1 year Rain | 2.12 | 4.6 | <0.001 | 251.8 | 0.45 |
3 month Rain | −6.05 | −2.2 | 0.038 | ||||
Southern | Ln (Fire size) | 1 year Rain | 0.010 | 4.5 | <0.001 | -6.38 | 0.45 |
3 month Rain | −0.032 | −2.5 | 0.019 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladbrook, M.; J. B. van Etten, E.; D. Stock, W. Contemporary Fire Regimes of the Arid Carnarvon Basin Region of Western Australia. Fire 2018, 1, 51. https://doi.org/10.3390/fire1030051
Ladbrook M, J. B. van Etten E, D. Stock W. Contemporary Fire Regimes of the Arid Carnarvon Basin Region of Western Australia. Fire. 2018; 1(3):51. https://doi.org/10.3390/fire1030051
Chicago/Turabian StyleLadbrook, Megan, Eddie J. B. van Etten, and William D. Stock. 2018. "Contemporary Fire Regimes of the Arid Carnarvon Basin Region of Western Australia" Fire 1, no. 3: 51. https://doi.org/10.3390/fire1030051
APA StyleLadbrook, M., J. B. van Etten, E., & D. Stock, W. (2018). Contemporary Fire Regimes of the Arid Carnarvon Basin Region of Western Australia. Fire, 1(3), 51. https://doi.org/10.3390/fire1030051