Conceptualizing Ecological Flammability: An Experimental Test of Three Frameworks Using Various Types and Loads of Surface Fuels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outline of Experimental Methods
- 1)
- Theoretically, as the product of the total mass of fuel consumed and the net heat of combustion (H). For all fuel types, a value for H of 17.8 MJ kg−1 was assumed, as in other savanna studies [23,36]. This is within the range of values measured for dry savanna leaf material [29] and close to the value of 18.6 MJ kg−1 assumed for biomass fuels by Rothermel [37].
- 2)
- Empirically, using evaporation of water during each fire from an open can calorimeter, and the latent heat of vaporization of water (2.26 MJ kg−1). We half-filled open aluminum cans with water and placed them on the ground near the center of each plot, and weighed them immediately before and after the fire, following Pérez and Moreno [38]. We then calculated latent heat captured by the cans as the mass of water lost multiplied by the latent heat required to evaporate it. Although the cans captured only a fraction of a percent of the theoretical energy released (see below), they provide a proxy for the energy released by the fires that is independent of assumptions about the heat of combustion.
2.2. Statistical Analyses
3. Results
3.1. Principal Components Analysis
3.2. Evaluation of Flammability Frameworks
4. Discussion
4.1. Flammability Components and Metrics
4.2. Variation in Flammability Metrics and Flammability Frameworks
4.3. Landscape Flammability and Evolutionary Strategies
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Response Variable | ||
---|---|---|
PC1 | PC2 | |
Model term | w+ | |
Fuel treatment | 1.00 | 1.00 |
Air temperature | 0.70 | 0.32 |
Vapor pressure deficit | 0.99 | 0.73 |
Wind speed | 0.28 | 0.94 |
Deviance Explained (%) | ||
Model with all terms | 90 | 56 |
Fuel only model (categorical) | 88 | 54 |
Fuel type * load (interactive) | 87 | 50 |
Appendix B
PC1 | PC2 | Fuel load | Fuel.BD | Comb.amt | Latent.heat | LH.std | Area.pc | T5.max | T50.max | Flame.ht | Comb.rate | Spread.rate | Intensity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 1.00 | 0.00 | 0.35 | −0.47 | 0.88 | 0.70 | 0.54 | 0.81 | 0.89 | 0.84 | 0.92 | 0.92 | 0.64 | 0.73 |
PC2 | 0.00 | 1.00 | −0.26 | 0.06 | −0.35 | −0.57 | −0.46 | −0.18 | −0.25 | −0.01 | 0.08 | 0.20 | 0.55 | 0.45 |
Fuel load | 0.35 | −0.26 | 1.00 | 0.41 | 0.59 | 0.48 | −0.03 | 0.01 | 0.29 | 0.31 | 0.27 | 0.37 | 0.04 | 0.25 |
Fuel.BD | −0.47 | 0.06 | 0.41 | 1.00 | −0.34 | −0.28 | −0.46 | −0.62 | −0.47 | −0.37 | −0.45 | −0.37 | −0.32 | −0.28 |
Comb.amt | 0.88 | −0.35 | 0.59 | −0.34 | 1.00 | 0.83 | 0.50 | 0.72 | 0.84 | 0.69 | 0.74 | 0.77 | 0.37 | 0.53 |
Latent.heat | 0.70 | −0.57 | 0.48 | −0.28 | 0.83 | 1.00 | 0.76 | 0.56 | 0.72 | 0.56 | 0.56 | 0.51 | 0.16 | 0.29 |
LH.std | 0.54 | −0.46 | −0.03 | −0.46 | 0.50 | 0.76 | 1.00 | 0.66 | 0.62 | 0.40 | 0.44 | 0.31 | 0.16 | 0.15 |
Area.pc | 0.81 | −0.18 | 0.01 | −0.62 | 0.72 | 0.56 | 0.66 | 1.00 | 0.82 | 0.58 | 0.71 | 0.65 | 0.47 | 0.43 |
T5.max | 0.89 | −0.25 | 0.29 | −0.47 | 0.84 | 0.72 | 0.62 | 0.82 | 1.00 | 0.68 | 0.76 | 0.73 | 0.43 | 0.50 |
T50.max | 0.84 | −0.01 | 0.31 | −0.37 | 0.69 | 0.56 | 0.40 | 0.58 | 0.68 | 1.00 | 0.88 | 0.79 | 0.37 | 0.48 |
