Recognizing Women Leaders in Fire Science: Revisited
Abstract
:1. Introduction
2. Approach
3. Recognizing Women Leaders in Fire Science
4. Special Mentions
5. Conclusions
Acknowledgements
Conflicts of Interest
References
- Smith, A.M.S.; Kolden, C.A.; Prichard, S.J.; Gray, R.W.; Hessburg, P.F.; Balch, J.K. Recognizing women leaders in fire science. Fire 2018, 1, 30. [Google Scholar] [CrossRef]
- Law, B.E.; Thornton, P.E.; Irvine, J.; Anthoni, P.M.; van Tuhl, S. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Glob. Chang. Biol. 2001, 7, 755–777. [Google Scholar] [CrossRef]
- Law, B.E.; Turner, D.; Capmbell, J.; Sun, O.; van Tuhl, S.; Ritts, W.D.; Cohen, W.B. Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. Glob. Chang. Biol. 2004, 10, 1429–1444. [Google Scholar] [CrossRef]
- Magnami, F.; Mencuccini, M.; Borghetti, M.; Berbigler, P.; Berninger, F.; Delzon, S.; Grelle, A.; Harl, P.; Jarvis, P.G.; Kolari, P.; et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 2007, 447, 848–850. [Google Scholar]
- Berner, L.T.; Law, B.E.; Meddens, A.J.H.; Hicke, J.A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 2017, 12, 065005. [Google Scholar] [CrossRef] [Green Version]
- Law, B.E.; Hudiburg, T.W.; Berner, L.T.; Kent, J.J.; Buotte, P.C.; Harmon, M.E. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl. Acad. Sci. USA 2018, 115, 3663–3668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFres, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Marlon, J.R.; Bartlein, P.J.; Carcaillet, C.; Gavin, D.G.; Harrison, S.P.; Higuera, P.E.; Joos, F.; Power, M.J.; Prentice, I.C. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 2008, 1, 697–702. [Google Scholar] [CrossRef]
- Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 2008, 30, 887–907. [Google Scholar] [CrossRef]
- Harrison, S.P.; Digerfeldt, G. European lakes as palaeohydrological and palaeoclimatic indicators. Quat. Sci. Rev. 1993, 12, 233–248. [Google Scholar] [CrossRef]
- Rabin, S.S.; Melton, J.R.; Lasslop, G.; Bachelet, D.; Forrest, M.; Hantson, S.; Li, F.; Mangeon, S.; Arora, V.K.; Hickler, T.; et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols. Geosci. Model Dev. 2017, 20, 1175–1197. [Google Scholar] [CrossRef]
- Harrison, S.P.; Bartlein, P.J.; Brovkin, V.; Houweling, S.; Kloster, S.; Prentice, I.C. The biomass burning contribution to climate-carbon-cycle feedback. Earth Syst. Dyn. 2018, 9, 663–677. [Google Scholar] [CrossRef]
- Logan, J.A.; Orather, M.J.; Wofsy, S.C.; McElory, M.B. Tropospheric chemistry: A global perspective. J. Geophys. Res. 1981, 86, 7210–7254. [Google Scholar] [CrossRef]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Flore, A.M.; Li, Q.B.; Liu, H.G.Y.; Mickley, L.J.; Schultz, M.G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. 2001, 106, 23073–23095. [Google Scholar] [CrossRef] [Green Version]
- Duncan, B.N.; Martin, R.V.; Staudt, A.C.; Yevich, R.; Logan, J.A. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res. 2003, 108, 1–22. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Mickleyt, L.J.; Logan, J.A.; Hudman, R.C.; Yevich, R.; Flannigan, M.D.; Westerling, A.L. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J. Geophys. Res. 2009, 114, D20301. [Google Scholar] [CrossRef]
- Yue, C.; Mickley, L.J.; Logan, J.A.; Kaplan, J.O. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ. 2013, 77, 767–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, X.; Mickley, L.J.; Logan, J.A.; Hudman, R.C.; Val Martin, M.; Yantosca, R.M. Impact of 2050 climate change on North American wildfire: Consequences for ozone air quality. Atmos. Chem. Phys. 2015, 15, 10033–10055. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Hobbs, P.V.; Kirchofff, V.W.J.H.; Artaxo, P.; Remer, L.A.; Holben, B.N.; King, M.D.; Ward, D.E.; Longon, K.M.; Mattos, L.F.; et al. Smoke, clouds, and radiation-Brazil (SCAR-B) experiment. J. Geophys. Res. Atmos. 1998, 103, 31783–31808. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, J.C.; Hudson, R.D.; Guo, H.; Herman, J.R.; Fujiwara, M. Tropical tropospheric ozone and biomass burning. Science 2011, 291, 2128–2132. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.C.; Nicely, J.M.; Salawitch, R.J.; Canty, T.P.; Dickerson, R.R.; Hanisco, T.F.; Wolfe, G.M.; Apel, E.C.; Atlas, E.; Bannan, T.; et al. A pervasive role for biomass burning in tropical high ozone/low water structures. Nat. Commun. 2016, 7, 10267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Aral, E.; Espirito-Santo, F.E.B.; Freitas, R.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.S.; Rudel, T.; Urlarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balck, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, E.A.; de Araujo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Marlier, M.E.; DeFries, R.S.; Kim, P.S.; Koplitz, J.D.J.; Mickley, L.J.; Myers, S.S. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett. 2015, 10, 085005. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.J.; Marlier, M.E.; DeFries, R.S.; Westervelt, D.M.; Xia, K.R.; Flore, A.M.; Mickley, L.J.; Cusworth, D.H.; Milly, G. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmos. Environ. 2018, 172, 83–92. [Google Scholar] [CrossRef]
- DeFries, R.S.; Nagendra, H. Ecosystem management as a wicked problem. Science 2017, 356, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G.; O’Neill, R.V.; Gardner, R.H.; Milne, B.T. Effects of changing spatial scale on the analysis of landscape pattern. Landsc. Ecol. 1989, 3, 153–162. [Google Scholar] [CrossRef]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [PubMed]
- Smithwick, E.A.H.; Turner, M.G.; Mack, M.C.; Chapin, F.S. Postfire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 2005, 8, 163–181. [Google Scholar] [CrossRef]
- Turner, M.G.; Romme, W.H. Landscape dynamics in crown fire ecosystems. Landsc. Ecol. 1994, 9, 59–77. [Google Scholar] [CrossRef]
- Turner, M.G.; Hargrove, W.W.; Gardner, R.H.; Romme, W.H. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 1994, 5, 731–742. [Google Scholar] [CrossRef]
- Turner, M.G.; Romme, W.H.; Gardner, R.H.; Hargrove, W.W. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol. Monogr. 1997, 67, 411–433. [Google Scholar] [CrossRef]
- Graves, R.A.; Pearson, S.M.; Turner, M.G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl. Acad. Sci. USA 2017, 114, 3774–3779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziter, C.; Graves, R.A.; Turner, M.G. How do land-use legacies affect ecosystem services in United States cultural landscapes? Landsc. Ecol. 2017, 32, 2205–2218. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.T.; Brenkert-Smith, H.; Dennison, P.R.; Harvey, B.J.; Krawchuk, M.A.; Mietklewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The impact of boreal forest fire on climate warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [PubMed]
- Harden, J.W.; Trumore, S.E.; Stocks, B.J.; Hirsh, A.; Gower, S.T.; O’Neill, K.P.; Kasishcke, E.S. The role of fire in the boreal carbon budget. Glob. Chang. Biol. 2000, 6, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 2011, 4, 27–31. [Google Scholar] [CrossRef]
- Manies, K.L.; Harden, J.W.; Fuller, C.C.; Turetsky, M.R. Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems. Biogeosciences 2016, 13, 4315–4327. [Google Scholar] [CrossRef]
- Dale, V.H.; Beyeler, S.C. Challenges in the development and use of ecological indicators. Ecol. Indic. 2001, 1, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate Change and Forest Disturbances: Climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Dale, V.H.; Jager, H.I.; Wolfe, A.K.; Efroymson, R.A. Risk and resilience in an uncertain world. Front. Ecol. Environ. 2018, 16, 3. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Wiedinmyer, C.; Akago, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Quale, B.; Geron, C.; Belote, A.; McKenzie, D.; Xhang, X.Y.; O’Neill, S.; Wynne, K.K. Estimating emissions from fires in North America for air quality modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Thomas, J.L.; Polashenski, C.M.; Soja, A.J.; Marelle, L.; Casey, K.A.; Choi, H.D.; Raut, J.-C.; Wiedinmyer, C.; Emmos, L.K.; Fast, J.D.; et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett. 2017, 44, 7965–7974. [Google Scholar] [CrossRef]
- Bergeron, Y.; Gauthier, S.; Kafka, V.; Lefort, P.; Lesieur, D. Natural fire frequency for the eastern Canadian boreal forest: Consequences for sustainable forestry. Can. J. For. Res. 2001, 31, 384–391. [Google Scholar] [CrossRef]
- Bergeron, Y.; Gauthier, S.; Flannigan, M.; Kafka, V. Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology 2004, 85, 1916–1932. [Google Scholar] [CrossRef]
- Gauthier, S.; Bergeron, Y.; Simon, J.P. Effects of fire regime on the serotiny level of jack pine. J. Ecol. 1996, 84, 539–548. [Google Scholar] [CrossRef]
- Grondin, P.; Gauthier, S.; Poirier, V.; Tardiff, P.; Boucher, Y.; Bergeron, Y. Have some landscapes in the eastern Canadian boreal forest moved beyond their natural range of variability? For. Ecosyst. 2018, 5, 30. [Google Scholar] [CrossRef]
- Blake, N.J.; Blake, D.R.; Sive, B.C.; Chen, Y.-Y.; Rowland, F.S.; Collins, J.E.; Sachse, G.W.; Anderson, B.E. Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region. J. Geophys. Res. 1996, 101, 24151–24164. [Google Scholar] [CrossRef]
- Blake, N.J.; Blake, D.R.; Simpson, I.J.; Meinardi, S.; Swanson, A.; Lopez, J.P.; Katzenstein, A.S.; Barletta, B.; Shirai, T.; Atlas, E.; et al. NMHCs and halocarbons in Asian continental outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) Field Campaign: Comparison with PEM-West B. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Schroder, J.C.; Jost-Campuzano, P.; Day, D.A.; Shah, V.; Larson, K.; Sommers, J.M.; Sullivan, A.P.; Campos, T.; Reeves, J.M.; Hills, A.; et al. Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. J. Geophys. Res. 2018, 123, 7771–7796. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Karcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. 2013, 118, 5380–5552. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.-H.; Kilmont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 2004, 109, D14203. [Google Scholar] [CrossRef]
- Evans, M.; Kholod, N.; Kukinski, T.; Denysenko, A.; Smith, S.J.; Staniszewski, A.; Hao, W.M.; Liu, J.; Bond, T.C. Black carbon emissions in Russia: A critical review. Atmos. Environ. 2017, 163, 9–21. [Google Scholar] [CrossRef]
- Hoesly, R.M.; Smith, S.J.; Feng, L.; Kilmont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M.; et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Smith, M.D. Variation among biomes in temporal dynamics of aboveground primary production. Science 2001, 291, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol. 2011, 99, 656–663. [Google Scholar] [CrossRef]
- Veen, G.F.; Blair, J.M.; Smith, M.D.; Collins, S.L. Influence of grazing and fire frequency on small-scale plant community structure and resource variability in native tallgrass prairie. Oikos 2008, 117, 859–866. [Google Scholar] [CrossRef]
- Felton, A.J.; Smith, M.D. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Phil. Trans. R. Soc. B 2017, 372, 20160142. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.M.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jadari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change, Intergovernmental Panel Climate Change, Working Group III; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 811–922. [Google Scholar]
- Bobbink, R.; Hicks, K.; Galloway, J.; Spranger, T.; Alkemade, R.; Ashmore, M.; Bustamante, M.; Cinderby, S.; Davidson, E.; Dentener, F.; et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010, 20, 30–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustamante, M.M.C.; Roitman, I.; Aide, R.M.; Alencar, A.; Anderson, L.O.; Arago, L.; Asner, G.P.; Barlow, J.; Berenguer, E.; Chambers, J.; et al. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob. Chang. Biol. 2016, 22, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Zackrisson, O.; Nilsson, M.C.; Wardle, D.A. Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 1996, 77, 10–19. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 2008, 320, 629. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, T.; Nilsson, M.C.; Zackrisson, O. Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 2002, 133, 206–214. [Google Scholar] [CrossRef] [PubMed]
- De Long, J.R.; Dorrepaal, E.; Kardol, P.; Nilsson, M.-C.; Tueber, L.M.; Wardle, D.A. Contrasting Responses of Soil Microbial and Nematode Communities to Warming and Plant Functional Group Removal Across a Post-fire Boreal Forest Successional Gradient. Ecosystems 2016, 19, 339–355. [Google Scholar] [CrossRef]
- Kasishcke, E.S.; Turetsky, M.R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 2006, 33, 9. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Wider, K.; Halsey, L.; Vitt, D. Current disturbance and the diminishing peatland carbon sink. Geophys. Res. Lett. 2002, 29, 21-1–21-4. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Verbyla, D.L.; Rupp, T.S.; McGuire, A.D.; Murphy, K.A.; Jandt, R.; Barnes, J.L.; Hoy, E.E.; Duffy, P.A.; Calef, M.; et al. Alaska’s changing fire regime—Implications for the vulnerability of its boreal forests. Can. J. For. Res. 2010, 40, 1313–1324. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.; Belcher, C.M.; Bond, W.J.; Bradstock, R.A.; Daniau, A.L.; Dexter, K.G.; Forrestel, E.J.; Greve, M.; He, T.; et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 2018, 13, 033003. [Google Scholar] [CrossRef] [Green Version]
- Kohlenberg, A.J.; Turetsky, M.R.; Thompson, D.K.; Branfireun, B.A.; Mitchell, C.P.J. Controls on boreal peat combustion and resulting emissions of carbon and mercury. Environ. Res. Lett. 2018, 13, 035005. [Google Scholar] [CrossRef] [Green Version]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Johnstone, J.F.; Rogers, B.M.; Solvik, K.; Turetsky, M.R.; Mack, M.C. Soil organic layer combustion in boreal black spruce and jack pine stands of the Northwest Territories, Canada. Int. J. Wildland Fire 2018, 27, 125–134. [Google Scholar] [CrossRef]
- Bahreini, R.; Keywood, M.D.; Ng, N.L.; Varutbang, V.; Gao, S.; Flagan, R.C.; Seinfeld, J.H.; Worsnop, D.R.; Jimenez, J.L. Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, and m-Xylene Using an Aerodyne Aerosol Mass Spectrometer. Environ. Sci. Technol. 2005, 39, 5674–5688. [Google Scholar] [CrossRef] [PubMed]
- Warneke, C.; Bahreini, R.; Biroude, J.; Brock, C.A.; De Gouw, J.A.; Fahey, D.W.; Froyd, K.D.; Jolloway, J.S.; Middlebrook, A.; Miller, L.; et al. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Bahreini, R.; Ahmadov, R.; McKeen, S.A.; Vu, K.T.; Dingle, J.H.; Apel, E.C.; Blake, D.R.; Blake, N.; Campos, T.L.; Cantrell, C.; et al. Sources and characteristics of summertime organic aerosol in the Colorado Front Range: Perspective from measurements and WRF-Chem modeling. Atmos. Chem. Phys. 2018, 18, 8293–8312. [Google Scholar] [CrossRef]
