Effect of Thermal Cycling or Simulated Gastric Acid on the Surface Characteristics of Dental Ceramic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen’s Construction
2.2. Aging Treatment of Specimens
2.3. Evaluation of Surface Roughness
2.4. Evaluation of Surface Morphology
2.5. Ion Release Investigation
2.6. Evaluation of Biological Behavior
3. Results
3.1. Surface Roughness
3.2. Evaluation of Surface Morphology
3.3. X-ray Diffraction Analysis
3.4. Ions’ Release Investigation (ICP/AES)
3.5. Evaluation of Cell Metabolic Activity/Viability after Direct Metabolic-Based Tests (MTT Assay)
4. Discussion
5. Conclusions
- Thermocycling did not significantly affect the mean surface roughness of the investigated ceramic materials, although it did affect other surface parameters to a greater extent compared to immersion in simulated gastric acid.
- Structural changes do occur after treatments, but are not able to significantly affect the mean surface roughness in most materials, except for zirconia-reinforced lithium silicate ceramic after immersion in simulated gastric acid.
- Immersion in simulated gastric acid seemed to mostly affect the surface roughness parameters of the silica-containing dental ceramics, without being able to significantly affect the mean surface roughness in any of the investigated materials.
- The investigated zirconia and dual-network ceramic specimens presented the smallest changes after immersion in simulated gastric acid or thermocycling, although they presented lower mitochondrial activity after TC or SGA.
- The zirconia-reinforced lithium silicate ceramics presented the most notable changes in microstructure and roughness after both treatments, which significantly affected their biological behavior.
- Lithium disilicate materials in general presented similar crystalline phases but differences in their percentages, and despite the significant changes in some of the surface roughness parameters, they did not present significant changes in mean surface roughness or surface microstructure after either treatment. However, these changes were enough to affect the cell metabolic activity of one brand of this type of material (I).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorrentino, R.; Ruggiero, G.; Di Mauro, M.I.; Breschi, L.; Leuci, S.; Zarone, F. Optical Behaviors, Surface Treatment, Adhesion, and Clinical Indications of Zirconia-Reinforced Lithium Silicate (ZLS): A Narrative Review. J. Dent. 2021, 112, 103722. [Google Scholar] [CrossRef]
- Win, L.C.; Sands, P.; Bonsor, S.J.; Burke, F.T. Ceramics in Dentistry: Which Material Is Appropriate for the Anterior or Posterior Dentition? Part 1: Materials Science. Dent. Update 2021, 48, 680–688. [Google Scholar] [CrossRef]
- Nawafleh, N.; Hatamleh, M.; Elshiyab, S.; Mack, F. Lithium Disilicate Restorations Fatigue Testing Parameters: A Systematic Review. J. Prosthodont. 2016, 25, 116–126. [Google Scholar] [CrossRef]