Flame.ht | 0.92 | 0.08 | 0.27 | −0.45 | 0.74 | 0.56 | 0.44 | 0.71 | 0.76 | 0.88 | 1.00 | 0.89 | 0.51 | 0.59 |
Comb.rate | 0.92 | 0.20 | 0.37 | −0.37 | 0.77 | 0.51 | 0.31 | 0.65 | 0.73 | 0.79 | 0.89 | 1.00 | 0.60 | 0.69 |
Spread.rate | 0.64 | 0.55 | 0.04 | −0.32 | 0.37 | 0.16 | 0.16 | 0.47 | 0.43 | 0.37 | 0.51 | 0.60 | 1.00 | 0.91 |
Intensity | 0.73 | 0.45 | 0.25 | −0.28 | 0.53 | 0.29 | 0.15 | 0.43 | 0.50 | 0.48 | 0.59 | 0.69 | 0.91 | 1.00 |
Appendix C
PC1 | PC2 | |
---|---|---|
Standard deviation | 2.463 | 1.316 |
Proportion of variance | 0.607 | 0.173 |
Flammability metrics | Loadings | |
Combusted amount | 0.358 | −0.265 |
Latent heat | 0.284 | −0.435 |
Combusted percent | 0.329 | −0.139 |
Temperature at 5 cm | 0.360 | −0.189 |
Temperature at 50 cm | 0.339 | −0.005 |
Flame height | 0.373 | 0.058 |
Combustion rate | 0.373 | 0.154 |
Rate of spread | 0.260 | 0.421 |
Intensity | 0.294 | 0.345 |
Duration of flaming | −0.072 | −0.602 |
References
- Sullivan, A.L. Inside the inferno: Fundamental processes of wildland fire behaviour. 1. Combustion chemistry and heat release. Curr. For. Rep. 2017, 3, 132–149. [Google Scholar] [CrossRef]
- Sullivan, A.L. Inside the inferno: Fundamental processes of wildland fire behaviour. 2. Heat transfer and interactions. Curr. For. Rep. 2017, 3, 150–171. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammmability as an ecological and evolutionary driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- McCarthy, G.J.; Tolhurst, K.G.; Chatto, K. Overall Fuel Hazard Guide, 3rd ed.; Department of Natural Resources and Environment: East Melbourne, Australia, 1999. [Google Scholar]
- Anderson, H.E. Forest fuel ignitibility. Fire Tech. 1970, 6, 312–319. [Google Scholar] [CrossRef]
- Gill, A.M.; Zylstra, P. Flammability of Australian forests. Aust. For. 2005, 68, 87–93. [Google Scholar] [CrossRef]
- White, R.H.; Zipperer, W.C. Testing and classification of individual plants for fire behaviour: Plant selection for the wildland-urban interface. Int. J. Wildland Fire 2010, 19, 213–227. [Google Scholar] [CrossRef]
- Simpson, K.J.; Ripley, B.S.; Christin, P.-A.; Belcher, C.M.; Lehmann, C.E.R.; Thomas, G.H.; Osborne, C.P. Determinants of flammability in savanna grass species. J. Ecol. 2016, 104, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padullés Cubino, J.; Buckley, H.L.; Day, N.J.; Pieper, R.; Curran, T.J. Community-level flammability declines over 25 years of plant invasion in grasslands. J. Ecol. 2018. [Google Scholar] [CrossRef]
- De Magalhães, R.M.Q.; Schwilk, D.W. Leaf traits and litter flammability: Evidence for non-additive mixture effects in a temperate forest. J. Ecol. 2012, 100, 1153–1163. [Google Scholar]
- Prior, L.D.; Murphy, B.P.; Williamson, G.J.; Cochrane, M.A.; Jolly, W.M.; Bowman, D.M.J.S. Does inherent flammability of grass and litter fuels contribute to continental patterns of landscape fire activity? J. Biogeogr. 2017, 44, 1225–1238. [Google Scholar] [CrossRef]
- Madrigal, J.; Marino, E.; Guijarro, M.; Hernando, C.; Diez, C. Evaluation of the flammability of gorse (ulex europaeus l.) managed by prescribed burning. Ann. For. Sci. 2012, 69, 387–397. [Google Scholar] [CrossRef]