- Hayhoe, K.; Cayan, D.; Field, C.B.; Frumnhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.C.; et al. Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA 2004, 101, 12422–12427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Parlsien, M.A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Hayhoe, K. When facts are not enough. Science 2018, 360, 943. [Google Scholar] [CrossRef] [PubMed]
- Page, S.E.; Siegert, F.; O’Rieley, J.; Boehm, H.-D.V.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Page, S.E.; O’Rieley, J.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; Van der Werf, G.R.; Watts, A. Global and regional importance of the tropical peatland carbon pool. Nat. Geosci. 2015, 8, 11. [Google Scholar] [CrossRef]
- Konecny, K.; Ballhorn, U.; Navratil, P.; Jubanski, J.; Page, S.E.; Tansey, K.; Hooijer, A.; Vernimmem, R.; Siegert, F. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Chang. Biol. 2016, 22, 1469–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, C.E.R.; Anderson, T.M.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffmann, W.A.; Hanan, N.P.; Williams, R.J.; Fensham, R.J.; Felfili, J.; et al. Savanna vegetation-fire-climate relationships differ among continent. Science 2014, 343, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Durigan, G.; Ratter, J.A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 2016, 53, 11–15. [Google Scholar] [CrossRef]
- Pilon, N.A.L.; Hoffmann, W.A.; Abreu, R.C.R.; Durigan, G. Quantifying the short-term flowering after fire in some plant communities of a cerrado grassland. Plant Ecol. Divers. 2018. [Google Scholar] [CrossRef]
- Head, L. Landscapes socialised by fire: Post-contact changes in Aboriginal fire use in northern Australia, and implications for prehistory. Archaeol. Oceania 1994, 29, 172–181. [Google Scholar] [CrossRef]
- Eriksen, C.; Gill, N.; Head, L. The gendered dimensions of bushfire in changing rural landscapes in Australia. J. Rural Stud. 2010, 26, 332–342. [Google Scholar] [CrossRef]
- Head, L. The social dimensions of invasive plants. Nat. Plants 2017, 3, 17075. [Google Scholar] [CrossRef] [PubMed]
- Preisler, H.K.; Brillinger, D.R.; Burgan, R.E.; Benoit, J.W. Probability based models for estimation of wildfire risk. Int. J. Wildland Fire 2004, 13, 133–142. [Google Scholar] [CrossRef]
- Westerling, A.L.; Bryant, B.P.; Preisler, H.K.; Holmes, T.P.; Hidalgo, H.G.; Das, T.; Shrestha, S.R. Climate change and growth scenarios for California wildfire. Clim. Chang. 2011, 109, 445–463. [Google Scholar] [CrossRef]
- Preisler, H.K.; Riley, K.L.; Stonesifer, C.S.; Calkin, D.E.; Jolly, W.M. Near-term probabilistic forecast of significant wildfire events for the Western United States. Int. J. Wildland Fire 2016, 25, 1169–1180. [Google Scholar] [CrossRef]
- Ager, A.A.; Barros, A.M.G.; Day, M.A.; Preisler, H.K.; Spies, T.A.; Bolte, D. Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model. Ecol. Model. 2018, 384, 87–102. [Google Scholar] [CrossRef]
- Greene, D.F.; Macdonald, E.S.; Haeussler, S.; Domenicano, S.; Noel, J.; Jayen, K.; Charron, I.; Gauthier, S.; Hunt, S.; Gielau, E.T.; et al. The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Can. J. For. Res. 2007, 37, 1012–1023. [Google Scholar] [CrossRef]
- Purdy, B.G.; Macdonald, S.E.; Dale, M.R.T. The regeneration niche of white spruce following fire in the mixedwood boreal forest. Silva Fennica 2002, 36, 289–306. [Google Scholar] [CrossRef]
- Peters, V.S.; Macdonald, S.E.; Dale, M.R.T. The interaction between masting and fire is key to white spruce regeneration. Ecology 2005, 86, 1744–1750. [Google Scholar] [CrossRef]
- Bergeron, J.A.C.; Pinzon, J.; Odsen, S.; Bartels, D.; Macdonald, S.E.; Spence, J.R. Ecosystem memory of wildfires affects resilience of boreal mixedwood biodiversity after retention harvest. Oikos 2017, 126, 1738–1747. [Google Scholar] [CrossRef]
- Levine, J.M.; Vila, M.; D’Antonio, C.M.; Dukes, J.S.; Grigulis, K.; Lavorel, S. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. B Biol. Sci. 2003, 270, 775–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mack, M.C.; D’Antonio, C.M. Impacts of biological invasions on disturbance regimes. Trends Ecol. Evol. 1998, 13, 195–198. [Google Scholar] [CrossRef]
- Brooks, M.L.; D’Antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of invasive alien plants on fire regimes. BioScience 2004, 54, 677–688. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gomez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Chang. Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef] [PubMed]
- D’Antonio, C.M.; Yelenik, S.G.; Mack, M.C. Ecosystems vs. community recovery 25 years after grass invasions and fire in a subtropical woodland. J. Ecol. 2017, 105, 1462–1474. [Google Scholar] [CrossRef]
- Jaeglé, L.; Steinberger, L.; Martin, R.V.; Chance, K. Global partitioning of NO x sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss. 2005, 130, 407–423. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.; Bertschi, I.; Jaeglé, L.; Novelli, P.; Reid, J.S.; Tanimoto, H.; Vingarzan, R.; Westphal, D.L. Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Carlton, A.G.; de Gouw, J.; Jimenez, J.L.; Ambrose, J.L.; Attwood, A.R.; Brown, S.; Baker, K.R.; Brock, C.; Cohen, R.C.; Edgerton, S.; et al. Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bull. Am. Meteorol. Soc. 2018, 99, 547–567. [Google Scholar] [CrossRef] [Green Version]
- Whitlock, C.; Moreno, P.I.; Bartlein, P. Climatic controls of Holocene fire patterns in southern South America. Quat. Res. 2007, 68, 28–36. [Google Scholar] [CrossRef]
- Long, C.J.; Whitlock, C.; Bartlein, P.J.; Millspaugh, S.H. A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Can. J. For. Res. 1998, 28, 774–787. [Google Scholar] [CrossRef]
- Millspaugh, S.H.; Whitlock, C.; Bartlein, P.J. Variations in fire frequency and climate over the past 17,000 yr in central Yellowstone National Park. Geology 2000, 28, 211–214. [Google Scholar] [CrossRef]
- Stahle, L.N.; Chin, H.; Haberle, S.; Whitlock, C. Late-glacial and Holocene records of fire and vegetation from Cradle Mountain National Park, Tasmania, Australia. Quat. Sci. Rev. 2017, 177, 57–77. [Google Scholar] [CrossRef]
- Fletcher, M.S.; Bowman, D.M.J.S.; Whitlock, C.; Mariani, M.; Stahle, L. The changing role of fire in conifer-dominated temperate rainforest through the last 14,000 years. Quat. Sci. Rev. 2018, 182, 37–47. [Google Scholar] [CrossRef]
- Sala, A.; Piper, F.; Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 2010, 186, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderegg, W.R.L.; Hicke, J.A.; Fischer, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macaldy, A.K.; McDowell, N.; et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015, 208, 674–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, A.; Woodruff, D.R.; Meinzer, F.C. Carbon dynamics in trees: Feast or famine? Tree Physiol. 2012, 32, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Dietz, M.C.; Sala, A.; Carbone, M.S.; Czimczik, C.I.; Mantooth, J.A.; Richardson, A.D.; Vargas, R. Nonstructural Carbon in Woody Plants. Ann. Rev. Plant Biol. 2014, 65, 667–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcua, T.H.; Sala, A. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest. Ecology 2006, 87, 2511–2522. [Google Scholar] [CrossRef]
- De la Mata, R.; Hood, S.; Sala, A. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc. Natl. Acad. Sci. USA 2017, 114, 7391–7396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, S.M.; Sala, A.; Heyerdahl, E.K.; Boutin, M. Low-severity fire increases tree defense against bark beetle attacks. Ecology 2015, 96, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.M.; Stephen, B.; Sala, A. Fortifying the forest: Thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Ecol. Appl. 2016, 26, 1984–2000. [Google Scholar] [CrossRef] [PubMed]
- McWethy, D.B.; Whitlock, C.; Wilmshurst, J.M.; McGlone, M.A.; Fromont, M.; Li, X.; Dieffenbacher-Krall, A.; Hobbs, W.O.; Fritz, S.C.; Cook, E.R. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proc. Natl. Acad. Sci. USA 2010, 107, 21343–21348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmshurst, J.M.; Hunt, T.L.; Lipo, C.P.; Anderson, A.J. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proc. Natl. Acad. Sci. USA 2012, 108, 1815–1820. [Google Scholar] [CrossRef] [PubMed]
- Argiriadis, E.; Battistel, D.; McWethty, D.B.; Vecchiato, M.; Kirchgeorg, T.; Kehrwald, N.M.; Whitlock, C.; Wilmshurst, J.M.; Barbante, C. Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Sci. Rep. 2018, 8, 12113. [Google Scholar] [CrossRef] [PubMed]
- Duncan, B.N.; Bey, I.; Chin, M.; Mickley, L.J.; Fairlie, T.D.; Martin, R.V.; Matsueda, H. Indonesian wildfires of 1997: Impact on tropospheric chemistry. J. Geophys. Res. 2003, 108, 4458. [Google Scholar] [CrossRef]
- Lehmann, C.E.R.; Prior, L.D.; Bowman, D.M.J.S. Fire controls population structure in four dominant tree species in a tropical savanna. Oecologia 2009, 161, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Prior, L.D.; Bowman, D.M.J.S. Big eucalypts grow more slowly in a warm climate: Evidence of an interaction between tree size and temperature. Glob. Chang. Biol. 2014, 20, 2793–2799. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; French, B.J.; Prior, L.D. Have plants evolved to self-immolate? Front. Plant Sci. 2014, 5, 590. [Google Scholar] [CrossRef] [PubMed]
- Prior, L.D.; Murphy, B.P.; Bowman, D.M.J.S. Conceptualizing Ecological Flammability: An Experimental Test of Three Frameworks Using Various Types and Loads of Surface Fuels. Fire 2018, 1, 14. [Google Scholar] [CrossRef]
- Drossel, B.; Schwabl, F. Self-organized critical forest-fire model. Phys. Rev. Lett. 1992, 69, 1629. [Google Scholar] [CrossRef] [PubMed]
- Allhoff, K.T.; Ritterskamp, D.; Rall, B.C.; Drossel, B.; Guill, C. Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Sci. Rep. 2015, 5, 10955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plitzko, S.J.; Drossel, B. The effect of dispersal between patches on the stability of large trophic food webs. Theoret. Ecol. 2015, 8, 233–244. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Kasischke, E.S. Stand-level effects of soil burn severity on postfire regeneration in a recently burned black spruce forest. Can. J. For. Res. 2004, 35, 2151–2163. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S.; Hollingsworth, T.N.; Mack, M.C.; Romanovky, V.; Turetsky, M. Fire, climate change, and forest resilience in interior Alaska. Can. J. For. Res. 2010, 40, 1302–1312. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S.; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, J.F.; Chapin, F.S. Effects of soil burn severity on post-fire tree recruitment in boreal forest. Ecosystems 2006, 9, 14–31. [Google Scholar] [CrossRef]
- Walker, X.J.; Mack, M.C.; Johnstone, J.F. Predicting Ecosystem Resilience to Fire from Tree Ring Analysis in Black Spruce Forests. Ecosystems 2017, 20, 1137–1150. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelch, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.W.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Chapin, F.S.; Zvaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.C.; Schuur, E.A.G.; Bret-Harte, M.S.; Shaver, G.R.; Chapin, F.S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 2004, 431, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.C.; Bret-Harte, M.S.; Hollingsworth, T.N.; Jandt, R.R.; Schuur, E.A.G.; Shaver, G.R.; Verbyla, D.L. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 2011, 475, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Pierce, S.M.; Esler, K.; Cowling, R.M. Smoke-induced germination of succulents (Mesembryanthemaceae) from fire-prone and fire-free habitats in South Africa. Oecologia 1995, 102, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.; Blignaut, J.N.; Milton, S.J.; La Maitre, D.; Esler, K.J.; Limouzin, A.; Fontaine, C.; De Wit, M.P.; Mugido, W.; Prinsloo, P.; et al. Are socioeconomic benefits of restoration adequately quantified? A meta-analysis of recent papers (2000–2008) in Restoration Ecology and 12 other scientific journals. Restor. Ecol. 2010, 18, 143–154. [Google Scholar] [CrossRef]
- Krupek, A.; Gaertner, M.; Holmes, P.M.; Esler, K.J. Assessment of post-burn removal methods for Acacia saligna in Cape Flats Sand Fynbos, with consideration of indigenous plant recovery. S. Afr. J. Bot. 2016, 105, 211–217. [Google Scholar] [CrossRef]
- Cuomo, V.; Lasaponara, R.; Tramutoli, V. Evaluation of a new satellite-based method for forest fire detection. Int. J. Remote Sens. 2001, 22, 1799–1826. [Google Scholar] [CrossRef]
- Lasaponara, R. On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series. Ecol. Model. 2006, 194, 429–434. [Google Scholar] [CrossRef]
- Li, X.; Lanorte, A.; Lasaponara, R.; Lovallo, M.; Song, W.; Telesca, L. Fisher–Shannon and detrended fluctuation analysis of MODIS normalized difference vegetation index (NDVI) time series of fire-affected and fire-unaffected pixels. Geomat. Nat. Hazards Risk 2017, 8, 1342–1357. [Google Scholar] [CrossRef]
- Parr, C.L.; Anderson, A.N. Patch Mosaic Burning for Biodiversity Conservation: A Critique of the Pyrodiversity Paradigm. Conserv. Biol. 2006, 20, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Parr, C.L.; Robertson, H.G.; Biggs, H.C.; Chown, S.L. Response of African savanna ants to long-term fir regimes. J. Appl. Ecol. 2004, 41, 630–642. [Google Scholar] [CrossRef]
- Parr, C.L.; Lehmann, C.E.R.; Bond, W.J.; Hoffman, W.A.; Andersen, A.N. Tropical grassy biomes: Misunderstood, neglected, and under threat. Trends Ecol. Evol. 2014, 29, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Parr, C.L. Towards an understanding of the evolutionary role of fire in animals. Evol. Ecol. 2018, 32, 113–125. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, N.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Aiken, A.C.; DeCarlo, P.F.; Kroll, J.H.; Worsnop, D.R.; Huffman, J.A.; Docherty, K.S.; Ulbrich, I.M.; Mohr, C.; Kimmel, J.R.; Sueper, D.; et al. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 2008, 42, 4478–4485. [Google Scholar] [CrossRef] [PubMed]
- Saleh, R.; Robinson, E.S.; Tkacil, D.S.; Ahem, A.T.; Liu, S.; Aiken, A.C.; Sullivan, Y.C.; Prestro, A.A.; Dubey, M.K.; Yokelson, R.J.; et al. Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nat. Geosci. 2014, 7, 647. [Google Scholar] [CrossRef]
- Carrico, C.M.; Gomez, S.L.; Dubey, M.K.; Aiken, A.C. Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke. Atmops. Environ. 2018, 178, 101–108. [Google Scholar] [CrossRef]
- Bachelet, D.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 2001, 4, 164–185. [Google Scholar] [CrossRef]