- Kou, W.; Garbrielsson, K.; Borhani, A.; Carlborg, M.; Molin Thorén, M. The Effects of Artificial Aging on High Translucent Zirconia. Biomater. Investig. Dent. 2019, 6, 54–60. [Google Scholar] [CrossRef]
- Sarafidou, K.; Stiesch, M.; Dittmer, M.P.; Jörn, D.; Borchers, L.; Kohorst, P. Load-Bearing Capacity of Artificially Aged Zirconia Fixed Dental Prostheses with Heterogeneous Abutment Supports. Clin. Oral. Investig. 2012, 16, 961–968. [Google Scholar] [CrossRef]
- Theocharidou, A.; Kontonasaki, E.; Koukousaki, I.; Koumpouli, A.; Betsani, I.; Koidis, P. Effect of in Vitro Aging and Acidic Storage on Color, Translucency, and Contrast Ratio of Monolithic Zirconia and Lithium Disilicate Ceramics. J. Prosthet. Dent. 2021, 127, 479–488. [Google Scholar] [CrossRef]
- Vatali, A.; Kontonasaki, E.; Kavouras, P.; Kantiranis, N.; Papadopoulou, L.; Paraskevopoulos, K.K.M.; Koidis, P. Effect of Heat Treatment and in Vitro Aging on the Microstructure and Mechanical Properties of Cold Isostatic-Pressed Zirconia Ceramics for Dental Restorations. Dent. Mater. 2014, 30, e272–e282. [Google Scholar] [CrossRef]
- Kontonasaki, E.; Giasimakopoulos, P.; Rigos, A.E. Strength and Aging Resistance of Monolithic Zirconia: An Update to Current Knowledge. Jpn. Dent. Sci. Rev. 2020, 56, 1–23. [Google Scholar] [CrossRef]
- Orr, W.C. Sleep and Gastroesophageal Reflux: What Are the Risks? Am. J. Med. 2003, 115 (Suppl. S1), 109–113. [Google Scholar] [CrossRef]
- Lourenço, M.; Azevedo, Á.; Brandão, I.; Gomes, P.S. Orofacial Manifestations in Outpatients with Anorexia Nervosa and Bulimia Nervosa Focusing on the Vomiting Behavior. Clin. Oral. Investig. 2018, 22, 1915–1922. [Google Scholar] [CrossRef]
- Body, C.; Christie, J.A. Gastrointestinal Diseases in Pregnancy: Nausea, Vomiting, Hyperemesis Gravidarum, Gastroesophageal Reflux Disease, Constipation, and Diarrhea. Gastroenterol. Clin. N. Am. 2016, 45, 267–283. [Google Scholar] [CrossRef]
- Kukiattrakoon, B.; Hengtrakool, C.; Kedjarune-Leggat, U. Effect of Acidic Agents on Surface Roughness of Dental Ceramics. Dent. Res. J. 2011, 8, 6–15. [Google Scholar]
- Junpoom, P.; Kukiattrakoon, B.; Hengtrakool, C. Surface Characteristic Changes of Dental Ceramics after Cyclic Immersion in Acidic Agents and Titratable Acidity. Eur. J. Prosthodont. Restor. Dent. 2010, 18, 177–184. [Google Scholar]
- Farhadi, E.; Kermanshah, H.; Rafizadeh, S.; Saeedi, R.; Ranjbar Omrani, L. In Vitro Effect of Acidic Solutions and Sodium Fluoride on Surface Roughness of Two Types of CAD-CAM Dental Ceramics. Int. J. Dent. 2021, 2021, 9977993. [Google Scholar] [CrossRef]
- Scotti, N.; Ionescu, A.; Comba, A.; Baldi, A.; Brambilla, E.; Vichi, A.; Goracci, C.; Ciardiello, R.; Tridello, A.; Paolino, D.; et al. Influence of Low-Ph Beverages on the Two-Body Wear of Cad/Cam Monolithic Materials. Polymers 2021, 13, 2915. [Google Scholar] [CrossRef]
