Human-Related Ignitions Increase the Number of Large Wildfires across U.S. Ecoregions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Large Fire Size and Total Burned Area
3.2. Large Fire Seasonality
3.3. Large Fire Conditions
4. Discussion
4.1. Defining Large Fires Based on Ecoregions
4.2. Large Fire Seasonality
4.3. Environmental Controls on Large Fire Size
4.4. Human Controls on Large Fires
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- InciWeb. Incident Information System. 2017. Available online: https://inciweb.nwcg.gov/ (accessed on 25 January 2018).
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [PubMed]
- Donovan, V.M.; Wonkka, C.L.; Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 2017, 44, 5986–5993. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed]
- Kasischke, E.S.; Turetsky, M.R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Stephens, S.L.; Burrows, N.; Buyantuyev, A.; Gray, R.W.; Keane, R.E.; Kubian, R.; Liu, S.; Seijo, F.; Shu, L.; Tolhurst, K.G.; et al. Temperate and boreal forest mega-fires: Characteristics and challenges. Front. Ecol. Environ. 2014, 12, 115–122. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernandez-Munoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef] [Green Version]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.-Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim. Chang. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Cohn, J.S.; Gill, A.M.; Bedward, M.; Lucas, C. Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather. Int. J. Wildland Fire 2009, 18, 932–943. [Google Scholar] [CrossRef]
- NIFC, National Interagency Fire Center. 2017. Available online: https://www.nifc.gov/fireInfo/fireInfo_stats_lgFires.html (accessed on 25 January 2018).
- Stavros, E.N.; Abatzoglou, J.; Larkin, N.K.; McKenzie, D.; Steel, E.A. Climate and very large wildland fires in the contiguous western USA. Int. J. Wildland Fire 2014, 23, 899–914. [Google Scholar] [CrossRef]
- Barbero, R.; Abatzoglou, J.T.; Steel, E.A.; Larkin, N.K. Modeling very large-fire occurrences over the continental United States from weather and climate forcing. Environ. Res. Lett. 2014, 9, 124009. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.-J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Schoennagel, T.; Morgan, P.; Balch, J.B.; Dennison, P.; Harvey, B.; Hutto, R.; Krawchuk, M.; Moritz, M.; Rasker, R.; Whitlock, C. Insights from Wildfire Science: A Resource for Fire Policy Discussions; Headwaters Economics: Bozeman, MT, USA, 2016; pp. 1–9. [Google Scholar]
- Jaffe, D.; Hafner, W.; Chand, D.; Westerling, A.; Spracklen, D. Interannual Variations in PM2.5 due to Wildfires in the Western United States. Environ. Sci. Technol. 2008, 42, 2812–2818. [Google Scholar] [CrossRef] [PubMed]
- Gerbert, K.M.; Calkin, D.E.; Yoder, J. Estimating supression expenditures for individual large wildland fires. West. J. Appl. For. 2007, 22, 188–196. [Google Scholar]
- Malamud, B.D.; Millington, J.D.A.; Perry, G.L.W. Characterizing wildfire regimes in the United States. Proc. Natl. Acad. Sci. USA 2005, 102, 4694–4699. [Google Scholar] [CrossRef] [PubMed]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Finney, M.A. The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manag. 2005, 211, 97–108. [Google Scholar] [CrossRef]