- Bachelet, D.; Neilson, R.P.; Hickler, T.; Drpaek, R.J.; Lenihan, J.M.; Sykes, M.T.; Smith, B.; Sitch, S.; Thonicke, K. Simulating past and future dynamics of natural ecosystems in the United States. Glob. Biogeochem. Cycles 2003, 17, 104. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Bachelet, D.; Ferschweiler, K.; Sheehan, T.J.; Sleeter, B.M.; Zhu, Z. Projected carbon stocks in the conterminous USA with land use and variable fire regimes. Glob. Chang. Biol. 2015, 21, 4548–4560. [Google Scholar] [CrossRef] [PubMed]
- Hantson, S.; Arneth, A.; Harrison, S.P.; Kelley, D.I.; Prentice, I.C.; Rabin, S.S.; Archibald, S.; Mouillot, F.; Arnold, S.R.; Artaxo, P.; et al. The status and challenge of global fire modelling. Biogeosciences 2016, 13, 3359–3375. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Rosenfeld, D.; Artaxo, P.; Costa, A.A.; Frank, G.P.; Longo, K.M.; Silva-Dias, M.A.F. Smoking rain clouds over the Amazon. Science 2004, 202, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Silva-Dias, M.A.F.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.R. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398. [Google Scholar] [CrossRef] [Green Version]
- Moreira, D.S.; Longo, K.M.; Freitas, S.R.; Yamasoe, L.N.; Roadario, N.E.; Gloor, E.; Viana, R.S.M.; Miller, J.B.; Gatti, L.V.; Wiedemann, K.T.; et al. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region. Atmos. Chem. Phys. 2017, 17, 14785–14810. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, A.K.; Morgan, W.; O’Shea, S.; Bauguitte, S.; Allan, J.D.; Darbyshire, E.; Flynn, M.J.; Liu, D.; Lee, J.; Johnson, B.; et al. Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012. Atmos. Chem. Phys. 2018, 18, 5619–5638. [Google Scholar] [CrossRef]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Syphrad, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Predicting spatial patterns of fire on a southern California landscape. Int. J. Wildland Fire 2008, 17, 602–613. [Google Scholar] [CrossRef]
- Moritz, M.A.; Bartllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Bustic, V.; Hawbaker, T.J.; Martinuzzo, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed]
- Trouet, V.; Taylor, A.H.; Carleton, A.M.; Skinner, C.N. Fire-climate interactions in forests of the American Pacific coast. Geophys. Res. Lett. 2006, 33, L18704. [Google Scholar] [CrossRef]
- Trouet, V.; Esper, J.; Graham, N.E.; Baker, A.; Scourse, J.D.; Frank, D.C. Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly. Science 2009, 324, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Trouet, V.; Taylor, A.H.; Wahl, E.R.; Skinner, C.N.; Stephens, S.L. Fire-climate interactions in the American West since 1400 CE. Geophys. Res. Lett. 2010, 37, L04702. [Google Scholar] [CrossRef]
- Taylor, A.H.; Trouet, V.; Skinner, C.N.; Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proc. Natl. Acad. Sci. USA 2016, 113, 13684–13689. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Sanchez, R.; Camarero, J.J.; Sanchez-Salhuero, R.; Trouet, V.; Heras, J.D. How do droughts and wildfires alter season radial growth in Mediterranean Allepo pine forests? Tree-Ring Res. 2018, 74, 1–14. [Google Scholar] [CrossRef]
- Arthur, M.A.; Paratley, R.D.; Blankenship, B.A. Single and repeated fires affect survival and regeneration of woody and herbaceous species in an oak-pine forest. J. Torrey Bot. Soc. 1998, 125, 225–236. [Google Scholar] [CrossRef]
- Lovett, G.M.; Weathers, K.C.; Arthur, M.A. Control of nitrogen loss from forested watersheds by soil carbon: Nitrogen ratio and tree species composition. Ecosystems 2002, 5, 712–718. [Google Scholar] [CrossRef]
- Lovett, G.M.; Weathers, K.C.; Arthur, M.A.; Schultz, J.C. Nitrogen cycling in a northern hardwood forest: Do species matter? Biogeochemistry 2004, 67, 289–308. [Google Scholar] [CrossRef]
- Arthur, M.A.; Blankenship, B.A.; Schorgendorfer, A.; Loftis, D.L.; Alexander, H.D. Changes in stand structure and tree vigor with repeated prescribed fire in an Appalachian hardwood forest. For. Ecol. Manag. 2015, 340, 46–61. [Google Scholar] [CrossRef]
- Arthur, M.A.; Blankenship, B.A.; Schorgendorfer, A.; Alexander, H.D. Alterations to the fuel bed after single and repeated prescribed fires in an Appalachian hardwood forest. For. Ecol. Manag. 2017, 403, 126–136. [Google Scholar] [CrossRef]
- McGregor, H.W.; Legge, S.; Jones, M.E.; Johnson, C.N. Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS ONE 2014, 9, e109097. [Google Scholar] [CrossRef] [PubMed]
- Legge, S.; Murphy, S.; Heathcote, J.; Flaxman, E.; Augusteyn, J.; Crossman, M. The short-term effects of an extensive and high-intensity fire on vertebrates in the tropical savannas of the central Kimberley, northern Australia. Wildlife Res. 2008, 35, 33–43. [Google Scholar] [CrossRef]
- Legge, S.; Murphy, S.; Kingswood, R.; Maher, B.; Swan, D. EcoFire: Restoring the biodiversity values of the Kimberley region by managing fire. Ecol. Manag. Restor. 2011, 12, 84–92. [Google Scholar] [CrossRef]
- Margaret, B.; Linda, B.; Michelle, L.; Kathy, B. Women in conservation science making a difference. Pacific Conserv. Biol. 2018, 24, 209–214. [Google Scholar]
- Scheele, B.C.; Legge, S.; Armstrong, D.P.; Copley, P.; Robinson, N.; Southwell, D.; Westgate, M.J.; Lindenmayer, D.B. How to improve threatened species management: An Australian perspective. J. Environ. Manag. 2018, 223, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Thiffault, E.; Hannam, K.D.; Quideau, S.A.; Pere, D.; Belanger, N.; Oh, S.-W.; Munson, A.D. Chemical composition of forest floor and consequences for nutrient availability after wildfire and harvesting in the boreal forest. Plant Soil 2008, 308, 37–53. [Google Scholar] [CrossRef]
- Quideau, S.A.; Chadwick, O.A.; Benesi, A.; Graham, R.C.; Anderosn, M.A. A direct link between forest vegetation type and soil organic matter composition. Geoderma 2001, 104, 41–60. [Google Scholar] [CrossRef]
- Soucémarianadin, L.N.; Quideau, S.A.; Wasylishen, R.E.; Munson, A.D. Early-season fires in boreal black spruce forests produce pyrogenic carbon with low intrinsic recalcitrance. Ecology 2015, 96, 1575–1585. [Google Scholar] [CrossRef] [Green Version]
- Bradley, B.A.; Mustard, J.F. Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol. Appl. 2006, 16, 1132–1147. [Google Scholar] [CrossRef]
- Bradley, B.A.; Blumenthal, S.M.; Wilcove, D.S.A.; Ziska, L.H. Predicting plant invasions in an era of global change. Trend. Ecol. Evol. 2010, 25, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Bradley, B.A.; Curtis, C.A.; Fusco, W.J.; Abatzoglou, J.T.; Balch, J.T.; Dadashi, S.; Tuanmu, M.N. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invas. 2018, 20, 1493–1506. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [PubMed]
- Nagy, R.C.; Fusco, E.; Bradley, B.; Abatzoglou, J.T.; Balch, J.K. Human-related ignitions increase the number of large wildfires across U.S. ecoregions. Fire 2018, 1, 4. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Balch, J.K.; Bradley, B.A.; Kolden, C.A. Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildland Fire 2018, 27, 377–386. [Google Scholar] [CrossRef]
- Lawes, M.J.; Richardson, S.J.; Clarke, P.J.; Midgley, J.J.; McGlone, M.S.; Bellingham, P.J. Bark thickness does not explain the different susceptibility of Australian and New Zealand temperate rain forests to anthropogenic fire. J. Biogeogr. 2014, 41, 1467–1477. [Google Scholar] [CrossRef]
- Richardson, S.J.; Laughlin, D.C.; Lawes, M.J.; Holdaway, R.J.; Wilmhursy, J.M.; Wright, M.; Curran, T.J.; Bellingham, P.J.; McGline, M.S. Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities. Am. J. Bot. 2015, 102, 1590–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, N.W.H.; Frazao, C.; Buxton, R.P.; Richardson, S.J. Fire form and function: Evidence for exaptive flammability in the New Zealand flora. Plant Ecol. 2016, 217, 645–659. [Google Scholar] [CrossRef]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.L.; Paftenova, E.L.; Chapin, F.S.; Stackhouse, P.W. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; French, N.H.F. Locating and estimating the areal extent of wildfire in Alaskan boreal forests using multiple-season AVHRR NDVI composite data. Remote Sens. Environ. 1995, 51, 263–275. [Google Scholar] [CrossRef]
- Sukhinin, A.L.; French, N.H.F.; Kasischke, E.S.; Hewson, J.H.; Soja, A.J.; Csiszar, I.A.; Hyer, E.J.; Loboda, T.V.; Conard, S.G.; Romasko, V.I.; et al. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sens. Environ. 2004, 93, 546–564. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasichke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Zheng, T.; French, N.H.F.; Baxter, M. Development of the WRF-CO2 4D-Var assimilation system v1.0. Geosci. Model Dev. 2018, 11, 1725–1752. [Google Scholar] [CrossRef] [Green Version]
- French, N.H.F.; Whittley, M.A.; Jenkins, L.K. Fire disturbance effects on land surface albedo in Alaskan tundra. J. Geophys. Res. Biogeosci. 2016, 121, 841–854. [Google Scholar] [CrossRef]
- Bird, R.B.; Smith, E.A. Signaling theory, strategic interaction, and symbolic capital. Curr. Anthropol. 2005, 46, 221–248. [Google Scholar] [CrossRef]
- Bird, D.W.; Bird, R.B.; Parker, C.H. Aboriginal burning regimes and hunting strategies in Australia’s western desert. Human Ecol. 2005, 33, 443–464. [Google Scholar] [CrossRef]
- Bird, R.B.; Bird, D.W.; Codding, B.F.; Parker, C.H.; Jones, J.H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl. Acad. Sci. USA 2008, 105, 14796–14801. [Google Scholar] [CrossRef] [PubMed]
- Bird, R.B.; Codding, B.F.; Kauhanen, P.G.; Bird, D.W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl. Acad. Sci. USA 2012, 109, 10287–10292. [Google Scholar] [CrossRef] [PubMed]
- Bird, R.B.; Bird, D.W.; Fernandez, L.E.; Taylor, N.; Taylor, W.; Nimmo, D. Aboriginal burning promotes fine-scale pyrodiversity and native predators in Australia’s Western Desert. Biol. Conserv. 2018, 219, 110–118. [Google Scholar] [CrossRef]
- Bird, R.B.; Bird, D.W.; Codding, B.R. People, El Nino southern oscillation and fire in Australia: Fire regimes and climate controls in hummock grasslands. Phil. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150343. [Google Scholar] [CrossRef] [PubMed]
- Fuerdean, A.; Liakka, J.; Vanniere, B.; Marinova, E.; Hutchinson, S.M.; Mosburgger, V.; Hickler, T. 12,000-Years of fire regime drivers in the lowlands of Transylvania (Central-Eastern Europe): A data-model approach. Quat. Sci. Rev. 2013, 81, 48–61. [Google Scholar] [CrossRef]
- Fuerdean, A.; Veski, S.; Florescu, G.; Vanniere, B.; Pfeiffer, M.; O’Hara, R.B.; Stivrins, N.; Amon, L.; Heinsalu, A.; Vassiljev, J.; et al. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quat. Sci. Rev. 2017, 169, 378–390. [Google Scholar] [CrossRef]
- Fuerdean, A.; Florescu, G.; Vanniere, B.; Tantau, I.; O’Hara, R.B.; Pfeiffer, M.; Hutchinson, S.M.; Galka, M.; Moskal-del Hoyo, M.; Hickler, T. Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. For. Ecol. Manag. 2017, 389, 15–26. [Google Scholar] [CrossRef]
- Horn, S.P.; Sanford, R.L. Holcene fires in Costa Rica. Biotropica 1992, 24, 354–361. [Google Scholar] [CrossRef]
- Horn, S.P. Postglacial vegetation and fire history in the Chirripó Páramo of Costa Rica. Quat. Res. 1993, 40, 107–116. [Google Scholar] [CrossRef]
- Clement, R.M.; Horn, S.P. Pre-Columbian land-use history in Costa Rica: A 3000-year record of forest clearance, agriculture and fires from Laguna Zoncho. Holocene 2001, 11, 419–426. [Google Scholar] [CrossRef]
- Ballard, J.P.; Horn, S.P.; Zhang-Hua, L. A 23,000-year microscopic charcoal record from Anderson Pond, Tennessee, USA. Palynology 2017, 41, 216–229. [Google Scholar] [CrossRef]
- Falk, D.A.; Miller, C.; McKenzie, D.; Black, A.E. Cross-scale analysis of fire regimes. Ecosystems 2007, 10, 809–823. [Google Scholar] [CrossRef]
- Miller, C.; Ager, A.A. A review of recent advances in risk analysis for wildfire management. Int. J. Wildand Fire 2013, 22, 1–14. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Haire, S.L.; Coop, J.; Parisien, M.A.; Whitman, E.; Chong, G.; Miller, C. Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere 2016, 7, e01632. [Google Scholar] [CrossRef]
- Haire, S.L.; Coop, J.D.; Miller, C. Characterizing Spatial Neighborhoods of Refugia Following Large Fires in Northern New Mexico USA. Land 2017, 6, 19. [Google Scholar] [CrossRef]
- Miller, C.; Aplet, G.H. Progress in Wilderness Fire Science: Embracing Complexity. J. For. 2016, 114, 373–383. [Google Scholar] [CrossRef]
- Brown, P.M.; Sieg, C.H. Fire history in interior ponderosa pine communities of the Black Hills, South Dakota, USA. Int. J. Wildland Fire 1996, 6, 97–105. [Google Scholar] [CrossRef]
- Brown, P.M.; Sieg, C.H. Historical variability in fire at the ponderosa pine-Northern Great Plains prairie ecotone, southeastern Black Hills, South Dakota. Ecoscience 1999, 6, 539–547. [Google Scholar] [CrossRef]
- Owen, S.M.; Sieg, C.H.; Meador, A.J.S.; Fule, P.Z.; Iniguez, M.; Baggett, L.S.; Fornwalt, P.J.; Battaglia, M.A. Spatial patterns of ponderosa pine regeneration in high-severity burn patches. For. Ecol. Manag. 2017, 405, 134–149. [Google Scholar] [CrossRef]
- Sieg, C.H.; Linn, R.R.; Pimont, F.; Hoffman, C.M.; McMillin, J.D.; Winterkamp, J.; Baggett, L.S. Fires following bark beetles: Factors controlling severity and disturbance interactions in ponderosa pine. Fire Ecol. 2017, 13, 1–23. [Google Scholar] [CrossRef]
- Kuligowski, E.D. Predicting human behavior during fires. Fire Technol. 2013, 40, 101–120. [Google Scholar] [CrossRef]
- Kuligowski, E.D.; Gwynne, S.M.V.; Kinsey, M.J.; Hulse, L. Guidance for the Model User on Representing Human Behavior in Egress Models. Fire Technol. 2017, 53, 649–672. [Google Scholar] [CrossRef] [PubMed]
- Archibald, S.; Bond, W.J.; Stock, W.D.; Fairbanks, D.H.K. Shaping the landscape: Fire-grazer interactions in an African savanna. Ecol. Appl. 2005, 15, 96–109. [Google Scholar] [CrossRef]
- Staver, A.C.; Archibald, S.; Levin, S.A. The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science 2011, 334, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Archibald, S.; Hempsoon, G.P. Competing consumers: Contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Phil. Trans. R. Soc. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Archibald, S.; Staver, A.C.; Levin, S.A. Evolution of human-driven fire regimes in Africa. Proc. Natl. Acad. Sci. USA 2012, 109, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Chang. Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Archibald, S. Managing the human component of fire regimes: Lessons from Africa. Phil. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150346. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.; Mayol-Bracera, O.L.; Guyon, P.; Roberts, G.C.; Decesari, S.; Facchini, M.C.; Artaxo, P.; Maenhaut, W.; Koll, P.; Andreae, M.O. Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS. J. Geophys. Res. 2002, 107, LBA 14-1–LBA 14-16. [Google Scholar] [CrossRef]
- Mayol-Bracera, O.L.; Guyon, P.; Graham, B.; Roberts, B.; Andreae, M.O.; Decesari, S.; Facchini, M.C.; Fuzzi, S.; Artaxo, P. Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res. 2002, 107, LBA 59-1–LBA 59-15. [Google Scholar] [CrossRef]