- Habib, A.W.; Aboushelib, M.N.; Habib, N.A. Effect of Chemical Aging on Color Stability and Surface Properties of Stained All-Ceramic Restorations. J. Esthet. Restor. Dent. 2021, 33, 636–647. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Y.L.; Hong, G.; Yu, H. Effects of Low-Temperature Degradation on the Surface Roughness of Yttria-Stabilized Tetragonal Zirconia Polycrystal Ceramics: A Systematic Review and Meta-Analysis. J. Prosthet. Dent. 2021, 125, 222–230. [Google Scholar] [CrossRef]
- Cruz, M.E.M.; Simões, R.; Martins, S.B.; Trindade, F.Z.; Dovigo, L.N.; Fonseca, R.G. Influence of Simulated Gastric Juice on Surface Characteristics of CAD-CAM Monolithic Materials. J. Prosthet. Dent. 2020, 123, 483–490. [Google Scholar] [CrossRef]
- Al-Thobity, A.M.; Gad, M.M.; Farooq, I.; Alshahrani, A.S.; Al-Dulaijan, Y.A. Acid Effects on the Physical Properties of Different CAD/CAM Ceramic Materials: An in Vitro Analysis. J. Prosthodont. 2021, 30, 135–141. [Google Scholar] [CrossRef]
- Kulkarni, A.; Rothrock, J.; Thompson, J. Impact of Gastric Acid Induced Surface Changes on Mechanical Behavior and Optical Characteristics of Dental Ceramics. J. Prosthodont. 2020, 29, 207–218. [Google Scholar] [CrossRef]
- Hampe, R.; Theelke, B.; Lümkemann, N.; Stawarczyk, B. Impact of Artificial Aging by Thermocycling on Edge Chipping Resistance and Martens Hardness of Different Dental CAD-CAM Restorative Materials. J. Prosthet. Dent. 2021, 125, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Palla, E.-S.; Kontonasaki, E.; Kantiranis, N.; Papadopoulou, L.; Zorba, T.; Paraskevopoulos, K.M.; Koidis, P. Color Stability of Lithium Disilicate Ceramics after Aging and Immersion in Common Beverages. J. Prosthet. Dent. 2017, 19, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Alnasser, M.; Finkelman, M.; Papathanasiou, A.; Suzuki, M.; Ghaffari, R.; Ali, A. Effect of Acidic PH on Surface Roughness of Esthetic Dental Materials. J. Prosthet. Dent. 2019, 122, 567.e1–567.e8. [Google Scholar] [CrossRef] [PubMed]
- Harryparsad, A.; Dullabh, H.; Sykes, L.; Herbst, D. The Effects of Hydrochloric Acid on All-Ceramic Restorative Materials: An in-Vitro Study. S. Afr. Dent. J. 2014, 69, 106–111. [Google Scholar] [PubMed]
- Riquieri, H.; Monteiro, J.B.; Viegas, D.C.; Campos, T.M.B.; de Melo, R.M.; de Siqueira Ferreira Anzaloni Saavedra, G. Impact of Crystallization Firing Process on the Microstructure and Flexural Strength of Zirconia-Reinforced Lithium Silicate Glass-Ceramics. Dent. Mater. 2018, 34, 1483–1491. [Google Scholar] [CrossRef]
- Juntavee, N.; Uasuwan, P. Influence of Thermal Tempering Processes on Color Characteristics of Different Monolithic Computer-Assisted Design and Computer-Assisted Manufacturing Ceramic Materials. J. Clin. Exp. Dent. 2019, 11, e614–e624. [Google Scholar] [CrossRef]