- Moritz, M.A.; Morais, M.E.; Summerell, L.A.; Carlson, J.M.; Doyle, J. Wildfires, complexity, and highly optimized tolerance. Proc. Natl. Acad. Sci. USA 2005, 102, 17912–17917. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Commission for Environmental Cooperation. Ecological Regions of North America—Levels I, II, and III: Montreal, Quebec, Canada, Scale 1:10,000,000; Commission for Environmental Cooperation: Montreal, QC, Canada, 2006. [Google Scholar]
- Short, K.C. Spatial Wildfire Occurence Data for the United States, 1992–2015 [FPA_FOD_20170508], 4th ed.; Forest Service Research Data Archive: Fort Collins, CO, USA, 2017. [Google Scholar] [CrossRef]
- Dickson, B.G.; Prather, J.W.; Xu, Y.; Hampton, H.M.; Aumack, E.N.; Sisk, T.D. Mapping the probability of large fire occurrence in northern arizona, USA. Landsc. Ecol. 2006, 21, 747–761. [Google Scholar] [CrossRef]
- Brown, T.J.; Hall, B.L.; Westerling, A.L. The impact of twenty-first century climate change on wildland fire danger in the western united states: An applications perspective. Clim. Chang. 2004, 62, 365–388. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Radeloff, V.C.; Stewart, S.I.; Hammer, R.B.; Keuler, N.S.; Clayton, M.K. Human and biophysical influences on fire occurrence in the united states. Ecol. Appl. 2013, 23, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Calkin, D.E.; Gerbert, K.M.; Jones, J.G.; Nielson, R.P. Forest service large fire area burned and supression expenditure trends, 1970-2002. J. For. 2005, 103, 179–183. [Google Scholar]
- Keane, R.E.; Agee, J.K.; Fulé, P.; Keeley, J.E.; Key, C.; Kitchen, S.G.; Miller, R.; Schulte, L.A. Ecological effects of large fires on us landscapes: Benefit or catastrophe? Int. J. Wildland Fire 2008, 17, 696–712. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The interaction of fire, fuels, and climate across rocky mountain forests. BioScience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Knapp, P.A. Spatio-temporal patterns of large grassland fires in the intermountain west, u.S.A. Glob. Ecol. Biogeogr. Lett. 1998, 7, 259–272. [Google Scholar] [CrossRef]
- Preisler, H.K.; Westerling, A.L.; Gebert, K.M.; Munoz-Arriola, F.; Holmes, T.P. Spatially explicit forecasts of large wildland fire probability and suppression costs for california. Int. J. Wildland Fire 2011, 20, 508–517. [Google Scholar] [CrossRef]
- Riley, K.L.; Abatzoglou, J.T.; Grenfell, I.C.; Klene, A.E.; Heinsch, F.A. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: The role of temporal scale. Int. J. Wildland Fire 2013, 22, 894–909. [Google Scholar] [CrossRef]
- Xiao, J.; Zhuang, Q. Drought effects on large fire activity in canadian and alaskan forests. Environ. Res. Lett. 2007, 2, 044003. [Google Scholar] [CrossRef]
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Flannigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large forest fires in canada, 1959–1997. J. Geophys. Res. Atmos. 2002, 107, FFR 5-1–FFR 5-12. [Google Scholar]
- Shvidenko, A.Z.; Nilsson, S. Extent, distribution, and ecological role of fire in russian forests. In Fire, Climate Change, and Carbon Cycling in the Boreal Forest; Kasischke, E.S., Stocks, B.J., Eds.; Springer: New York, NY, USA, 2000; pp. 132–150. [Google Scholar]
- Ganteaume, A.; Jappiot, M. What causes large fires in southern france. For. Ecol. Manag. 2013, 294, 76–85. [Google Scholar] [CrossRef]
- Viegas, D.X. Weather, fire status and fire occurrence: Predicting large fires. In Large Forest Fires; Moreno, J.M., Ed.; Backhuys: Leiden, The Netherlands, 1998; pp. 31–48. [Google Scholar]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- USGS EROS. LANDFIRE.HI_130BPS; LANDFIRE Bioph ysical Settings (LANDFIRE 2012); LF 1.3.0; USGS EROS: Garretson, SD, USA, 2010.