- Fitzgeraldm, E.; Ault, A.P.; Zaushcer, M.D.; Mayol-Bracero, O.L.; Prather, K.A. Comparison of the mixing state of long-range transported Asian and African mineral dust. Atmos. Environ. 2015, 115, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Thiffault, E.; Belanger, N.; Pare, D.; Munson, A.D. How do forest harvesting methods compare with wildfire? A case study of soil chemistry and tree nutrition in the boreal forest. Can. J. For. Res. 2007, 37, 1658–1668. [Google Scholar] [CrossRef]
- Steelman, T.A.; Ascher, W. Public involvement methods in natural resource policy making: Advantages, disadvantages and trade-offs. Policy Sci. 1997, 30, 71–90. [Google Scholar] [CrossRef]
- Steelman, T.A.; Maguire, L.A. Understanding participant perspectives: Q-nethodology in National Forest Management. J. Pol. Anal. Manag. 1999, 18, 361–388. [Google Scholar] [CrossRef]
- Steelman, T.A.; McCaffrey, S.M.; Velez, A.L.K.; Briefel, J.A. What information do people use, trust, and find useful during a disaster? Evidence from five large wildfires. Nat. Hazards 2015, 76, 615–634. [Google Scholar] [CrossRef]
- Fischer, A.P.; Spies, T.A.; Steelman, T.A.; Moseley, C.; Johnson, B.R.; Bailey, J.D.; Ager, A.A.; Bourgeron, P.; Charnley, S.; Collins, B.M.; et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 2016, 14, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Landres, P.B.; Morgan, P.; Swanson, F.J. Overview of the use of natural variability concepts in managing ecological systems. Ecol. Appl. 1999, 9, 1179–1188. [Google Scholar]
- Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 2001, 10, 329–342. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Morgan, P.; Hudak, A.T.; Wells, A.; Parks, S.A.; Baggett, L.S.; Bright, B.C.; Green, P. Multidecadal trends in area burned with high severity in the Selway-Bitterroot Wilderness Area 1880–2012. Int. J. Wildland Fire 2017, 26, 930–943. [Google Scholar] [CrossRef]
- Morgan, P. Strengthening syntheses on fire: Increasing their usefulness for managers. J. For. 2017, 115, 141–142. [Google Scholar]
- Conard, S.G.; Ivanova, G.A. Wildfire in Russia boreal forests—Potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ. Pollut. 1997, 98, 305–313. [Google Scholar] [CrossRef]
- Conard, S.G.; Sukhinin, A.; Stocks, B.J.; Cahook, D.R.; Davidenko, E.P.; Ivanova, G.A. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim. Chang. 2002, 55, 197–211. [Google Scholar] [CrossRef]
- Ivanova, G.A.; Ivanov, V.A.; Kovaleva, N.M.; Conard, S.G.; Zhila, S.V.; Tarasov, P.A. Succession of vegetation after a high-intensity fire in a pine forest with lichens. Contemp. Problems Ecol. 2017, 10, 52–61. [Google Scholar] [CrossRef]
- Conard, S.G.; Doer, S.; Foster, J. Twenty-five years of International Journal Wildland Fire. Int. J. Wildland Fire 2016, 25, 1. [Google Scholar] [CrossRef]
- Kloster, S.; Mahowald, N.M.; Randerson, J.T.; Thornton, P.E.; Hoffman, F.M.; Levis, S.; Lawrence, P.J.; Feddema, J.J.; Oleson, K.W.; Lawrence, D.M. Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 2010, 7, 565–630. [Google Scholar] [CrossRef]
- Kloster, S.; Mahowald, N.M.; Randerson, J.T.; Lawrence, P.J. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences 2012, 9, 509–525. [Google Scholar] [CrossRef] [Green Version]
- Lasslop, G.; Thonicke, K.; Kloster, S. SPITFIRE within the MPI Earth system model: Model development and evaluation. J. Adv. Model. Earth Syst. 2014, 6, 740–755. [Google Scholar] [CrossRef] [Green Version]
- Krawchuk, M.A.; Cumming, S.G.; Flannigan, M.D.; Wein, R.W. Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. Ecology 2006, 87, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Smith, A.M.S.; Cansler, C.A.; Abatzoglou, J.T.; Meigs, G.W.; Downing, W.M.; Krawchuk, M.A. Fire refugia: What are they and why do they matter for global change? BioScience 2018, biy103. [Google Scholar]
- Pivello, V.R.; Shida, C.N.; Meirelles, S.T. Alien grasses in Brazilian savannas: A threat to the biodiversity. Biodivers. Conserv. 1999, 8, 1281–1294. [Google Scholar] [CrossRef]
- Pivello, V.R. The use of Fire in the cerrado and Amazonian rainforests of Brazil: Past and present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Flchino, B.S.; Dombroski, J.R.G.; Pivello, V.R.; Fldelis, A. Does Fire Trigger Seed Germination in the Neotropical Savannas? Experimental Tests with Six Cerrado Species. Biotropica 2016, 48, 181–187. [Google Scholar] [CrossRef]
- Hutchinson, T.F.; Sutherland, E.K.; Yaussy, D.A. Effects of repeated prescribed fires on the structure, composition, and regeneration of mixed-oak forests in Ohio. For. Ecol. Manag. 2005, 218, 210–228. [Google Scholar] [CrossRef]
- Hutchinson, T.F.; Boerner, R.E.J.; Sutherland, S.; Sutherland, E.K.; Ortt, M.; Iverson, L.R. Prescribed fire effects on the herbaceous layer of mixed-oak forests. Can. J. For. Res. 2005, 35, 877–890. [Google Scholar] [CrossRef]
- Smith, K.T.; Sutherland, E.K. Fire-scar formation and compartmentalization in oak. Can. J. For. Res. 1999, 29, 166–171. [Google Scholar] [CrossRef]
- Smith, K.T.; Arbellay, E.; Falk, D.A.; Sutherland, E.K. Macroanatomy and compartmentalization of recent fire scars in three North American conifers. Can. J. For. Res. 2016, 46, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Harley, G.L.; Baisan, C.H.; Brown, P.M.; Falk, D.A.; Flatley, W.T.; Grissino-Mayer, H.D.; Hessl, A.; Heyerdahl, E.K.; Kaye, M.W.; Lafon, C.W.; et al. Advancing Dendrochronological Studies of Fire in the United States. Fire 2018, 1, 11. [Google Scholar] [CrossRef]
- Vandvik, V.; Heegaard, E.; Maren, I.E.; Aarrestad, P.A. Managing heterogeneity: The importance of grazing and environmental variation on post-fire succession in heathlands. J. Appl. Ecol. 2005, 42, 139–149. [Google Scholar] [CrossRef]
- Graae, B.J.; Vandvik, V.; Armbruster, W.S.; Eisenhardt, W.L.; Svenning, J.-C.; Hylander, K.; Ehrlen, J.; Speed, J.D.M.; Klanderud, K.; Brathern, K.A.; et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 2018, 30, 41–50. [Google Scholar] [CrossRef]
- Hély, C.; Bergeron, Y.; Flannigan, M.D. Effects of stand composition on fire hazard in mixed-wood Canadian boreal forest. J. Veg. Sci. 2000, 11, 813–824. [Google Scholar] [CrossRef]
- Hély, C.; Flannigan, M.; Vergeron, Y.; McRae, D. Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can. J. For. Res. 2001, 31, 430–441. [Google Scholar] [CrossRef]
- Hély, C.; Girardin, M.P.; Ali, A.A.; Carcaillet, C.; Brewer, S.; Bergeron, Y. Eastern boreal North American wildfire risk of the past 7000 years: A model-data comparison. Geophys. Res. Lett. 2010, 37, L14709. [Google Scholar] [CrossRef]
- Hély, C.; Lézine, A.-M. Holocene changes in African vegetation; tradeoff between climate and water availability. Clim. Past 2014, 10, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Laheye, S.; Curt, T.; Fréjaville, S.; Paradis, J.; Hély, C. What are the drivers of dangerous fires in Mediterranean France? Int. J. Wildland Fire 2018, 27, 155–163. [Google Scholar] [CrossRef]
- Johnston, F.H.; Kavanagh, A.M.; Bowman, D.M.J.S.; Scott, R.K. Exposure to bushfire smoke and asthma: An ecological study. Med. J. Austral. 2002, 176, 535–538. [Google Scholar] [PubMed]
- Johnston, F.H.; Bailie, R.S.; Pilotto, L.S.; Hanigan, I.C. Ambient biomass smoke and cardio-respiratory hospital admissions in Darwin, Australia. BMC Public Health 2007, 7, 240. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.J.S.; Brauer, M. Estimated global mortality attributed to smoke from landscape fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Horsley, J.A.; Broome, R.A.; Johnston, F.H.; Cope, M.; Morgan, G.G. Health burden associated with fire smoke in Sydney, 2001–2013. Med. J. Austral. 2018, 208, 309–310. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Wheeler, A.J.; Williamson, G.J.; Campbell, S.L.; Jones, P.J.; Koolhof, L.S.; Lucani, C.; Cooling, N.B.; Bowman, D.M.J.S. Using smartphone technology to reduce health impacts from atmospheric environmental hazards. Environ. Res. Lett. 2018, 13, 044019. [Google Scholar] [CrossRef] [Green Version]
- Marlon, J.R.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallet, D.J.; Power, M.J.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef] [PubMed]
- Marlon, J.R.; Bartlein, P.J.; Walsh, M.K.; Harrison, S.P.; Brown, K.J.; Edwards, M.E.; Higuera, P.E.; Power, M.J.; Anderson, R.S.; Briles, C.; et al. Wildfire responses to abrupt climate change in North America. Proc. Natl. Acad. Sci. USA 2009, 106, 2519–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlon, J.R.; Kelly, R.; Daniau, A.L.; Vanniere, B.; Power, M.J.; Bartlein, P.; Higuera, P.E.; Blarquez, O.; Brewer, S.; Brucher, T. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. Biogeosciences 2016, 13, 3225–3244. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, S.; Toman, E.; Stidham, M.; Shindler, B. Social science research related to wildfire management: An overview of recent findings and future research needs. Int. J. Wildland Fire 2014, 22, 15–24. [Google Scholar] [CrossRef]
- McCaffrey, S. Community Wildfire Preparedness: A Global State-of-the-Knowledge Summary of Social Science Research. Curr. For. Rep. 2015, 1, 81–90. [Google Scholar] [CrossRef]
- Rossiter, N.A.; Setterfield, S.A.; Douglas, M.M.; Huntley, L.B. Testing the grass-fire cycle: Alien grass invasion in the tropical savannas of northern Australia. Divers. Distrib. 2003, 9, 169–176. [Google Scholar] [CrossRef]
- Anderson, A.N.; Cook, G.D.; Corbett, L.K.; Douglas, M.; Eager, R.W.; Russell-Smith, J.; Setterfield, S.A.; Williams, R.J.; Woinarski, J.C.Z. Fire frequency and biodiversity conservation in Australian tropical savannas: Implications from the Kapalga fire experiment. Aust. Ecol. 2005, 30, 155–167. [Google Scholar] [CrossRef]
- Setterfield, S.A.; Rossiter-Rachor, N.A.; Huntley, L.B.; Douglas, M.M.; Williams, R.J. BIODIVERSITY RESEARCH: Turning up the heat: The impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 2010, 16, 854–861. [Google Scholar] [CrossRef]
- Setterfield, S.A.; Andersen, A.N. Seed supply limits seedling recruitment of Eucalyptus miniata: Interactions between seed predation by ants and fire in the Australian seasonal tropics. Oecologia 2018, 186, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Vlana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winlwarter, W.; Wallius, A.; Szidat, S.; Prevot, A.S.H.; et al. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar]
- Miranda, A.I.; Coutinho, M.; Borrego, C. Forest-fire emissions in Portugal—A contribution to global warming. Environ. Pollut. 1994, 83, 121–123. [Google Scholar] [CrossRef]
- Miranda, A.I.; Borrego, C. A prognostic meteorological model applied to the study of a forest fire. Int. J. Wildland Fire 1996, 6, 157–163. [Google Scholar] [CrossRef]
- Miranda, A.I. An integrated numerical system to estimate air quality effects of forest fires. Int. J. Wildland Fire 2004, 13, 217–226. [Google Scholar] [CrossRef]
- Carvalho, A.; Flannigan, M.D.; Logan, K.; Miranda, A.I.; Borrego, C. Fire activity in Portugal and its relationship to weather and the Canadian FireWeather Index System. Int. J. Wildland Fire 2008, 17, 328–338. [Google Scholar] [CrossRef]
- Mok, K.M.; Miranda, A.I.; Yuen, K.V.; Hoi, K.I.; Monteiro, A.; Ribeiro, I. Selection of bias correction models for improving the daily PM10 forecasts of WRF-EURAD in Porto, Portugal. Atmos. Pollut. Res. 2017, 8, 628–639. [Google Scholar] [CrossRef]
- Gama, C.; Monteiro, A.; Pio, C.; Miranda, A.I.; Baldasano, J.M.; Tchepel, O. Temporal patterns and trends of particulate matter over Portugal: A long-term analysis of background concentrations. Air Qual. Atmos. Health 2018, 11, 397–407. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.I.; Charlet, D.A.; Westfall, R.D.; King, J.C.; Delany, D.L.; Flint, A.L.; Flint, L.E. Do low-elevation ravines provide climate refugia for subalpine limber pine (Pinus flexilis) in the Great Basin, USA? Can. J. For. Res. 2018, 48, 663–671. [Google Scholar] [CrossRef]
- Hessl, A.E.; McKenzie, D.; Schellhaas, R. Drought and Pacific Decadal Oscillation linked to fire occurrence in the inland Pacific Northwest. Ecol. Appl. 2004, 14, 425–442. [Google Scholar] [CrossRef]
- Heyerdahl, E.K.; McKenzie, D.; Daniels, L.D.; Hessl, A.E.; Little, J.S.; Mantua, N.J. Climate drivers of regionally synchronous fires in the inland Northwest (1651–1900). Int. J. Wildland Fire 2008, 17, 40–49. [Google Scholar] [CrossRef]
- Hessl, A.E.; Graumlich, L.J. Interactive effects of human activities, herbivory and fire on quaking aspen (Populus tremuloides) age structures in western Wyoming. J. Biogeogr. 2002, 29, 889–902. [Google Scholar] [CrossRef]
- Hessl, A.E.; Brown, P.; Byambasuren, O.; Cockrell, S.; Leland, C.; Cook, E.; Bachin, B.; Pederson, N.; Saladyga, T.; Suran, B. Fire and climate in Mongolia (1532–2010 Common Era). Geophys. Res. Lett. 2016, 43, 6519–6527. [Google Scholar] [CrossRef]
- Craine, J.M.; Elmore, A.J.; Aidar, M.P.M.; Bustamante, M.M.C.; Dawsom, T.E.; Hobbie, E.A.; Kahmen, A.; Mack, M.C.; McLauchlan, K.K.; Michelsen, A.; et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 2009, 183, 980–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordoto, G.B.; Bustamante, M.M.C.; Pinto, A.S.; Klink, C.A. Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. J. Trop. Ecol. 2006, 22, 191–201. [Google Scholar] [CrossRef]
- Reis, C.R.G.; Nardoto, G.B.; Rochelle, A.L.C.; Viera, S.A.; Oliveria, R.S. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes. Oecologia 2017, 183, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Champ, P.A.; Bishop, R.C.; Brown, T.C.; McCollum, D.W. Using donation mechanisms to value nonuse benefits from public goods. J. Environ. Econ. Manag. 1997, 33, 151–162. [Google Scholar] [CrossRef]
- Champ, P.A. Collecting survey data for nonmarket valuation. In A Primer on Nonmarket Valuation; Springer: Dodrecht, The Netherlands, 2003; pp. 59–98. [Google Scholar]
- Brenkert-Smith, H.J.; Champ, P.A.; Flores, N. Insights into wildfire mitigation decisions among wildland-urban interface residents. Soc. Nat. Resour. 2006, 19, 759–768. [Google Scholar] [CrossRef]
- Brenkert-Smith, H.; Champ, P.A.; Flores, N. Trying Not to Get Burned: Understanding Homeowners’ Wildfire Risk-Mitigation Behaviors. Environ. Manag. 2012, 50, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Donovan, G.H.; Champ, P.A.; Butry, D.T. Wildfire risk and housing prices: A case study from Colorado Springs. Land Econ. 2007, 83, 217–233. [Google Scholar] [CrossRef]
- Kochi, I.; Champ, P.A.; Loomis, J.B.; Donovan, G.H. Valuing morbidity effects of wildfire smoke exposure from the 2007 Southern California wildfires. J. For. Econ. 2016, 25, 29–54. [Google Scholar] [CrossRef] [Green Version]
- Brenkert-Smith, H.; Meldrum, J.R.; Champ, P.A.; Birth, C.M. Where you stand depends on where you sit: Qualitative inquiry into notions of fire adaptation. Ecol. Soc. 2017, 22, 3. [Google Scholar] [CrossRef]