- Vasiliu, R.D.; Porojan, S.D.; Bîrdeanu, M.I.; Porojan, L. Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics. Materials 2020, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Quirynen, M.; Marechal, M.; Busscher, H.J.; Weerkamp, A.H.; Darius, P.L.; van Steenberghe, D. The Influence of Surface Free Energy and Surface Roughness on Early Plaque Formation. An in Vivo Study in Man. J. Clin. Periodontol. 1990, 17, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Sonmez, N.; Gultekin, P.; Turp, V.; Akgungor, G.; Sen, D.; Mijiritsky, E. Evaluation of Five CAD/CAM Materials by Microstructural Characterization and Mechanical Tests: A Comparative in Vitro Study. BMC Oral. Health 2018, 18, 1–13. [Google Scholar] [CrossRef]
- Dobrzynski, M.; Pajaczkowska, M.; Nowicka, I.; Jaworski, A.; Kosior, P.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Bogucki, Z.A.; Filipiak, J.; et al. Study of Surface Structure Changes for Selected Ceramics Used in the CAD/CAM System on the Degree of Microbial Colonization, in Vitro Tests. Biomed. Res. Int. 2019, 2019, 9130806. [Google Scholar] [CrossRef]
- Dubrovo, S.K.; Shmidt, Y.A. Reactions of Vitreous Silicates and Aluminosilicates with Aqueous Solutions Communication I. Reactions of Vitreous Sodium Silicates with Water and with Hydrochloric Acid Solutions. Bull. Acad. Sci. USSR Div. Chem. Sci. 1953, 2, 535–543. [Google Scholar] [CrossRef]
- Pîrvulescu, I.L.; Pop, D.; Moacă, E.A.; Mihali, C.V.; Ille, C.; Jivănescu, A. Effects of Simulated Gastric Acid Exposure on Surface Topography, Mechanical and Optical Features of Commercial Cad/Cam Ceramic Blocks. Appl. Sci. 2021, 11, 8703. [Google Scholar] [CrossRef]
- Karaokutan, I.; Aykent, F. Effect of a Home Bleaching Agent on the Ion Elution of Different Esthetic Materials. J. Prosthodont. 2020, 29, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Upshaw, J.F.; Dieng, F.Y.; Clark, A.E.; Neal, D.; Anusavice, K.J. Surface Degradation of Dental Ceramics as a Function of Environmental PH. J. Dent. Res. 2013, 92, 467–471. [Google Scholar] [CrossRef]
- Hu, P.; Yao, L.; Lue, Q.; Ji, E.; Nie, Z.; He, Z. The Surface Denaturation Analysis of Lithium Disilicate Glass Ceramics Milled by Ultraviolet Picosecond Laser. J. Phys. Conf. Ser. 2020, 1549, 032150. [Google Scholar] [CrossRef]
- Mota, Y.A.; Cotes, C.; Carvalho, R.F.; Machado, J.P.B.; Leite, F.P.P.; Souza, R.O.A.; Özcan, M. Monoclinic Phase Transformation and Mechanical Durability of Zirconia Ceramic after Fatigue and Autoclave Aging. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 105, 1972–1977. [Google Scholar] [CrossRef] [PubMed]
- Kelesi, M.; Kontonasaki, E.; Kantiranis, N.; Papadopoulou, L.; Zorba, T.; Paraskevopoulos, K.M.; Koidis, P. The Effect of Different Aging Protocols on the Flexural Strength and Phase Transformations of Two Monolithic Zirconia Ceramics. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020982677. [Google Scholar] [CrossRef]