- Fréjaville, T.; Curt, T.; Carcaillet, C. Bark flammability as a fire-response trait for subalpine trees. Front. Plant Sci. 2013, 4, 466. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.J.; Prior, L.D.; French, B.J.; Vincent, B.; Knox, K.J.E.; Bowman, D.M.J.S. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection. Oecologia 2014, 176, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Blauw, L.G.; Wensink, N.; Bakker, L.; van Logtestijn, R.S.P.; Aerts, R.; Soudzilovskaia, N.A.; Cornelissen, J.H.C. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior. Ecol. Evol. 2015, 5, 3830–3841. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Haverkamp, C.; Rann, K.D.; Prior, L.D. Differential demographic filtering by surface fires: How fuel type and fuel load affect sapling mortality of an obligate seeder savanna tree. J. Ecol. 2018, 106, 1010–1022. [Google Scholar] [CrossRef]
- Madrigal, J.; Hernando, C.; Guijarro, M.; Diez, C.; Marino, E.; de Castro, A.J. Evaluation of forest fuel flammability and combustion properties with an adapted mass loss calorimeter device. J. Fire Sci. 2009, 27, 323–342. [Google Scholar] [CrossRef]
- Jaureguiberry, P.; Bertone, G.; Diaz, S. Device for the standard measurement of shoot flammability in the field. Austral Ecol. 2011, 36, 821–829. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; French, B.J.; Prior, L.D. Have plants evolved to self-immolate? Front. Plant Sci. 2014, 5, 590. [Google Scholar] [CrossRef]
- Dickinson, K.J.M.; Kirkpatrick, J.B. The flammability and energy content of some important plant species and fuel components in the forests of southeastern tasmania. J. Biogeogr. 1985, 12, 121–134. [Google Scholar] [CrossRef]
- Wyse, S.V.; Perry, G.L.W.; O’Connell, D.M.; Holland, P.S.; Wright, M.J.; Hosted, C.L.; Whitelock, S.L.; Geary, I.J.; Maurin, K.J.L.; Curran, T.J. A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion. Int. J. Wildland Fire 2016, 25, 466–477. [Google Scholar] [Green Version]
- Schwilk, D.W. Dimensions of plant flammability. New Phytol. 2015, 206, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Trollope, W.S.W.; Trollope, L.A.; Potgieter, A.F.L.; Zambatis, N. Safari-92 characterization of biomass and fire behavior in the small experimental burns in the Kruger National Park. J. Geophys. Res.-Atmos. 1996, 101, 23531–23539. [Google Scholar] [CrossRef]
- Boundy, B.; Diegel, S.W.; Wright, L.; Davis, S.C. Biomass Energy Data Book, 4th ed.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2011. [Google Scholar]
- Curt, T.; Schaffhauser, A.; Borgniet, L.; Dumas, C.; Esteve, R.; Ganteaume, A.; Jappiot, M.; Martin, W.; N’Diaye, A.; Poilvet, B. Litter flammability in oak woodlands and shrublands of southeastern France. For. Ecol. Manag. 2011, 261, 2214–2222. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Elvira, A.; van Kempen, L.; van Logtestijn, R.S.P.; Aptroot, A.; Cornelissen, J.H.C. Flammability across the gymnosperm phylogeny: The importance of litter particle size. New Phytol. 2015, 206, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Prior, L.D. Data from: Differential demographic filtering by surface fires: How fuel type and fuel load affect sapling mortality of an obligate seeder savanna tree. Figshare 2017. [Google Scholar] [CrossRef]
- Bureau of Meteorology Climate Statistics for Australian Locations. Darwin Airport. Available online: http://www.bom.gov.au/climate/averages/tables/cw_014015.shtml (accessed on 9 June 2015).