- Henderson, S.B.; Brauer, M.; MacNab, Y.C.; Kennedy, S.M. Three Measures of Forest Fire Smoke Exposure and Their Associations with Respiratory and Cardiovascular Health Outcomes in a Population-Based Cohort. Environ. Health Perspect. 2011, 119, 1266–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.Y.; Raffuse, S.M.; Brauer, M.; Williamson, G.J.; Bowman, D.M.J.S.; Johnston, F.H.; Henderson, S.B. Predicting the minimum height of forest fire smoke within the atmosphere using machine learning and data from the CALIPSO satellite. Remote Sens. Environ. 2018, 206, 98–106. [Google Scholar] [CrossRef]
- Williamson, G.J.; Bowman, D.M.J.S.; Price, O.F.; Henderson, S.B.; Johnston, F.H. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 2016, 11, 125009. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, H.T.; Giglio, K.; Collatz, G.J.; Mu, M.; Kasibhalta, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.F.; Randerson, J.T.; Goetz, S.J.; Beck, P.S.A.; Loranty, M.M.; Goulden, M.L. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. J. Geophys. Res. Biogeosci. 2012, 117, G01036. [Google Scholar] [CrossRef]
- Jin, Y.F.; Goulden, M.L.; Faivre, N.; Veraverbeke, S.; Sun, F.P.; Hall, A.; Hand, M.S.; Hook, S.; Randerson, J.T. Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change. Environ. Res. Lett. 2015, 10, 094005. [Google Scholar] [CrossRef]
- Jin, Y.F.; Randerson, J.T.; Faivre, N.; Capps, S.; Hall, A.; Goulden, M.L. Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds. J. Geophys. Res. Biogeosci. 2014, 119, 432–450. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, P.M.; Stroppiana, D.; Gregoire, J.M.; Pereira, J.M.C. An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions. Glob. Biogeochem. Cycles 1999, 13, 933–950. [Google Scholar] [CrossRef] [Green Version]
- Tansey, K.; Gregoire, J.M.; Stroppiana, D.; Sousa, A.; Silva, J.; Pereira, J.M.C.; Boshcetti, L.; Maggi, M.; Brivio, P.A.; Fraser, R.; et al. Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Stroppiana, D.; Pinnock, S.; Pereira, J.M.C.; Gregoire, J.M. Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia. Remote Sens. Environ. 2002, 82, 21–37. [Google Scholar] [CrossRef]
- Stroppiana, D.; Villa, P.; Sonsa, G.; Ronchetti, G.; Candiani, G.; Pepe, M.; Busetto, L.; Migliazzi, M.; Boschetti, M. Early season weed mapping in rice crops using multi-spectral UAV data. Int. J. Remote Sens. 2018, 39, 1–21. [Google Scholar] [CrossRef]
- Brais, S.; David, P.; Ouimet, R. Impacts of wild fire severity and salvage harvesting on the nutrient balance of jack pine and black spruce boreal stands. For. Ecol. Manag. 2000, 137, 231–243. [Google Scholar] [CrossRef]
- Brais, S.; Sadi, F.; Bergeron, Y.; Grenier, Y. Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. For. Ecol. Manag. 2005, 220, 216–226. [Google Scholar] [CrossRef]
- Brais, S.; Belanger, N.; Guillemette, S. Wood ash and N fertilization in the Canadian boreal forest: Soil properties and response of jack pine and black spruce. For. Ecol. Manag. 2015, 348, 1–14. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The Interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H.; Sibold, J.S.; Cook, E.R. Enso and pdo variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecol. Appl. 2005, 15, 2000–2014. [Google Scholar] [CrossRef]
- Schoennagel, T.; Nelson, C.R.; Theobald, D.M.; Carnwath, G.C.; Chapman, T.B. Implementation of National Fire Plan treatments near the wildland-urban interface in the western United States. Proc. Natl. Acad. Sci. USA 2009, 106, 10706–10711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.G.; Smithwick, E.A.H.; Metzger, K.L.; Tinker, D.B.; Romme, W.H. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proc. Natl. Acad. Sci. USA 2007, 104, 4782–4789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smithwick, E.A.H.; Harmon, M.E.; Remillard, S.; Acker, S.A.; Franklin, F.J. Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol. Appl. 2002, 12, 1303–1317. [Google Scholar] [CrossRef]
- Smithwick, E.A.H. Pyrogeography: Build social costs into wildfire risk. Nature 2016, 535, 231. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.J.H.; Harvey, D. Transcendent experience in forest environments. J. Environ. Physch. 2001, 21, 249–260. [Google Scholar] [CrossRef]
- Williams, K.J.H.; Cary, J. Landscape preferences, ecological quality, and biodiversity protection. Environ. Behav. 2002, 34, 257–274. [Google Scholar] [CrossRef]
- Bishop, I.D.; Stock, C.; Williams, K.J.H. Using virtual environments and agent models in multi-criteria decision-making. Land Use Policy 2009, 26, 87–94. [Google Scholar] [CrossRef]
- Balding, M.; Williams, K.J.H. Plant blindness and the implications for plant conservation. Conserv. Biol. 2016, 30, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Ford, R.M.; Anderson, N.N.; Nitschke, C.; Bennett, L.T.; Williams, K.J.H. Psychological values and cues as a basis for developing socially relevant criteria and indicators for forest management. For. Policy Econ. 2017, 78, 141–150. [Google Scholar] [CrossRef]
- Vasconcelos, M.J.; Silva, S.; Tome, M.; Alvim, M.; Pereira, J.M.C. Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogramm. Eng. Remote Sens. 2001, 67, 73–81. [Google Scholar]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land cover type and fire in Portugal: Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Cabral, A.I.R.; Silva, S.; Silva, P.C.; Vanneschi, L.; Vasconcelos, M.J. Burned area estimations derived from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and Classification and Regression Trees. ISPRS J. Photogramm. Remote Sens. 2018, 142, 94–105. [Google Scholar] [CrossRef]
- Catchpole, W.R.; Wheeler, C.J. Estimating plant biomass—A review of techniques. Aust. J. Ecol. 1992, 17, 121–131. [Google Scholar] [CrossRef]
- Catchpole, W.R.; Catchpole, E.A.; Butler, B.W.; Rothermel, R.C.; Morris, G.A.; Latham, D.J. Rate of spread of free-burning fires in woody fuels in a wind tunnel. Combust.Sci. Technol. 1998, 131, 1–37. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.R.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wildland Fire 2015, 24, 443–460. [Google Scholar] [CrossRef]
- Slijepcevic, A.; Anderson, W.R.; Matthews, S.; Anderson, D.H. An analysis of the effect of aspect and vegetation type on fine fuel moisture content in eucalypt forest. Int. J. Wildland Fire 2018, 27, 190–202. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R.J.; Fisher, M.; Flentje, H.; Huneeus, H.; Jones, L.; Kaiser, J.W.; et al. Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Remy, S.; Veira, A.; Paugam, R.; Sofiev, M.; Kaiser, J.W.; Marenco, F.; Burton, S.P.; Benedetti, A.; Engelen, R.J.; Ferrare, R.; et al. Two global data sets of daily fire emission injection heights since 2003. Atmos. Chem. Phys. 2017, 17, 2921–2942. [Google Scholar] [CrossRef] [Green Version]
- Muniz, M.; Arnaldos, J.; Casal, J.; Planas, E. Analysis of the geometric and radiative characteristics of hydrocarbon pool fires. Combust. Flame 2004, 139, 263–277. [Google Scholar] [CrossRef]
- Chatris, J.M.; Quintela, J.; Folch, J.; Planas, E.; Arnaldos, J.; Casal, J. Experimental study of burning rate in hydrocarbon pool fires. Combust. Flame 2001, 126, 1373–1383. [Google Scholar] [CrossRef]
- Pastor, E.; Zarate, L.; Planas, E.; Arnaldos, J. Mathematical models and calculation systems for the study of wildland fire behavior. Progr. Energy Combust. Sci. 2003, 29, 139–153. [Google Scholar] [CrossRef]
- Gimenez, A.; Pastor, E.; Zarate, L.; Planas, E.; Arnaldos, J. term forest fire retardants: A review of quality, effectiveness, application and environmental considerations. Int. J. Wildland Fire 2004, 13, 1–15. [Google Scholar] [CrossRef]
- Rios, O.; Jahn, W.; Pastor, E.; Valero, M.M.; Planas, E. Interpolation framework to speed up near-surface wind simulations for data-driven wildfire applications. Int. J. Wildland Fire 2018, 27, 257–270. [Google Scholar] [CrossRef]
- Rissler, J.; VEstin, A.; Swietlicki, E.; Fisdch, G.; Zhou, J.; Artaxo, P.; Andreae, M.O. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys. 2006, 6, 471–491. [Google Scholar] [CrossRef] [Green Version]
- Fuzzi, S.; Decesari, S.; Facchini, M.C.; Cavalli, F.; Embilco, L.; Mircea, M.; Andreae, M.O.; Trebs, I.; Hoffer, A.; Guyon, P.; et al. Overview of the inorganic and organic composition of size-segregated aerosol in Rondonia, Brazil, from the biomass-burning period to the onset of the wet season. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Vestin, A.; Rissler, J.; Swietlicki, E.; Frank, G.P.; Andreae, M.O. Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Jacobsson, J.K.F.; Aaltonen, H.L.; Nicklasson, H.; Gudmundsson, A.; Rissler, J.; Wollmer, P.; Londahl, J. Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease. BMC Pumonary Med. 2018, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Strand, E.K.; Smith, A.M.S.; Bunting, S.C.; Vierling, L.A.; Hann, D.B.; Gessler, P.E. Wavelet estimation of plant spatial patterns in multitemporal aerial photography. Int. J. Remote Sens. 2006, 27, 2049–2054. [Google Scholar] [CrossRef]
- Strand, E.K.; Veirling, L.A.; Bunting, S.C.; Gessler, P.E. Quantifying successional rates in western aspen woodlands: Current conditions, future predictions. For. Ecol. Manag. 2009, 257, 705–1715. [Google Scholar] [CrossRef]
- Weiner, N.I.; Strand, E.K.; Bunting, S.C.; Smith, A.M.S. Duff Distribution Influences Fire Severity and Post-Fire Vegetation Recovery in Sagebrush Steppe. Ecosystems 2016, 19, 1196–1209. [Google Scholar] [CrossRef]
- Strand, E.K.; Bunting, S.C.; Starcevich, L.A.; Nahorniak, M.T.; Dicus, G.; Garrett, L.K. Long-term monitoring of western aspen—Lessons learned. Environ. Monit. Assess. 2015, 187, 528. [Google Scholar] [CrossRef] [PubMed]
- McLauchlan, K.K.; Williams, J.J.; Craine, J.M. Changes in global nitrogen cycling during the Holocene epoch. Nature 2013, 495, 352–355. [Google Scholar] [CrossRef] [PubMed]
- McLauchlan, K.K.; Higuera, P.E.; Gavin, D.G.; Perakis, S.S.; Mack, M.C.; Alexander, H.; Battles, J.; Blondi, F.; Buma, B.; Colombararoli, D.; et al. Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales. BioScience 2014, 64, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Leys, B.A.; Commerford, J.L.; McLauchlan, K.K. Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape. PLoS ONE 2017, 12, e0176445. [Google Scholar] [CrossRef] [PubMed]
- Bennett, L.T.; Judd, T.S.; Adams, M.A. Growth and nutrient content of perennial grasslands following burning in semi-arid, sub-tropical Australia. Plant Ecol. 2003, 164, 185–199. [Google Scholar] [CrossRef]
- Bennett, L.T.; Apone, C.; Tolhurst, K.G.; Low, M.; Baker, T.G. Decreases in standing tree-based carbon stocks associated with repeated prescribed fires in a temperate mixed-species eucalypt forest. For. Ecol. Manag. 2013, 306, 243–255. [Google Scholar] [CrossRef]
- Aponte, C.; Tolhursy, K.G.; Bennett, L.T. Repeated prescribed fires decrease stocks and change attributes of coarse woody debris in a temperate eucalypt forest. Ecol. Appl. 2014, 24, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Bennett, L.T.; Bruce, M.J.; Machunter, J.; Kohout, M.; Krishnaraj, S.J.; Aponte, C. Assessing fire impacts on the carbon stability of fire-tolerant forests. Ecol. Appl. 2017, 27, 2497–2513. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.L.; Pate, J.S. Growth and fire response of selected epacridaceae of south-western Australia. Aust. J. Bot. 1996, 44, 509–526. [Google Scholar] [CrossRef]
- Bell, T.L.; Pate, J.S.; Dixon, K.W. Relationships between fire response, morphology, root anatomy and starch distribution in south-west Australian Epacridaceae. Ann. Bot. 1996, 77, 357–364. [Google Scholar] [CrossRef]
- Gharun, M.; Possell, M.; Bell, T.L.; Adams, M.A. Optimisation of fuel reduction burning regimes for carbon, water and vegetation outcomes. J. Environ. Manag. 2017, 203, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Gharun, M.; Possell, M.; Vervoort, R.W.; Adams, M.S.; Bell, T.L. Can a growth model be used to describe forest carbon and water balance after fuel reduction burning in temperate forests? Sci. Total Environ. 2018, 615, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Gupta, R.P. Land-use mapping and change detection in a coal mining area-a case study in the Jharia coalfield, India. Int. J. Remote Sens. 1998, 19, 391–410. [Google Scholar] [CrossRef]
- Saraf, A.K.; Prakash, A.; Sengupta, S.; Gupta, R.P. A Landsat TM based comparative study of surface and subsurface fires in the Jharia coalfield, India. Int. J. Remote Sens. 1999, 20, 1935–1945. [Google Scholar]
- Zhang, J.; Wagner, W.; Prakash, A.; Mehl, H.; Voigt, S. Detecting coal fires using remote sensing techniques. Int. J. Remote Sens. 2004, 25, 3193–3320. [Google Scholar] [CrossRef]
- Waigi, C.F.; Stuefer, M.; Prakash, A.; Ichoku, C. Detecting high and low-intensity fires in Alaska using VIIRS I-band data: An improved operational approach for high latitudes. Remote Sens. Environ. 2017, 199, 389–400. [Google Scholar]
- Heyerdahl, E.K.; Brubaker, L.B.; Agee, J.K. Spatial controls of historical fire regimes: A multiscale example from the interior west, USA. Ecology 2001, 82, 660–678. [Google Scholar] [CrossRef]
- Heyerdahl, E.K.; Brubaker, L.B.; Agee, J.K. Annual and decadal climate forcing of historical fire regimes in the interior Pacific Northwest, USA. Holocene 2002, 12, 597–604. [Google Scholar] [CrossRef]
- Heyerdahl, E.K.; Mckay, S.J. Condition of live fire-scarred ponderosa pine twenty-one years after removing partial cross-sections. Tree-Ring Res. 2017, 73, 149–153. [Google Scholar] [CrossRef]
- Bond, B.J.; Kavanagh, K.L. Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiol. 1999, 19, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavanagh, K.L.; Bond, B.J.; Aitken, S.N.; Gartner, B.L.; Knowe, S. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol. 1999, 19, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.Y.C.; Koyama, A.; Kavanagh, K.L. Wildfire effects on physiological properties in conifers of central Idaho forests, USA. Trees 2017, 31, 545–555. [Google Scholar] [CrossRef]
- Lodge, A.G.; Dickinson, M.B.; Kavanagh, K.L. Xylem heating increases vulnerability to cavitation in longleaf pine. Environ. Res. Lett. 2018, 13, 055007. [Google Scholar] [CrossRef] [Green Version]
- Launchbaugh, K.L.; Howery, L.D. Understanding landscape use patterns of livestock as a consequence of foraging behavior. Rangel. Ecol. Manag. 2005, 58, 99–108. [Google Scholar] [CrossRef]
- Launchbaugh, K.L.; Brammer, B.; Brooks, M.L.; Bunting, S.C.; Clark, P.; Davison, J.; Fleming, M.; Kay, R.; Pellant, M.; Pyke, D.A. Interactions among Livestock Grazing, Vegetation Type, and Fire Behavior in the Murphy Wildland Fire Complex in Idaho and Nevada, July 2007; United States Geological Survey Open File Report 2008–1214; USGS: Reston, VA, USA, 2008.