- Pereira, G.K.R.; Venturini, A.B.; Silvestri, T.; Dapieve, K.S.; Montagner, A.F.; Soares, F.Z.M.; Valandro, L.F. Low-Temperature Degradation of Y-TZP Ceramics: A Systematic Review and Meta-Analysis. J. Mech. Behav. Biomed. Mater. 2015, 55, 151–163. [Google Scholar] [CrossRef]
Code | Material | Type | Process | LOT/REF Number | Composition |
---|---|---|---|---|---|
E | Enamic 3M2-TEM-14 VITA Zahnfabrik H. Rauter GmbH & Co. KG | dual-network ceramic | CAD/CAM | 77190 | 86% ceramic (58–63% SiO2, 20–23% Al2O3, 9–11% Na2O, 4–6% K2O, 0.5–2% B2O3, 0–1% ZrO2, 0–1% CaO) 14% polymer (UDMA, TEGDMA) |
S | Suprinity A3-T PC-14 VITA Zahnfabrik H. Rauter GmbH & Co. KG | Zirconia-reinforced lithium silicate ceramic | CAD | 58903 | 56–64% SiO2, 1–4% Al2O3, 15–21% Li2O, 8–12% ZrO2, 1–4% K2O, 3–8% P2O5, 0–4% CeO2, 0.1% La2O3, 0–6% other oxides |
K | Katana 12Z/STML A4 Kuraray Noritake Dental Inc. | Zirconia Ceramic | CAD/CAM | 125-5781 | ZrO2 + HfO2 88–93%, Yttrium oxide (Y2O3) 7–10%, Other oxides 0–2% |
I | IPS e-max CAD LT A1/I 12 Ivoclar Vivadent | Lithium disilicate glass ceramic | CAD/CAM | Y45598 | 57–80% SiO2, 11–19% Li2O, 0–13% K2O, 0–11% P2O5, 0–8% ZrO2, 0–8% ZnO and 0–10% other oxides |
L | GC Initial® LiSi Press LT-C GC Corporation | Lithium disilicate glass ceramic | Heat-pressing | 1707071 | SiO2 71.9%, Al2O3 5.4%, Li2O 13%, K2O 2%, Na2O 1.4%, P2O5 2.6%, B2O3 0.007%, ZrO2 1.7%, CeO2 1.2%, V2O5 0.15%, Tb2O3 0.35%, Er2O3 0.4% and HfO2 0.03% |
E Average (±SD) | K Average (±SD) | S Average (±SD) | I Average (±SD) | L Average (±SD) | p-Value A | |
---|---|---|---|---|---|---|
Sa (baseline) | 0.8 (±0.2) a | 0.3 (±0.1) b | 0.3 (±0.1) b | 0.6 (±0.2) a,b | 0.8 (±0.2) a | <0.05 |
Sa (after SGA) | 0.8 (±0.1) a | 0.3 (±0.1) b | 0.3 (±0.0) b | 0.3 (±0.1) b | 0.7 (±0.2) a | <0.05 |
p-value B | >0.05 | >0.05 | >0.05 | >0.05 | 0.169 | |
Sz (baseline) | 11.5 (±2.9) a | 6.1 (±2.0) b | 6.2 (±1.2) b | 13.8 (±6.9) a | 19.6 (±5.2) c | <0.05 |
Sz (after SGA) | 11.4 (±1.9) a | 4.9 (±1.6) b | 7.7 (±3.5) b | 6.3 (±2.5) b | 14.9 (±4.4) a | <0.05 |
p-value B | >0.05 | >0.05 | >0.05 | <0.05 | <0.05 | |
Sp (baseline) | 5.2 (±2.1) a,b | 4.0 (±1.9) a | 3.9 (±1.6) a | 6.3 (±2.4) a,b | 7.1 (±2.2) b | <0.05 |
Sp (after SGA) | 5.2 (±1.48) a | 2.8 (±1.43) b | 4.6 (±3.02) a,b | 4.1 (±2.4) a,b | 5.1 (±1.8) a | <0.05 |
p-value B | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | |
Sv (baseline) | −6.3 (±1.97) a | −2.2 (±0.52) b | −2.5 (±0.42) c | −5.9 (±2.86) a,b,c | −11.2 (±3.61) b | <0.05 |
Sv (after SGA) | −6.2 (±0.8) a | −2.0 (±0.5) b | −3.0 (±0.8) b | −2.3 (±0.3) b | −9.7 (±3.4) c | <0.05 |
p-value B | >0.05 | >0.05 | <0.05 | <0.05 | <0.05 | |
Sq (baseline) | 1.2 (±0.6) a | 0.4 (±0.22b | 0.4 (±0.1) c | 0.8 (±0.3) a,b,c | 1.1 (±0.4) b | <0.05 |