- Kellndorfer, J.; Walker, W.; LaPoint, E.; Bishop, J.; Cormier, T.; Fiske, G.; Hoppus, M.; Kirsch, K.; Westfall, J. NACP Aboveground Biomass and Carbon Baseline Data (NBCD 2000), U.S.A., 2000; ORNL DAAC: Oak Ridge, TN, USA, 2012. [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 58. [Google Scholar] [CrossRef] [PubMed]
- Williams, J. Exploring the onset of high-impact mega-fires through a forest land management prism. For. Ecol. Manag. 2013, 294, 4–10. [Google Scholar] [CrossRef]
- Stephens, S.L.; Agee, J.K.; Fulé, P.Z.; North, M.P.; Romme, W.H.; Swetnam, T.W.; Turner, M.G. Managing forests and fire in changing climates. Science 2013, 342, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. Climate change and future fire regimes: Examples from California. Geosci. Canada 2016, 6, 37. [Google Scholar] [CrossRef]
- Gill, A.M.; Allan, G. Large fires, fire effects and the fire-regime concept. Int. J. Wildland Fire 2008, 17, 688–695. [Google Scholar] [CrossRef]
- FAMWEB. Federal and aviation management. 2017. Available online: https://fam.nwcg.gov/fam-web/hist_209/hist_r_print_209_head_2005?v_number=MN-SUF-000249&v_report_date=08/26/2005&v_hour=1600&v_gaid=EA (accessed on 25 January 2018).
- Stavros, E.N.; Abatzoglou, J.T.; McKenzie, D.; Larkin, N.K. Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States. Clim. Chang. 2014, 126, 455–468. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Pfaff, A.H.; Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the united states. Proc. Natl. Acad. Sci. USA 2017, 114, 13750. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. Ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Stanturf, J.A.; Wade, D.D.; Waldrop, T.A.; Kennard, D.K.; Achtemeier, G.L. Background Paper: Fire in Southern Forest Landscapes; USDA Forest Service Southern Research Station: Asheville, NC, USA, 2002; pp. 607–630.
- Williams, A.P.; Cook, B.I.; Smerdon, J.E.; Bishop, D.A.; Seager, R.; Mankin, J.S. The 2016 Southeastern U.S. Drought: An Extreme Departure From Centennial Wetting and Cooling. J. Geophys. Res. Atmos. 2017, 122, 10888–10905. Available online: http://www.landfire.gov (accessed on 25 January 2018). [CrossRef]
- Macie, E.; Hermansen, A. Human Influences on Forest Ecosystems: The Southern Wildland-Urban Interface Assessment; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2002; p. 159.
- Thomas, D.S.; Butry, D.T. Areas of the U.S. wildland–urban interface threatened by wildfire during the 2001–2010 decade. Nat. Hazards 2014, 71, 1561–1585. [Google Scholar] [CrossRef]
- Alexandre, P.M.; Stewart, S.I.; Keuler, N.S.; Clayton, M.K.; Mockrin, M.H.; Bar-Massada, A.; Syphard, A.D.; Radeloff, V.C. Factors related to building loss due to wildfires in the conterminous United States. Ecol. Appl. 2016, 26, 2323–2338. [Google Scholar] [CrossRef] [PubMed]
- La Puma, I.P. Fire in the pines: A landscape perspective of human-induced ecological change in the pinelands of New Jersey. Ph.D. Dissertation, Rutgers University, New Brunswick, NJ, USA, 2012. [Google Scholar]
- Hantson, S.; Lasslop, G.; Kloster, S.; Chuvieco, E. Anthropogenic effects on global mean fire size. Int. J. Wildland Fire 2015, 24, 589–596. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [PubMed]