- Strand, E.K.; Launchbaugh, K.L.; Limb, R.F.; Torell, L.A. Livestock grazing effects on fuel loads for wildland fire in sagebrush dominated ecosystems. J. Rangel. Appl. 2014, 1, 35–57. [Google Scholar]
- Launchbaugh, K.L. Targeted Grazing to Manage Wildland Fuels and Alter Fire Behaviour. In Proceedings of the 10th International Rangeland Congress, Saskatoon, SK, Canada, 16–22 July 2016; p. 674. [Google Scholar]
- Armenteras, D.; Ruda, G.; Rodriguez, N.; Sua, S.; Romero, M. Patterns and causes of deforestation in the Colombian Amazon. Ecol. Indic. 2006, 6, 353–368. [Google Scholar] [CrossRef]
- Armenteras, D.; Gonzalez, T.M.; Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 2013, 159, 73–79. [Google Scholar] [CrossRef]
- Armenteras, D.; Barreto, J.S.; Tabor, K.; Molowny-Horas, R.; Retana, J. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences 2017, 14, 2755–2765. [Google Scholar] [CrossRef] [Green Version]
- Armenteras, D.; Gibbes, C.; Aaya, J.A.; Davalos, L.M. Integrating remotely sensed fires for predicting deforestation for REDD. Ecol. Appl. 2017, 27, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Hagler, G.S.W.; Bergin, M.H.; Salmon, L.G.; Yu, J.Z.; Wan, E.C.H.; Zheng, M.; Zeng, L.M.; Kiang, C.S.; Zhang, Y.H.; Lau, A.K.H.; et al. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China. Atmos. Environ. 2006, 40, 3802–3815. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Baldauf, R.W.; Thoma, E.D.; Long, T.R.; Snow, R.F.; Kinsey, J.S.; Oudejans, L.; Gullett, B.K. Ultrafine particles near a major roadway in Raleigh, North Carolina: Downwind attenuation and correlation with traffic-related pollutants. Atmos. Environ. 2009, 43, 1229–1234. [Google Scholar] [CrossRef]
- Holder, A.L.; Hagler, G.S.W.; Aurell, J.; Hays, M.S.; Gullett, B.K. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States. J. Geophys. Res. Atmosp. 2016, 121, 3465–3483. [Google Scholar] [CrossRef]
- Kimbrough, S.; Hays, M.; Preston, B.; Vallero, D.A.; Hagler, G.S.W. Episodic Impacts from California Wildfires Identified in Las Vegas Near-Road Air Quality Monitoring. Environ. Sci. Technol. 2016, 50, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Kolden, C.A.; Bleeker, T.M.; Smith, A.M.S.; Poulos, H.M.; Camp, A.E. Fire Effects on Historical Wildfire Refugia in Contemporary Wildfires. Forests 2017, 8, 400. [Google Scholar] [CrossRef]
- Kolden, C.A.; Abatzoglou, J.T.; Lutz, J.A.; Cansley, C.A.; Kane, J.T.; Van Wagtendonk, J.W.; Key, C.H. Climate contributors to forest mosaics: Ecological persistence following wildfire. Northwest Sci. 2015, 89, 219–238. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Kolden, C.A.; Paveglio, T.; Cochrane, M.A.; Mortitz, M.A.; Bowman, D.M.J.S.; Hoffman, C.M.; Lutz, J.A.; Queen, L.P.; Hudak, A.T.; et al. The science of firescapes: Achieving fire resilient communities. BioScience 2016, 66, 130–146. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.S.; Kolden, C.A.; Bowman, D.M.J.S. Biomimicry can help humans to coexist sustainably with fire. Nat. Ecol. Evol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Williamson, G.; Kolden, C.A.; Abatzoglou, J.T.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Kolden, C.A.; Balch, J.K.; Bradley, B.A. Controls on interannual variability in lightning-caused fire activity in the western US. Environ. Res. Lett. 2016, 11, 045005. [Google Scholar] [CrossRef] [Green Version]
- Kolden, C.A.; Abatzoglou, J.T. Spatial distribution of wildfires ignited under katabatic versus non-katabatic winds in Mediterranean south California USA. Fire 2018, 1, 19. [Google Scholar] [CrossRef]
- Jasper, A.; Gurerra-Sommer, M.; Abu Hamad, A.M.B.; Bamford, M.; Bernardes-de-Oliveira, M.E.C.; Tewari, R.; Uhi, D. The burning of Gondwana: Permian fires on the southern continent—A palaeobotanical approach. Gondwana Res. 2013, 24, 148–160. [Google Scholar] [CrossRef]
- Jasper, A.; Uhi, D.; Guerra-Sommer, M.; Mosbrugger, V. Palaeobotanical evidence of wildfires in the late palaeozoic of South America–early permian, rio bonito formation, Paraná basin, Rio Grande do Sul, Brazil. J. S. Am. Earth Sci. 2008, 26, 435–444. [Google Scholar] [CrossRef]
- Jasper, A.; Uhi, D.; Guerra-Sommer, M.; Bernardes-de-Oliveira, M.E.C.; Machado, N.T.G. Upper Paleozoic charcoal remains from South America: Multiple evidences of fire events in the coal bearing strata of the Paraná Basin, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 306, 205–218. [Google Scholar] [CrossRef]
- Cardoso, D.S.; Mizusaki, A.M.P.; Guerra-Sommer, M.; Menegat, R.; Barili, R.; Uhi, D. Wildfires in the Triassic of Gondwana Paraná Basin. J. S. Am. Earth Sci. 2018, 82, 193–206. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Beringer, J.; Hutley, L.B.; Tapper, N.J.; Zhu, X. Evaluation of Collections 4 and 5 of the MODIS Gross Primary Productivity product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sens. Environ. 2009, 113, 1808–1822. [Google Scholar] [CrossRef]
- Adab, H.; Kanniah, K.D.; Solaimani, K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat. Hazards 2013, 65, 1723–1743. [Google Scholar] [CrossRef]
- Adab, H.; Kanniah, K.D.; Solaimani, K.; Sallehuddin, R. Modelling static fire hazard in a semi-arid region using frequency analysis. Int. J. Wildland Fire 2015, 24, 763–777. [Google Scholar] [CrossRef]
- Rahman, M.Z.A.; Abu Bakar, M.A.; Razak, K.A.; Rasib, A.W.; Kanniah, K.D.; Kadir, W.H.W.; Omar, H.; Faidi, A.; Kassim, A.R.; Latif, Z.A. Non-destructive, laser-based individual tree aboveground biomass estimation in a tropical rainforest. Forests 2017, 8, 86. [Google Scholar] [CrossRef]
- Bajocco, S.; Carlo, R. Evidence of selective burning in Sardinia (Italy): Which land-cover classes do wildfires prefer? Landsc. Ecol. 2008, 23, 241–248. [Google Scholar] [CrossRef]
- Salvati, L.; Bajocco, S. Land sensitivity to desertification across Italy Past, present, and future. Appl. Geogr. 2011, 31, 223–231. [Google Scholar] [CrossRef]
- Bajocco, S.; Koutsias, N.; Ricotta, C. Linking fire ignitions hotspots and fuel phenology: The importance of being seasonal. Ecol. Indic. 2017, 82, 433–440. [Google Scholar] [CrossRef]
- Bajocco, S.; Dragoz, E.; Gitas, I.; Smieraglia, D.; Salvato, L.; Riccota, C. Mapping Forest Fuels through Vegetation Phenology: The Role of Coarse-Resolution Satellite Time-Series. PLoS ONE 2015, 10, e0119811. [Google Scholar] [CrossRef] [PubMed]
- Loboda, T.V.; Csiszar, I.A. Assessing the risk of ignition in the Russian Far East within a modeling framework of fire threat. Ecol. Appl. 2007, 17, 791–805. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.; Loboda, T. Quantifying the Potential for Low-Level Transport of Black Carbon Emissions from Cropland Burning in Russia to the Snow-Covered Arctic. Front. Earth Sci. 2017, 5, 109. [Google Scholar] [CrossRef]
- Hall, J.; Loboda, T. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events. Environ. Res. Lett. 2018, 13, 055010. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Chatterjee, S.; Tewari, R.; Mehrotra, N.; Kumar, G. Petrographic evidence as an indicator of volcanic forest fire from the Triassic of Allan Hills, South Victoria Land, Antarctica. Curr. Sci. 2013, 104, 422–424. [Google Scholar]
- Jasper, A.; Agnhotri, D.; Tewari, R.; Spiekermann, R.; Pires, E.F.; Dr Rosa, A.A.S.; Uhl, D. Fires in the mire: Repeated fire events in Early Permian ‘peat forming’vegetation of India. Geol. J. 2017, 52, 955–969. [Google Scholar] [CrossRef]
- Stoof, C.R.; Moore, S.; Fernandes, P.M.; Stoorvogel, J.J.; Fernandes, R.E.S.; Ferreira, A.J.D.; Ritsema, C.J. Hot fire, cool soil. Geophys. Res. Lett. 2013, 40, 1534–1539. [Google Scholar] [CrossRef] [Green Version]
- Stoof, C.R.; Gevaert, A.I.; Baver, C.; Hassanpour, B.; Morales, V.L.; Zhang, W.; Martin, S.; Giri, S.K.; Steenhuis, T.S. Can pore-clogging by ash explain post-fire runoff? Int. J. Wildland Fire 2016, 253, 294–305. [Google Scholar] [CrossRef]
- Stoof, C.R.; Slingerland, E.C.; Mol, W.; van den Berg, J.; Vermeulen, P.J.; Ferreira, A.J.D.; Ritsema, C.J.; Parlange, J.Y.; Steenhuis, T.A. Preferential flow as a potential mechanism for fire-induced increase in streamflow. Water Resour. Res. 2014, 50, 1840–1845. [Google Scholar] [CrossRef] [Green Version]
- Stoof, C.; Ottink, R.; Zylstra, P.; Cornelissen, H.; Fernandes, P. Predicting fire impact from plant traits? In Proceedings of the EGU General Assembly 2017, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernandez, C.; Moreira, F.; Riglot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rodenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 1184984. [Google Scholar] [CrossRef] [PubMed]
- Carslaw, K.S.; Lee, L.A.; Reddington, C.L.; Pringle, K.J.; Rap, A.; Forster, P.M.; Mann, G.W.; Spracklen, D.V.; Woodhouse, M.T.; Regarye, L.A.; et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 2013, 503, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Reddington, C.L.; Carslaw, K.S.; Spracklen, D.V.; Frontoso, M.G.; Collins, L.; Merikanto, J.; Minikin, A.; Hamburger, T.; Coe, H.; Kulmala, M.; et al. Primary versus secondary contributions to particle number concentrations in the European boundary layer. Atmos. Chem. Phys. 2011, 11, 12007–12036. [Google Scholar] [CrossRef] [Green Version]
- Reddington, C.L.; Spracklen, D.V.; Artaxo, P.; Ridley, D.A.; Rizzo, L.V.; Arana, A. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations. Atmos. Chem. Phys. 2016, 16, 11083–11106. [Google Scholar] [CrossRef]
- Reddington, C.L.; Butt, E.W.; Ridley, D.A.; Artaxo, P.; Morgan, W.T.; Coe, H.; Spracklen, D.V. Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nat. Geosci. 2015, 8, 768–771. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, C.; DaCamara, C.C.; Trigo, R.M. Post-fire vegetation recovery in Portugal based on spot/vegetation data. Nat. Hazards Earth Syst. Sci. 2010, 10, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Amraouil, M.; Liberato, M.L.R.; Calado, T.J.; DaCamara, C.C.; Coelho, L.P.; Trigo, R.M.; Gouveia, C.M. Fire activity over Mediterranean Europe based on information from Meteosat-8. For. Ecol. Manag. 2013, 294, 62–75. [Google Scholar] [CrossRef]
- Trigo, R.M.; Sousa, P.M.; Pereira, M.G.; Rasilla, D.; Gouveia, C.M. Modelling wildfire activity in Iberia with different atmospheric circulation weather types. Int. J. Climatol. 2016, 36, 2761–2778. [Google Scholar] [CrossRef]
- Balch, J.K.; Depstad, D.; Brando, P.; Curran, L.M.; Portela, O.; de Carvalho, O.; Lefebvre, P. Negative fire feedback in a transitional forest of southeastern Amazonia. Glob. Chang. Biol. 2008, 14, 2276–2287. [Google Scholar] [CrossRef]
- Balch, J.K.; Schoennagel, T.; Williams, A.P.; Abatzoglou, J.T.; Cattau, M.E.; Mietkiewicz, N.P.; St Dennis, L.A. Switching on the Big Burn of 2017. Fire 2018, 1, 17. [Google Scholar] [CrossRef]
- Overbeck, G.E.; Muller, S.C.; Fidelis, A.; Pfadenhauer, J.; Pillar, V.D.; Blanco, C.C.; Boldrini, I.I.; Both, R.; Forneck, E.D. Brazil’s neglected biome: The South Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 2007, 9, 101–116. [Google Scholar] [CrossRef]
- Rissi, M.N.; Baeza, M.; Gorgone, J.; Barbosa, E.; Zupo, T.; Fidelis, A. Does season affect fire behaviour in the Cerrado? Int. J. Wildland Fire 2017, 26, 427–433. [Google Scholar] [CrossRef]
- Schmidt, I.B.; Fidelis, A.; Miranda, H.S.; Ticktin, T. How do the wets burn? Fire behavior and intensity in wet grasslands in the Brazilian savanna. Braz. J. Bot. 2017, 40, 167–175. [Google Scholar] [CrossRef]
- Lehmann, C.E.R.; Archibald, S.A.; Hoffman, W.A.; Bond, W.J. Deciphering the distribution of the savanna biome. New Phytol. 2011, 191, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, N.; Lehmann, C.E.R.; Murphy, B.P.; Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.C.; Verissimo, A.; Alencar, A.; Nobre, C.; Lime, E.; Lefebvre, P.; Schlessinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 1999, 398, 505–508. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Alencar, A.; Schluze, M.S.; Souza, C.M.; Nepstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 1999, 284, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.A.; Rajo, R.; Costa, M.A.; Stabile, M.C.C.; Macedo, M.N.; do Reis, T.N.P.; Alencar, A.; Soares-Fihlo, B.S.; Pacheco, R. Limits of Brazil’s Forest Code as a means to end illegal deforestation. Proc. Natl. Acad. Sci. USA 2017, 114, 7653–7658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montiel, C.; Herrero, G. An overview of policies and practices related to fire ignitions at the European Union level. In Towards Integrated Fire Management–Outcomes of the European Project Fire Paradox; Silva, J.S., Rego, F., Fernandes, P., Rigolot, E., Eds.; European Forest Institute Research Report: Joensuu, Finland, 2010; pp. 137–140. [Google Scholar]
- Rego, F.; Rigolot, E.; Fernandes, P.; Montiel, C.; Silva, J.S. Towards integrated fire management. Eur. For. Inst. Policy Brief 2010, 4, 1–16. [Google Scholar]
- Camarero, J.J.; Sanguesa-Barreda, G.; Montiel-Molina, C.; Sejo, F.; Lopez-Saez, J.A. Past growth suppressions as proxies of fire incidence in relict Mediterranean black pine forests. For. Ecol. Manag. 2018, 413, 9–20. [Google Scholar] [CrossRef]
- Montiel-Molina, C.; Galiana-Martin, L. Fire scenarios in Spain: A territorial approach to proactive fire management in the context of global change. Forests 2016, 7, 273. [Google Scholar] [CrossRef]