Sq (after SGA) | 1.1 (±0.3) a | 0.4 (±0.1) b | 0.4 (±0.1) b | 0.4 (±0.1) b | 1.0 (±0.3) c | <0.05 |
p-value b | >0.05 | >0.05 | >0.05 | <0.05 | >0.05 |
E Average (±SD) | K Average (±SD) | S Average (±SD) | I Average (±SD) | L Average (±SD) | p-Value A | |
---|---|---|---|---|---|---|
Sa (baseline) | 0.9 (±0.2) a | 0.4 (±0.1) b | 0.3 (±0.1) b | 0.4 (±0.1) b | 0.7 (±0.2) c | <0.05 |
Sa (after TC) | 0.9 (±0.2) a | 0.4 (±0.2) b | 0.442 (±0.1) b | 0.4 (±0.11) b | 0.8 (±0.2) c | <0.05 |
p-value B | >0.05 | >0.05 | <0.05 | >0.05 | >0.05 | |
Sz (baseline) | 11.9(±1.5) a | 5.0 (±1.7) b | 7.1 (±3.1) b | 8.2 (±1.7) b | 23.5 (±4.0) c | <0.05 |
Sz (after TC) | 15.1 (±4.5) a | 7.0 (±1.4) b | 14.2 (±5.6) a | 8.2 (±3.2) b | 17.5 (±3.3) a | <0.05 |
p-value B | <0.05 | <0.05 | <0.05 | >0.05 | <0.05 | |
Sp (baseline) | 5.3 (±1.0) a | 2.5 (±0.7) b | 3.7 (±1.1) b | 5.5 (±1.6) a,b | 10.7 (±3.6) c | <0.05 |
Sp (after TC) | 8.4 (±3.8) a | 4.3 (±1.1) b | 8.00 (±3.9) a,b | 5.2 (±2.9) a,b | 7.0 (±3.0) a,b | <0.05 |
p-value B | <0.05 | <0.05 | <0.05 | >0.05 | >0.05 | |
Sv (baseline) | −6.6 (±1.0) a | −2.5 (±1.2) b | −3.4 (±2.4) b | −2.7 (±0.4) b | −12.8 (±2.5) c | <0.05 |
Sv (after TC) | −6.7 (±1.5) a | −2.7 (±1.0) b | −4.8 (±2.1) b | −3.1 (±0.5) b | −10.5 (1.4) c | <0.05 |
p-value B | >0.05 | >0.05 | >0.05 | <0.05 | <0.05 | |
Sq (baseline) | 1.1 (±0.2) a | 0.5 (±0.2) b | 0.4 (±0.1) b | 0.5 (±0.1) b | 1.1 (±0.4) a | <0.05 |
Sq (after TC) | 1.2 (±0.3) a | 0.5 (±0.2) b | 0.7 (±0.4) a,b | 0.5 (±0.1) b | 1.0 (±0.2) a | <0.05 |
p-value B | >0.05 | >0.05 | <0.05 | >0.05 | >0.05 |
Specimen | Quantification of Composition | ||||||
---|---|---|---|---|---|---|---|
Amorphous | m-ZrO2 #65-1025 | t-ZrO2 #50-1089 | c-ZrO2 #491642 | Total | |||
K1_baseline | - | - | 58.6 | 41.4 | 100 | ||
K1_HCl | - | 3.5 | 57.7 | 38.8 | 100 | ||
K1_TC | - | 3.7 | 57.2 | 39.1 | 100 | ||
Amorphous | NaAlSiO4 #110220 | KAlSiO4 #330989 | Na2SiO3 #160818 | K1+xAl1+xSi1−xO4 #320732 | NaAlSi2O6 #221338 | ||
E1 | 76.2 | 5.3 | 3.4 | 15.1 | - | - | 100 |
E1_HCl | 100 | - | - | - | - | - | 100 |
E1_TC | 84.4 | - | - | 7.5 | 2.8 | 5.3 | 100 |
Amorphous | Li2SiO3 #30-0766 | Li2Si3O5 #49-0803 | Zr0.4Ce0.6O2 #38-1439 | Li3PO4 #15-0760 | |||
S1 | 9.2 | 18.8 | 10.4 | 40.7 | 20.9 | 100 | |
S1_HCl | 22.1 | 35.6 | 11.4 | - | 30.9 | 100 | |
S1_TC | 30.1 | 41.2 | 9.6 | - | 19.1 | 100 | |
Amorphous | Li2Si2O5 #400376 | Li2Si2O5 #420248 | SiO2 #290085 | ||||
I1 | 5.7 | 86.2 | 5.3 | 2.8 | 100 | ||
I1_HCl | 7.2 | 87.9 | 4.9 | - | 100 | ||
I1_TC | 7.4 | 88 | 4.6 | - | 100 | ||
Amorphous | Li2Si2O5 #400376 | Li2Si2O5 #420248 | SiO2 #290085 | ||||
L1 | 3.1 | 83.7 | 10.8 | 2.4 | 100 | ||
L1_HCl | 3.6 | 84.7 | 11.7 | - | 100 | ||
L1_TC | 4.1 | 84.1 | 11.8 | - | 100 |
Detected Ions’ Concentrations in mg/L | ||||||
---|---|---|---|---|---|---|
Material | Si | Ca | P | Zn | Al | Hf |