- Bowman, D.M.J.S.; Wilson, B.A. Fuel characteristics of coastal monsoon forests, northern territory, australia. J. Biogeogr. 1988, 15, 807–817. [Google Scholar] [CrossRef]
- Trauernicht, C.; Murphy, B.P.; Portner, T.E.; Bowman, D.M.J.S. Tree cover-fire interactions promote the persistence of a fire-sensitive conifer in a highly flammable savanna. J. Ecol. 2012, 100, 958–968. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; MacDermott, H.J.; Nichols, S.C.; Murphy, B.P. A grass-fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecol. Evol. 2014, 4, 4185–4194. [Google Scholar] [CrossRef] [PubMed]
- Hollis, J.J.; Gould, J.S.; Cruz, M.G.; McCaw, W.L. Framework for an australian fuel classification to support bushfire management. Aust. For. 2015, 78, 1–17. [Google Scholar] [CrossRef]
- Just, M.G.; Hohmann, M.G.; Hoffmann, W.A. Where fire stops: Vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecol. 2016, 217, 631–644. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keogh, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Byram, G.M. Combustion of forest fuels. In Forest Fire: Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Ondei, S.; Prior, L.D.; Vigilante, T.; Bowman, D.M.J.S. Post-fire resprouting strategies of rainforest and savanna saplings along the rainforest-savanna boundary in the australian monsoon tropics. Plant Ecol. 2016, 217, 711–724. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; U.S.D.A. Forest Service: Ogden, UT, USA, 1972. [Google Scholar]
- Pérez, B.; Moreno, J.M. Methods for quantifying fire severity in shrubland-fires. Plant Ecol. 1998, 139, 91–101. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Midgley, J.J. Flammability is not selected for, it emerges. Aust. J. Bot. 2013, 61, 102–106. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Auld, T.D. Soil temperatures during experimental bushfires in relation to fire intensity—Consequences for legume germination and fire management in south-eastern australia. J. Appl. Ecol. 1995, 32, 76–84. [Google Scholar] [CrossRef]
- Department of the Environment and Energy. National Vegetation Information Systems (NVIS). Available online: http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system (accessed on 22 December 2017).
- Fox, I.D.; Neldner, V.J.; Wilson, G.W.; Bannink, P.J. The Vegetation of the Australian Tropical Savannas; Environmental Protection Agency: Brisbane, Australia, 2001. [Google Scholar]
- Nano, C.E.M.; Jobson, P.; Wardle, G.M. Arid shrublands and open woodlands of inland Australia. In Australian Vegetation, 3rd ed.; Keith, D.A., Ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 626–650. [Google Scholar]
- Prior, L.D.; McCaw, W.L.; Grierson, P.F.; Murphy, B.P.; Bowman, D.M.J.S. Population structures of the widespread australian conifer callitris columellaris are a bio-indicator of continental environmental change. For. Ecol. Manag. 2011, 262, 252–262. [Google Scholar] [CrossRef]
- Department of the Environment and Energy. MVG 7—Callitris Forests and Woodlands; Australian Government: Canberra, Australia, 2017.
- Rossiter, N.A.; Setterfield, S.A.; Douglas, M.M.; Hutley, L.B. Testing the grass-fire cycle: Alien grass invasion in the tropical savannas of northern australia. Divers. Distrib. 2003, 9, 169–176. [Google Scholar] [CrossRef]
- Williams, R.J.; Gill, A.M.; Moore, P.H.R. Seasonal changes in fire behaviour in a tropical savanna in northern Australia. Int. J. Wildland Fire 1998, 8, 227–239. [Google Scholar] [CrossRef]
- Cruz, M.G.; Gould, J.S.; Alexander, M.E.; Sullivan, A.L.; McCaw, W.L.; Matthews, S. Empirical-based models for predicting head-fire rate of spread in Australian fuel types. Aust. For. 2015, 78, 118–158. [Google Scholar] [CrossRef]
- Thomas, P.B.; Watson, P.J.; Bradstock, R.A.; Penman, T.D.; Price, O.F. Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south-eastern Australia. Ecography 2014, 37, 1–11. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wildland Fire 2015, 24, 443–460. [Google Scholar] [CrossRef]