- Bar Massada, A.; Syphard, A.D.; Stewart, S.I.; Radeloff, V.C. Wildfire ignition-distribution modelling: A comparative study in the Huron–Manistee National Forest, Michigan, USA. Int. J. Wildland Fire 2013, 22, 174–183. [Google Scholar] [CrossRef]
- Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Finn, J.T.; Bradley, B.A. Quantifying the human influence on fire ignition across the western USA. Ecol. Appl. 2016, 26, 2390–2401. [Google Scholar] [CrossRef] [PubMed]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.P.; Iverson, L.R.; Matthews, S.N.; Prasad, A.M. Wildfire hazard mapping: Exploring site conditions in eastern US wildland–urban interfaces. Int. J. Wildland Fire 2013, 22, 567–578. [Google Scholar] [CrossRef]
Study | Location | Large Fire Threshold (ha) |
---|---|---|
[32] | Northern Arizona, U.S. | >20 |
[33] | Western U.S. | >40; largest wildfires > 400 |
[2] | Western U.S. | >400 |
[34] | Continental U.S. | ≥1300 (or 13 contiguous MODIS active fire pixels) |
[35] | Entire U.S. (Forest Service) | ≥121.4 |
[36] | Continental U.S. | >10,000 |
[8] | Alaska, U.S. and Canada boreal forest | >100,000 |
[37] | Rocky Mountain forest, U.S. | >1000 |
[38] | Intermountain West, U.S. | >2008 |
[39] | California, U.S. | ≥200 |
[19] | Eastern U.S. | >202 |
Western U.S. | >404 | |
[3] | Western U.S. | >405 |
[40] | Western U.S. | >405 |
[41] | Alaska, U.S. | >405 (from 1950 to 1987); >40.5 (from 1988 to 2005) |
Canada boreal forest | >200 | |
[42] | Canada | >200 |
[15] | Greater Sydney, Australia | ≥1000 |
[43] | Russia | >200 |
[44] | Southern France | >100 |
[11] | Mediterranean Europe | >500 |
[45] | Europe | >1000 |
(a) | ||||||||||
Ignition | Grassland | Conifer | Hardwood | Riparian | Savanna | Shrub | Hardwood/Conifer | Sparse | Other | Total |
Human | 143,980 | 318,168 | 386,804 | 259,006 | 3248 | 114,002 | 172,056 | 3265 | 24,101 | 1,424,630 |
Lightning | 19,253 | 142,802 | 13,697 | 33,620 | 76 | 51,065 | 9800 | 1042 | 2850 | 274,205 |
Ratio (H:L) | 7.5 | 2.2 | 28.2 | 7.7 | 42.7 | 2.2 | 17.6 | 3.1 | 8.5 | 5.2 |
(b) | ||||||||||
Ignition | Grassland | Conifer | Hardwood | Riparian | Savanna | Shrub | Hardwood/Conifer | Sparse | Other | Total |
Human | 13,574 | 28,357 | 39,624 | 27,963 | 566 | 12,541 | 17,322 | 210 | 2119 | 142,276 |
Lightning | 3792 | 13,574 | 1728 | 4967 | 12 | 6899 | 1327 | 130 | 354 | 32,946 |
Ratio (H:L) | 3.6 | 2.1 | 22.9 | 5.6 | 47.2 | 1.8 | 13.1 | 1.6 | 6.0 | 4.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, R.C.; Fusco, E.; Bradley, B.; Abatzoglou, J.T.; Balch, J. Human-Related Ignitions Increase the Number of Large Wildfires across U.S. Ecoregions. Fire 2018, 1, 4. https://doi.org/10.3390/fire1010004
Nagy RC, Fusco E, Bradley B, Abatzoglou JT, Balch J. Human-Related Ignitions Increase the Number of Large Wildfires across U.S. Ecoregions. Fire. 2018; 1(1):4. https://doi.org/10.3390/fire1010004
Chicago/Turabian StyleNagy, R. Chelsea, Emily Fusco, Bethany Bradley, John T. Abatzoglou, and Jennifer Balch. 2018. "Human-Related Ignitions Increase the Number of Large Wildfires across U.S. Ecoregions" Fire 1, no. 1: 4. https://doi.org/10.3390/fire1010004
APA StyleNagy, R. C., Fusco, E., Bradley, B., Abatzoglou, J. T., & Balch, J. (2018). Human-Related Ignitions Increase the Number of Large Wildfires across U.S. Ecoregions. Fire, 1(1), 4. https://doi.org/10.3390/fire1010004