I | 111 | 14.5 | 13.5 | 4,8 | 13.8 | <0.1 |
K | <0.1 | 0.05 | <0.1 | <0.1 | 0.2 | 0.8 |
E | 117 | 12.5 | 1.5 | 1.05 | 67.5 | <0.1 |
L | 134 | 24.5 | 67.5 | 0.75 | 12.5 | <0.1 |
S | 102 | 20 | 31.5 | 3.35 | 15.7 | <0.1 |
Group | Material | Day 1 | Day 3 | Day 5 | p-Value |
---|---|---|---|---|---|
No treatment | K | 108.2 (±2.3) | 136.4 (±4.8) | 105.7 (±12.7) | p > 0.05 |
S | 99.3 (±5.6) | 153.1 (±13.15) | 167.1 (±7.7) | p < 0.05 * | |
E | 104.9 (±14.5) | 71.5 (±15.0) | 118.3 (±10.5) | p < 0.05 * | |
L | 159.5 (±1.9) | 140.3 (±2.0) | 111.9 (±12.1) | p < 0.05 * | |
I | 103.1 (±7.8) | 153.6 (±7.0) | 131.1 (±0.4) | p < 0.05 * | |
C | 100.0 (±4.0) | 100.0 (±1.3) | 100.0 (±3.8) | p > 0.05 | |
p-value | p < 0.05 * | p < 0.05 * | p < 0.05 * | ||
Thermocycling | K | 62.7 (±5.9) | 103.8 (±12.2) | 71.3 (±0.1) | p < 0.05 * |
S | 69.7 (±6.8) | 79.8 (±0.7) | 101.3 (±5.2) | p < 0.05 * | |
E | 78.2 (±13.5) | 101.4 (±2.6) | 84.0 (±5.2) | p > 0.05 | |
L | 98.2 (±2.4) | 118.8 (±5.2) | 113.3 (±0.6) | p < 0.05 * | |
I | 81.8 (±0.8) | 136.7 (±6.1) | 65.4 (±9.7) | p < 0.05 * | |
C | 100.0 (±4.0) | 100.0 (±1.3) | 100.0 (±3.8) | p > 0.05 | |
p-value | p < 0.05 * | p < 0.05 * | p < 0.05 * | ||
Acidic Storage | K | 70.5 (±3.2) | 94.1 (±22.0) | 74.8 (±3.9) | p > 0.05 |
S | 71.4 (±5.2) | 102.3 (±1.4) | 97.9 (±0.8) | p < 0.05 * | |
E | 75.8 (±8.2) | 109.3 (±1.9) | 63.1 (±8.4) | p < 0.05 * | |
L | 112.9 (±15.6) | 105.4 (±11.0) | 96.3 (±11.7) | p > 0.05 | |
I | 77.3 (±0.2) | 134.6 (±1.9) | 81.3 (±12.6) | p < 0.05 * | |
C | 100.0 (±4.0) | 100.0 (±1.3) | 100.0 (±3.8) | p > 0.05 | |
p-value | p < 0.05 * | p > 0.05 | p < 0.05 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandoleon, P.; Sarafidou, K.; Pouroutzidou, G.K.; Theocharidou, A.; Zachariadis, G.A.; Kontonasaki, E. Effect of Thermal Cycling or Simulated Gastric Acid on the Surface Characteristics of Dental Ceramic Materials. Ceramics 2024, 7, 530-546. https://doi.org/10.3390/ceramics7020035
Pandoleon P, Sarafidou K, Pouroutzidou GK, Theocharidou A, Zachariadis GA, Kontonasaki E. Effect of Thermal Cycling or Simulated Gastric Acid on the Surface Characteristics of Dental Ceramic Materials. Ceramics. 2024; 7(2):530-546. https://doi.org/10.3390/ceramics7020035
Chicago/Turabian StylePandoleon, Panagiotis, Katia Sarafidou, Georgia K. Pouroutzidou, Anna Theocharidou, George A. Zachariadis, and Eleana Kontonasaki. 2024. "Effect of Thermal Cycling or Simulated Gastric Acid on the Surface Characteristics of Dental Ceramic Materials" Ceramics 7, no. 2: 530-546. https://doi.org/10.3390/ceramics7020035
APA StylePandoleon, P., Sarafidou, K., Pouroutzidou, G. K., Theocharidou, A., Zachariadis, G. A., & Kontonasaki, E. (2024). Effect of Thermal Cycling or Simulated Gastric Acid on the Surface Characteristics of Dental Ceramic Materials. Ceramics, 7(2), 530-546. https://doi.org/10.3390/ceramics7020035