- Bowman, D.; Prior, L.; Cochrane, M.; Murphy, B. A continental-scale assessment of fuel loads and consumption by wildfire. Figshare 2018. [Google Scholar] [CrossRef]
- Gagnon, P.R.; Passmore, H.A.; Platt, W.J.; Myers, J.A.; Paine, C.E.T.; Harms, K.E. Does pyrogenicity protect burning plants? Ecology 2010, 91, 3481–3486. [Google Scholar] [CrossRef] [PubMed]
- McCaw, W.L.; Gould, J.S.; Cheney, N.P.; Ellis, P.F.M.; Anderson, W.R. Changes in behaviour of fire in dry eucalypt forest as fuel increases with age. For. Ecol. Manag. 2012, 271, 170–181. [Google Scholar] [CrossRef]
- Murphy, B.P.; Bradstock, R.A.; Boer, M.M.; Carter, J.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Russell-Smith, J.; Williamson, G.J.; Bowman, D.M.J.S. Fire regimes of Australia: A pyrogeographic model system. J. Biogeogr. 2013, 40, 1048–1058. [Google Scholar] [CrossRef]
- Murphy, B.P.; Paron, P.; Prior, L.D.; Boggs, G.S.; Franklin, D.C.; Bowman, D.J.M.S. Using generalized autoregressive error models to understand fire-vegetation-soil feedbacks in a mulga-spinifex landscape mosaic. J. Biogeogr. 2010, 37, 2169–2182. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002; p. 488. [Google Scholar]
Component and Metrics | Unit | Comments |
---|---|---|
Ignitability | ||
Rate of spread | mm s−1 | Regarded as a measure of landscape-scale ignitability; Measured here when rate of spread near maximum |
Consumability | ||
Area burnt | % | Assessed using a grid with 96 squares, recorded to the nearest 25% of a square |
Combustibility | ||
Maximum temperature at 5 cm | °C | Thermocouple, logged every second |
Maximum temperature at 50 cm | °C | Thermocouple, logged every second |
Time above 100° at 5 cm | s | Thermocouple, logged every second |
Time above 100° at 50 cm | s | Thermocouple, logged every second |
Flame height – average | cm | From observations during combustion, when flames were within 15 cm of the sapling, using a reference grid |
Combustion rate | g s−1 | Calculated from total combusted amount (per m2 × 2.25 m2) and duration of flaming combustion; represents average during combustion |
Byram’s fireline intensity | kW m−1 | Calculated directly from rate of spread and fuel load, therefore near maximum |
Sustainability | ||
Duration of flaming combustion | s | Observation and stopwatch |
Heat release (proposed here as a component of flammability) | ||
Combusted amount per area | kg m−2 | Calculated from fuel load and % area burnt; scales directly to heat released via effective heat of combustion |
Latent heat—our proxy for heat released | kJ | Measured as evaporation from open can calorimeter. It scaled to combusted amount, although it captured only ~0.03% of total heat released. |
Latent heat—standardized | kJ kg−1 | Latent heat divided by total mass of fuel |
Flammability Framework | Axis (as a Response Variable) | Deviance Explained (%) | wi–Global Model | ||
---|---|---|---|---|---|
Fuel Type | Fuel Load | Fuel Type * Load | |||
PCA (this study) | PC1 | 51 | 13 | 87 | 1.00 |
PC2 | 24 | 7 | 50 | 1.00 | |
Schwilk | Rate of spread | 72 | 0.02 | 78 | 0.70 |
Latent heat | 16 | 11 | 48 | 1.00 | |
Pausas | Rate of spread | 72 | 0.02 | 78 | 0.70 |
Latent heat, standardized for fuel load | 32 | 1 | 38 | 0.98 | |
Temperature duration (this study) | Maximum temperature at 5 cm | 51 | 3 | 71 | 1.00 |
Duration of flaming | 36 | 3 | 57 | 1.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prior, L.D.; Murphy, B.P.; Bowman, D.M.J.S. Conceptualizing Ecological Flammability: An Experimental Test of Three Frameworks Using Various Types and Loads of Surface Fuels. Fire 2018, 1, 14. https://doi.org/10.3390/fire1010014
Prior LD, Murphy BP, Bowman DMJS. Conceptualizing Ecological Flammability: An Experimental Test of Three Frameworks Using Various Types and Loads of Surface Fuels. Fire. 2018; 1(1):14. https://doi.org/10.3390/fire1010014
Chicago/Turabian StylePrior, Lynda D., Brett P. Murphy, and David M. J. S. Bowman. 2018. "Conceptualizing Ecological Flammability: An Experimental Test of Three Frameworks Using Various Types and Loads of Surface Fuels" Fire 1, no. 1: 14. https://doi.org/10.3390/fire1010014