- Cubison, M.J.; Ortega, A.M.; Hayes, P.L.; Framer, D.K.; Day, S.; Lechner, M.J.; Brune, W.H.; Apel, E.; Fisher, J.A.; Fuelberg, H.E.; et al. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmos. Chem. Phys. 2011, 11, 12049–12064. [Google Scholar] [CrossRef]
- Ortega, A.M.; Day, D.A.; Cubison, M.J.; Brune, W.H.; Bon, D.; Da Gouw, J.A.; Jimenez, J. L Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3. Atmos. Chem. Phys. 2013, 13, 11551–11571. [Google Scholar] [CrossRef]
- Hu, J.; Jathar, S.; Zhang, H.; Ying, Q.; Chen, S.-H.; Cappa, C.D.; Kleeman, M.J. Long-term particulate matter modeling for health effect studies in California–Part 2: Concentrations and sources of ultrafine organic aerosols. Atmos. Chem. Phys. 2017, 17, 5379–5391. [Google Scholar] [CrossRef]
- Belcher, C.M. (Ed.) Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science; Wiley-Blackwell: Oxford, UK, 2013; p. 350. [Google Scholar]
- Belcher, C.M.; McElwain, J.C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 2008, 321, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Belcher, C.M.; Yearsley, J.M.; Haddem, R.M.; McElwain, J.C.; Guillermo, R. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl. Acad. Sci. USA 2010, 107, 22448–22453. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.M.; Bentz, B. Predicting postfire Douglas-fir beetle attacks and tree mortality in the northern Rocky Mountains. Can. J. For. Res. 2007, 37, 1058–1069. [Google Scholar] [CrossRef] [Green Version]
- Grayson, L.M.; Progar, R.A.; Hood, S.M. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds. For. Ecol. Manag. 2017, 399, 213–226. [Google Scholar] [CrossRef]
- Clyatt, K.A.; Keyes, C.R.; Hood, S.M. Long-term effects of fuel treatments on aboveground biomass accumulation in ponderosa pine forests of the northern Rocky Mountains. For. Ecol. Manag. 2017, 400, 587–599. [Google Scholar] [CrossRef]
- Mansuy, N.; Pare, D.; Thiffault, E.; Bernier, P.Y.; Cyr, G.; Manka, F.; Lafluer, B.; Guindon, L. Estimating the spatial distribution and locating hotspots of forest biomass from harvest residues and fire-damaged stands in Canada’s managed forests. Biomass Bioenergy 2017, 97, 90–99. [Google Scholar] [CrossRef]
- Chapin, F.S.; Trainor, S.F.; Huntingon, O.; Lovecraft, A.L.; Zavaleta, E.; Natcher, D.C.; McGuire, A.D.; Nelson, J.L.; Ray, L.; Calef, M.; et al. Increasing wildfire in Alaska’s boreal forest: Pathways to potential solutions of a wicked problem. AUBS Bull. 2008, 58, 531–540. [Google Scholar] [CrossRef]
- Huntington, H.P.; Trainor, S.P.; Natcher, D.C.; Huntington, O.H.; DeWilde, L.; Chapin, F.S. The significance of context in community-based research: Understanding discussions about wildfire in Huslia, Alaska. Ecol. Soc. 2006, 11, 1. [Google Scholar] [CrossRef]
- Kettle, N.P.; Trainor, S.P.; Loring, P.A. Conceptualizing the Science-Practice Interface: Lessons from a Collaborative Network on the Front-Line of Climate Change. Front. Environ. Sci. 2017, 5, 33. [Google Scholar] [CrossRef]
- Grace, J.; San Jose, J.; Meir, P.; Miranda, H.S.; Montes, R.A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006, 33, 387–400. [Google Scholar] [CrossRef]
- Miranda, A.C.; Miranda, H.S.; Dias, I.; Dias, B.F.D. Soil and air temperatures during prescribed Cerrado fires in central Brazil. J. Trop. Ecol. 1993, 9, 313–320. [Google Scholar] [CrossRef]
- Gomes, L.; Miranda, H.S.; Bustamante, M.M.D. How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For. Ecol. Manag. 2018, 417, 281–290. [Google Scholar] [CrossRef]
- Veenendaal, E.M.; Torello-Raventos, M.; Miranda, H.S.; Sato, N.M.; Oliveras, I.; van Langevelfe, F.; Asner, G.P.; Lloyd, J. On the relationship between fire regime and vegetation structure in the tropics. New Phytol. 2018, 218, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.L.; Jenkins, M.A.; Coen, J.; Packham, D. A coupled atmosphere-fire model: Convective feedback on fire-line dynamics. J. Appl. Meteorol. 1996, 35, 875–901. [Google Scholar] [CrossRef]
- Clark, R.L.; Coen, J.; Latham, D. Description of a coupled atmosphere-fire model. Int. J. Wildland Fire 2004, 13, 49–63. [Google Scholar] [CrossRef]
- Coen, J.L.; Schroeder, W. The High Park fire: Coupled weather-wildland fire model simulation of a windstorm-driven wildfire in Colorado’s Front Range. J. Geophys. Res. Atmos. 2015, 120, 131–146. [Google Scholar] [CrossRef]
- Daniels, L.D.; Veblen, T.T. Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 2014, 85, 1284–1296. [Google Scholar] [CrossRef]
- Van Mantgrem, P.J.; Stephenson, N.L.; Burne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread Increase of Tree Mortality Rates in the Western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Chavardes, R.D.; Daniels, L.D.; Gedalof, Z.; Andison, D.W. Human influences superseded climate to disrupt the 20th century fire regime in Jasper National Park, Canada. Dendrochronologia 2018, 48, 10–19. [Google Scholar] [CrossRef]
- Greene, G.A.; Daniels, L.D. Spatial interpolation and mean fire interval analyses quantify historical mixed-severity fire regimes. Int. J. Wildland Fire 2017, 26, 136–147. [Google Scholar] [CrossRef]
- Haslem, A.; Kelly, L.T.; Nimmo, D.G.; Watson, S.J.; Kenny, S.A.; Taylor, R.S.; Avitabile, S.C.; Callister, K.E.; Spence-Bailey, L.M.; Clarke, M.F.; et al. Habitat or fuel? Implications of long-term, post-fire dynamics for the development of key resources for fauna and fire. J. Appl. Ecol. 2011, 48, 247–256. [Google Scholar] [CrossRef]
- Watson, S.J.; Taylor, R.S.; Nimmo, D.G.; Kelly, L.T.; Haslem, A.; Clarke, M.F.; Bennett, A.F. Effects of time since fire on birds: How informative are generalized fire response curves for conservation management? Ecol. Appl. 2012, 22, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.T.; Haslem, A.; Holland, G.J.; Leonard, S.W.J.; MacHunter, J.; Bassett, M.; Bennett, A.F.; Bruce, M.J.; Chia, E.K.; Christie, F.J.; et al. Fire Regimes and Environmental Gradients Shape Bird, Mammal and Plant Distributions in Temperate Forests. Bull. Ecol. Soc. Am. 2017, 98, 227–230. [Google Scholar] [CrossRef]
- Kelly, L.T.; Haslem, A.; Holland, G.J.; Leonard, S.W.J.; MacHunter, J.; Bassett, M.; Bennett, A.F.; Bruce, M.J.; Chia, E.K.; Christie, F.J.; et al. Fire regimes and environmental gradients shape vertebrate and plant distributions in temperate eucalypt forests. Ecosphere 2017, 8, 4. [Google Scholar] [CrossRef]
- Nowell, B.; Boyd, N. Viewing community as responsibility as well as resource: Deconstructing the theoretical roots of psychological sense of community. J. Community Phycol. 2010, 38, 828–841. [Google Scholar] [CrossRef]
- Diaz, J.M.; Steelman, T.; Nowell, B. Local Ecological Knowledge and Fire Management: What Does the Public Understand? J. For. 2015, 114, 58–65. [Google Scholar] [CrossRef]
- Matos, D.M.S.; Santos, C.J.F.; Chevalier, D.R. Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosyst. 2002, 6, 151–161. [Google Scholar] [CrossRef]
- Balvenera, P.; Uriarte, M.; Amleida-Lenero, L.; Altesor, A.; DeClerck, F.; GFradner, T.; Hall, J.; Lara, A.; Laterra, P.; Pena-Claros, M.; et al. Ecosystem services research in Latin America: The state of the art. Ecosyst. Serv. 2012, 2, 56–70. [Google Scholar] [CrossRef]
- Dodonov, P.; Zanelli, C.B.; Silva-Matos, D.M. Effects of an accidental dry-season fire on the reproductive phenology of two Neotropical savanna shrubs. Brazil. J. Bot. 2018, 78, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Vilalta, J.; Prat, E.; Oliveras, I.; Pinol, J. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 2002, 133, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Oliveras, I.; Martinez-Vilalta, J.; Jimenez-Ortiz, T.; Lledo, M.J.; Escarre, A.; Pinol, J. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecol. 2003, 169, 131. [Google Scholar] [CrossRef]
- Pivello, V.R.; Oliveras, I.; Miranda, H.S.; Haridasan, M.; Sato, M.N.; Meirelles, S.T. Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant Soil 2010, 337, 111–123. [Google Scholar] [CrossRef]
- Oliveras, I.; Roman-Cuesta, R.M.; Urquiaga-Flores, E.; Loayza, J.A.Q.; Kala, J.; Huaman, V.; Lizarrage, N.; Sans, G.; Quispe, K.; Lopez, E.; et al. Fire effects and ecological recovery pathways of tropical montane cloud forests along a time chronosequence. Glob. Chang. Biol. 2018, 24, 758–772. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.J.; Lawes, M.J.; Midgley, J.J.; Lamont, B.B.; Ojeda, F.; Burrows, G.E.; Enright, N.J.; Knox, K.J.E. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. 2013, 197, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.J.; Knox, K.J.E.; Wills, K.E.; Campbell, M. Landscape patterns of woody plant response to crown fire: Disturbance and productivity influence sprouting ability. J. Ecol. 2005, 93, 544–555. [Google Scholar] [CrossRef]
- Knox, K.J.E.; Clarke, P.J. Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands. Oecologia 2006, 149, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Knox, K.J.E.; Clarke, P.J. Measuring fire severity: Are canopy, understorey and below-ground measures coupled in sclerophyll forest fires? Plant Ecol. 2016, 217, 607–615. [Google Scholar] [CrossRef]
- Kaltenrieder, P.; Procacci, G.; Vanniere, B.; Tinner, W. Vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by Lateglacial and Holocene sedimentary series from Lago della Costa (northeastern Italy). Holocene 2010, 20, 679–695. [Google Scholar] [CrossRef]
- Tinner, W.; Vescovi, E.; van Leeuwen, J.F.N.; Colombaroli, D.; Henne, P.D.; Kaltenrieder, P.; Morales-Molino, C.; Beffa, G.; Gnaegi, B.; van der Knapp, W.O.; et al. Holocene vegetation and fire history of the mountains of Northern Sicily (Italy). Veg. Hist. Arthaebotany 2016, 25, 499–519. [Google Scholar] [CrossRef] [Green Version]
- Charnley, S.; Fischer, A.P.; Jones, E.T. Integrating traditional and local ecological knowledge into forest biodiversity conservation in the Pacific Northwest. For. Ecol. Manag. 2007, 246, 14–28. [Google Scholar] [CrossRef]
- Spies, T.A.; White, E.M.; Kline, J.D.; Fischer, A.P.; Ager, A.; Bailey, J.; Bolte, J.; Koch, J.; Platt, E.; Olson, C.S.; et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. 2014, 19, 9. [Google Scholar] [CrossRef]
- Hamilton, M.; Fischer, A.P.; Guikema, S.D.; Keppel-Aleks, G. Behavioral adaptation to climate change in wildfire-prone forests. Wiley Interdiscip. Rev. Clim. Chang. 2018, 9, e553. [Google Scholar] [CrossRef]
- Fischer, A.P. Pathways of adaptation to external stressors in coastal natural-resource-dependent communities: Implications for climate change. World Dev. 2018, 108, 235–248. [Google Scholar] [CrossRef]
- Fischer, A.P.; Frazier, T.G. Social Vulnerability to Climate Change in Temperate Forest Areas: New Measures of Exposure, Sensitivity, and Adaptive Capacity. Ann. Amer. Assoc. Geogr. 2018, 108, 658–678. [Google Scholar] [CrossRef]
- Van Wilgen, B.W.; Forsyth, G.G.; De Klerk, H.; Das, S.; Khuluse, S.; Schmitz, P. Fire management in Mediterranean-climate shrublands: A case study from the Cape fynbos, South Africa. J. Appl. Ecol. 2010, 47, 631–638. [Google Scholar] [CrossRef]
- Wilson, A.M.; Latimar, A.M.; Silander, J.A.; Gelfand, A.E.; De Klerk, H. A hierarchical Bayesian model of wildfire in a Mediterranean biodiversity hotspot: Implications of weather variability and global circulation. Ecol. Model. 2010, 221, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Altwegg, R.; De Klerk, H.M.; Midgley, G.F. Fire-mediated disruptive selection can explain the reseeder–resprouter dichotomy in Mediterranean-type vegetation. Oecologia 2015, 177, 367–377. [Google Scholar] [CrossRef] [PubMed]
- De Klerk, H.M.; Gilbertson, J.; Luck-Vogel, M.; Kemp, J.; Munch, Z. Using remote sensing in support of environmental management: A framework for selecting products, algorithms and methods. J. Environ. Manag. 2016, 182, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Pastor, E. Introduction to the special issue on “vulnerability and resilience of socio-ecological systems”. Nat. Resour. Model. 2018, 31, e12185. [Google Scholar] [CrossRef]
- Yebra, M.; Chuvieco, E.; Riano, D. Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agric. For. Meteorol. 2008, 148, 523–536. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Neito, H.; Salas, J.; Martin, M.P.; Vilar, L.; Martinez, J.; Martin, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riano, D.; Zylstra, P.; Hunt, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Yebra, M.; Quan, X.; Riano, D.; Larraondo, P.R.; van Dijk, A.I.J.M.; Cary, G.J. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- McGee, T.K.; Russell, S. “It’s just a natural way of life…” an investigation of wildfire preparedness in rural Australia. Glob. Environ. Chang. Part B Environ. Hazards 2003, 5, 1–12. [Google Scholar] [CrossRef]
- McGee, T.K.; McFarlane, B.L.; Varghese, J. An examination of the influence of hazard experience on wildfire risk perceptions and adoption of mitigation measures. Soc. Nat. Resour. 2009, 22, 308–323. [Google Scholar] [CrossRef]
- McGee, T.K. Public engagement in neighbourhood level wildfire mitigation and preparedness: Case studies from Canada, the US and Australia. J. Environ. Manag. 2011, 92, 2524–2532. [Google Scholar] [CrossRef] [PubMed]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- Rogers, B.M.; Soja, A.J.; Goulden, M.L.; Randerson, J.T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 2015, 8, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Pouliot, P.; Rao, V.; McCarty, J.L.; Soja, A. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources. J. Air Waste Manag. Assoc. 2017, 67, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Perez-Harguindeguy, N.; Dias, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef] [Green Version]
- Staver, A.C.; Botha, J.; Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 2017, 216, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, C.; Gill, N. Bushfire and everyday life: Examining the awareness-action ‘gap ‘in changing rural landscapes. Geoforum 2010, 41, 814–825. [Google Scholar] [CrossRef]
- Eriksen, C. Why do they burn the ‘bush’? Fire, rural livelihoods, and conservation in Zambia. Geogr. J. 2007, 173, 242–256. [Google Scholar] [CrossRef]
- Eriksen, C.; Simon, G. The Affluence–Vulnerability Interface: Intersecting scales of risk, privilege and disaster. Environ. Plan. A Econ. Space 2017, 49, 293–313. [Google Scholar] [CrossRef]
- Eriksen, C. Negotiating adversity with humour: A case study of wildland firefighter women. Polit. Geogr. 2018. [Google Scholar] [CrossRef]
- Kennedy, M.C.; Johnson, M.C. Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland-urban interface during the Wallow Fire, Arizona, USA. For. Ecol. Manag. 2014, 318, 122–132. [Google Scholar] [CrossRef]
- Prichard, S.J.; Kennedy, M.C. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event. Ecol. Appl. 2014, 24, 571–590. [Google Scholar] [CrossRef] [PubMed]
- Kenney, M.C.; McKenzie, D. Using a stochastic model and cross-scale analysis to evaluate controls on historical low-severity fire regimes. Landsc. Ecol. 2010, 25, 1561–1573. [Google Scholar] [CrossRef]
- Prichard, S.J.; Kennedy, M.C.; Wright, C.S.; Cronan, J.B.; Ottmar, R.D. Predicting forest floor and woody fuel consumption from prescribed burns in southern and western pine ecosystems of the United States. For. Ecol. Manag. 2017, 405, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, M.C.; McKenzie, D.; Tague, C.; Dugger, A.L. Balancing uncertainty and complexity to incorporate fire spread in an eco-hydrological model. Int. J. Wildland Fire 2017, 26, 706–718. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sens. Environ. 2007, 106, 305–325. [Google Scholar] [CrossRef]
- Haire, S.L.; McGarigal, K. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landsc. Ecol. 2010, 25, 1055–1069. [Google Scholar] [CrossRef]
- Santin, C.; Doerr, S.H.; Kane, E.S.; Masiello, C.A.; Ohlson, M.; de la Rosa, J.M.; Preston, C.M.; Dittmar, T. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 2016, 22, 76–91. [Google Scholar] [CrossRef] [PubMed]
- Bodi, M.B.; Martin, D.A.; Balfour, V.N.; Santic, C.; Doerr, S.H.; Periera, P.; Cerda, A.; Mataiz-Solera, J. Wild land fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Santin, C.; Otero, X.L.; Doerr, S.H.; Chafe, C.J. Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Sci. Total Environ. 2018, 621, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.R.; Doerr, S.H.; Santic, C.; Froyd, C.A.; Sinnadurai, P. Prescribed fire and its impacts on ecosystem services in the UK. Sci. Total Environ. 2018, 624, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Hudiburg, T.; Law, B.; Turner, D.P.; Campbell, J.; Donato, D.; Duane, M. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 2009, 19, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Law, B.E.; Hudiburg, T.W.; Luyssaert, S. Thinning effects on forest productivity: Consequences of preserving old forests and mitigating impacts of fire and drought. Plant Ecol. Divers. 2013, 6, 73–85. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Miller, A.D.; Mohan, J.E.; Hudiburg, T.W.; Duval, B.D.; DeLuca, E.H. Altered dynamics of forest recovery under a changing climate. Glob. Chang. Biol. 2013, 19, 2001–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudiburg, T.W.; Higuera, P.E.; Hicke, J.A. Fire-regime variability impacts forest carbon dynamics for centuries to millennia. Biogeosciences 2017, 14, 3873–3882. [Google Scholar] [CrossRef] [Green Version]
- Koerner, S.E.; Collins, S.L. Small-scale patch structure in North American and South African grasslands responds differently to fire and grazing. Landsc. Ecol. 2013, 28, 1293–1306. [Google Scholar] [CrossRef]
- Koerner, S.E.; Collins, S.L. Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. Ecology 2014, 95, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Burkepile, D.E.; Thompson, D.I.; Fynn, R.W.S.; Koerner, S.E.; Eby, S.; Govender, N.; Hagenah, N.; Lemoine, N.P.; Matchett, K.J.; Wilcox, K.R.; et al. Fire frequency drives habitat selection by a diverse herbivore guild impacting top–down control of plant communities in an African savanna. Oikos 2016, 125, 1636–1646. [Google Scholar] [CrossRef]
- He, M.; Zheng, J.; Yin, S.; Zhang, Y. Trends, temporal and spatial characteristics, and uncertainties in biomass burning emissions in the Pearl River Delta, China. Atmos. Chem. Phys. 2011, 10, 7859–7873. [Google Scholar] [CrossRef]
- Hu, J.; Wang, P.; Ying, Q.; Zhang, H.; Chen, J.; Ge, X.; Li, X.; Jiang, J.; Wang, S.; Zhang, J.; et al. Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmos. Chem. Phys. 2017, 17, 77–92. [Google Scholar] [CrossRef]
- Albini, F.A.; Reinhardt, E.D. Modeling ignition and burning rate of large woody natural fuels. Int. J. Wildland Fire 1995, 5, 81–91. [Google Scholar] [CrossRef]
- Ryan, K.C.; Reinhardt, E.D. Predicting post-fire mortality of 7 western conifers. Can. J. For. Res. 1988, 18, 1291–1297. [Google Scholar] [CrossRef]
- Reinhardt, E.D.; Keane, R.E.; Brown, J.K. Modelling fire effects. Int. J. Wildland Fire 2001, 10, 373–380. [Google Scholar] [CrossRef]
- Andrews, P.L.; Loftsgaarden, D.O.; Bradshaw, L.S. Evaluation of fire danger rating indexes using logistic regression and percentile analysis. Int. J. Wildland Fire 2003, 12, 213–226. [Google Scholar] [CrossRef]
- Andrews, P.L. Current status and future needs of the BehavePlus Fire Modeling System. Int. J. Wildland Fire 2014, 23, 21–33. [Google Scholar] [CrossRef]
- McAllister, S.S.; Chen, J.-Y.; Fernandez-Pello, A.C. Fundamentals of Combustion Processes; Springer: New York, NY, USA, 2011; pp. 1–304. [Google Scholar]
- Finney, M.A.; Cohen, J.D.; McAllister, S.S.; Jolly, W.M. On the need for a theory of wildland fire spread. Int. J. Wildland Fire 2013, 22, 25–36. [Google Scholar] [CrossRef]
- McAllister, S.; Grenfell, I.; Hadlow, A.; Jolly, W.M.; Finney, M.; Cohen, J. Piloted ignition of live forest fuels. Fire Saf. J. 2012, 51, 133–142. [Google Scholar] [CrossRef]
- Finney, M.A.; Cohen, J.D.; Forthofer, J.M.; McAllister, S.S.; Gollner, M.J.; Gorham, D.J.; Saito, K.; Akafuah, N.K.; Adam, B.A.; English, J.D. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. USA 2015, 112, 9833–9838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllister, S.; Finney, M. Autoignition of wood under combined convective and radiative heating. Proc. Comsbust. Inst. 2017, 36, 3073–3080. [Google Scholar] [CrossRef]
- McAllister, S.; Finnery, M. Burning Rates of Wood Cribs with Implications for Wildland Fires. Fire Technol. 2016, 52, 1755–1777. [Google Scholar] [CrossRef]
- Rorig, M.L.; Ferguson, S.A. Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J. Appl. Meteorol. 1999, 38, 1565–1575. [Google Scholar] [CrossRef]
- Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.; Ferguson, S.A. The BlueSky Smoke modeling framework. Int. J. Wildland Fire 2009, 18, 906–920. [Google Scholar] [CrossRef]
- Smith, A.L. Increasing Editorial Diversity: Strategies for Structural Change. Fire 2018, 1, 42. [Google Scholar] [CrossRef]
- Gluckman, N. Female Historians Try to End the I-Didn’t-Know-Any-Women Excuse for Men-Only Panels. The Chronicle of Higher Education, 22 June 2018. [Google Scholar]
- 500 Women Scientists 2018. Available online: https://500womenscientists.org/ (accessed on 2 November 2018).
(a) North America | |||
Scientist | Country | Scientist | Country |
Suzanne Brais | Canada | Kathleen Kavanagh | United States |
Lori Daniels | Canada | Maureen Kennedy | United States |
Sylvie Gauthier | Canada | Sally Koerner | United States |
Sarah Henderson | Canada | Crystal Kolden | United States |
Jill Johnstone | Canada | Meg Krawchuk | United States |
S. Ellen Macdonald | Canada | Erica Kuligowski | United States |
Tara McGee | Canada | Beverly Law | United States |
Alison Munson | Canada | Karen Launchbaugh | United States |
Sylvie Quideau | Canada | Tatiana Loboda | United States |
Evelyne Thiffault | Canada | Jennifer Logan | United States |
Merritt Turetsky | Canada | Michelle Mack | United States |
Olga L. Mayol-Bracero | Puerto Rico | Kendra McLauchlan | United States |
Allison Aiken | United States | Jennifer Marlon | United States |
Patricia Andrews | United States | Sara McAllister | United States |
Mary Arthur | United States | Sarah McCaffrey | United States |
Dominique Bachelet | United States | Loretta Mickley | United States |
Roya Bahreini | United States | Constance Millar | United States |
Jennifer Balch | United States | Carol Miller | United States |
Rebecca Bird | United States | Penelope Morgan | United States |
Nicola Blake | United States | Branda Nowell | United States |
Tami Bond | United States | Amber Ortega | United States |
Bethany Bradley | United States | Anupma Prakash | United States |
Hannah Brenkert-Smith | United States | Haiganoush Preisler | United States |
Carla D’Antonio | United States | Elizabeth Reinhardt | United States |
Janice Coen | United States | Anna Sala | United States |
Susan Conard | United States | Tania Schoennagel | United States |
Patricia Champ | United States | Carolyn Sieg | United States |
Virginia Dale | United States | Melinda Smith | United States |
Ruth DeFries | United States | Erica Smithwick | United States |
Sue Ferguson | United States | Amber Soja | United States |
Karla Longo de Feritas | United States | Carla Staver | United States |
A. Paige Fischer | United States | Toddi Steelman | United States |
Nancy French | United States | Eva Strand | United States |
Sandra Haire | United States | Elaine Sutherland | United States |
Gayle Hagler | United States | Alexandra Syphard | United States |
Jennifer Harden | United States | Anne Thompson | United States |
Katherine Hayhoe | United States | Sarah Trainor | United States |
Amy Hessl | United States | Valerie Trouet | United States |
Emily Heyerdahl | United States | Monica Turner | United States |
Sharon Hood | United States | Christine Wiedinmyer | United States |
Sally Horn | United States | Cathy Whitlock | United States |
Tara Hudiburg | United States | ||
Lyatt Jaegle | United States | ||
Yufang Jin | United States | ||
(b) Eurasia | |||
Scientist | Country | Scientist | Country |
Yingyi Zhang | China | Daniela Stroppiana | Italy |
Claire Belcher | England | Cathelijne Stoof | Netherlands |
Angela Benedetti | England | Vigdis Vandvik | Norway |
Sandy Harrison | England | Celia Gouveia | Portugal |
Imma Oliveras | England | Ana Miranda | Portugal |
Susan Page | England | Maria de Vasconcelos | Portugal |
Catherine Parr | England | Galina Ivanova | Russia |
Carly Reddington | England | Caroline Lehmann | Scotland |
Christelle Hely | France | Christina Montiel-Molina | Spain |
Barbara Drossel | Germany | Elsa Pastor | Spain |
Angelica Fuerdean | Germany | Eulalia Planas | Spain |
Silvia Kloster | Germany | Marie-Charlotte Nilsson Hegethorn | Sweden |
Gitta Lasslop | Germany | Jenny Rissler | Sweden |
Rajni Tewari | Inida | Petra Kaltenrieder | Switzerland |
Sofia Bajocco | Italy | Christina Santin Nuno | Wales |
Rosa Lasaponara | Italy | Daniela Stroppiana | Italy |
(c) South America | |||
Scientist | Country | Scientist | Country |
Ana Alencar | Brazil | Dalva Maria da Silva Matos | Brazil |
Mercedes Bustamante | Brazil | Gabriela Nardoto | Brazil |
Giselda Durigan | Brazil | Vania Pivello | Brazil |
Alessandra Fidelis | Brazil | Margot Guerra Sommer | Brazil |
Heloisa Miranda | Brazil | Dolors Armenteras | Columbia |
(d) Oceania | |||
Scientist | Country | Scientist | Country |
Wendy Anderson (née Cathchpole) | Australia | Sarah Legge | Australia |
Tina Bell | Australia | Lynda Prior | Australia |
Lauren Bennett | Australia | Samantha Setterfield | Australia |
Christine Eriksen | Australia | Kathyrn Williams | Australia |
Angie Haslem | Australia | Marta Yebra | Australia |
Lesley Head | Australia | Janet Wilmshurst | New Zealand |
Fay Johnston | Australia | Sarah Richardson | New Zealand |
Kirsten Knox | Australia | Kasturi Devi Kanniah | Malaysia |
(e) Africa | |||
Scientist | Country | Scientist | Country |
Sally Archibald | South Africa | Helen de Klerk | South Africa |
Karen Esler | South Africa |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, A.M.S.; Strand, E.K. Recognizing Women Leaders in Fire Science: Revisited. Fire 2018, 1, 45. https://doi.org/10.3390/fire1030045
Smith AMS, Strand EK. Recognizing Women Leaders in Fire Science: Revisited. Fire. 2018; 1(3):45. https://doi.org/10.3390/fire1030045
Chicago/Turabian StyleSmith, Alistair M.S., and Eva K. Strand. 2018. "Recognizing Women Leaders in Fire Science: Revisited" Fire 1, no. 3: 45. https://doi.org/10.3390/fire1030045
APA StyleSmith, A. M. S., & Strand, E. K. (2018). Recognizing Women Leaders in Fire Science: Revisited. Fire, 1(3), 45. https://doi.org/10.3390/fire1030045