LiGdxY1−xF4 and LiGdF4:Eu3+ Microparticles as Potential Materials for Optical Temperature Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XRD Characterization of the LiGdXY1−XF4 Samples
3.2. Spectral–Kinetic Characterization of the LiGdXY1−XF4 Samples
3.3. Spectral Characterization of the LiGdF4:Eu3+ (1 at.%)
3.4. Kinetic Characterization of the LiGdXY1−XF4 Samples at Room Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morozov, O.A.; Korableva, S.L.; Pudovkin, M.S.; Shakirov, A.A.; Shavelev, A.A.; Cherosov, M.A.; Klimovitskii, A.E. Pr3+:LiGdF4 microparticles for optical temperature sensing. Solid State Commun. 2022, 351, 114792. [Google Scholar] [CrossRef]
- Lepoutre, S.; Boyer, D.; Mahiou, R. Quantum cutting abilities of sol–gel derived LiGdF4:Eu3+ powders. J. Lumin. 2008, 128, 635–641. [Google Scholar] [CrossRef]
- Velázquez, J.J.; Mosa, J.; Gorni, G.; Balda, R.; Fernández, J.; Pascual, L.; Castro, Y. Transparent SiO2-GdF3 sol–gel nano-glass ceramics for optical applications. J. Sol-Gel Sci. Technol. 2019, 89, 322–332. [Google Scholar] [CrossRef]
- Wegh, R.T.; Donker, H.; Oskam, K.D.; Meijerink, A. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 1999, 283, 663–666. [Google Scholar] [CrossRef]
- Choi, J.E.; Kim, H.K.; Kim, Y.; Kim, G.; Lee, T.S.; Kim, S.; Jang, H.S. 800 nm near-infrared light-excitable intense green-emitting Li(Gd,Y)F4:Yb, Er-based core/shell/shell upconversion nanophosphors for efficient liver cancer cell imaging. Mater. Des. 2020, 195, 108941. [Google Scholar] [CrossRef]
- Shin, J.; Kyhm, J.H.; Hong, A.R.; Song, J.D.; Lee, K.; Ko, H.; Jang, H.S. Multicolor tunable upconversion luminescence from sensitized seed-mediated grown LiGdF4: Yb, Tm-based core/triple-shell nanophosphors for transparent displays. Chem. Mater. 2018, 30, 8457–8464. [Google Scholar] [CrossRef]
- Morozov, O.A.; Korableva, S.L.; Nurtdinova, L.A.; Kyashkin, V.M.; Popov, P.A.; Klimovitskii, A.E.; Semashko, V.V. Growth and characterization of optical and thermal properties of LiGdF4 single crystal. Opt. Mater. 2023, 137, 113490. [Google Scholar] [CrossRef]
- Lepoutre, S.; Boyer, D.; Mahiou, R. Structural and optical characterizations of sol–gel based fluorides materials: LiGdF4:Eu3+ and LiYF4:Er3+. Opt. Mater. 2006, 28, 592–596. [Google Scholar] [CrossRef]
- Yu, F.; Ma, B.; Xie, Z.; Wang, P.; Wu, X.; Lin, C.; Zhang, Q. Developing” smart windows” for optical storage and temperature sensing based on KNN transparent ceramics. J. Eur. Ceram. Soc. 2023, 43, 4408–4418. [Google Scholar] [CrossRef]
- Aseev, V.; Babkina, A.; Evstropiev, S.; Kuzmenko, N.; Sevastianova, I.; Prokuratov, D.; Khodasevich, M. Structural and Luminescence Properties of (Gd1−xYx)2O3 Powders Doped with Nd3+ Ions for Temperature Measurements. Ceramics 2022, 5, 1185–1197. [Google Scholar] [CrossRef]
- Mikhaylov, D.A.; Potanina, E.A.; Nokhrin, A.V.; Orlova, A.I.; Yunin, P.A.; Sakharov, N.V.; Tabachkova, N.Y. Investigation of the Microstructure of Fine-Grained YPO4: Gd Ceramics with Xenotime Structure after Xe Irradiation. Ceramics 2022, 5, 237–252. [Google Scholar] [CrossRef]
- Shinde, V.V.; Kunghatkar, R.G.; Dhoble, S.J. UVB-emitting Gd3+-activated M2O2S (where M = La, Y) for phototherapy lamp phosphors. Luminescence 2015, 30, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xue, Y.; Mao, Q.; Pei, L.; Li, X.; Liu, M.; Zhong, J. Eu3+ single-doped phosphor with antithermal quenching behavior and multicolor-tunable properties for luminescence thermometry. Inorg. Chem. 2023, 62, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Na, H.; Jeong, J.S.; Chang, H.J.; Kim, H.Y.; Woo, K.; Lim, K.; Jang, H.S. Facile synthesis of intense green light emitting LiGdF4:Yb, Er-based upconversion bipyramidal nanocrystals and their polymer composites. Nanoscale 2014, 6, 7461–7468. [Google Scholar] [CrossRef]
- Faria, W.J.; Gonçalves TD, S.; de Camargo, A.S. Near infrared optical thermometry in fluorophosphate glasses doped with Nd3+ and Nd3+/Yb3+. J. Alloys Compd. 2021, 883, 160849. [Google Scholar] [CrossRef]
- Kaczmarek, A.M.; Kaczmarek, M.K.; Van Deun, R. Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing. Nanoscale 2019, 11, 833–837. [Google Scholar] [CrossRef]
- Xia, W.; Li, L.; Yang, P.; Ling, F.; Wang, Y.; Cao, Z.; Hua, Y. Synthesis of color-tunable Sr8MgLa(PO4)7: Eu3+/Tb3+ phosphors for designing dual-model thermometers. J. Lumin. 2021, 239, 118383. [Google Scholar] [CrossRef]
- Trannoy, V.; Carneiro Neto, A.N.; Brites, C.D.; Carlos, L.D.; Serier-Brault, H. Engineering of mixed Eu3+/Tb3+ metal-organic frameworks luminescent thermometers with tunable sensitivity. Adv. Opt. Mater. 2021, 9, 2001938. [Google Scholar] [CrossRef]
- Nizamutdinov, A.S.; Kuznetsov, S.V.; Madirov, E.I.; Voronov, V.V.; Khadiev, A.R.; Yapryntsev, A.D.; Ivanov, V.K.; Semashko, V.V.; Fedorov, P.P. Down-conversion luminescence of Yb3+ in novel Ba4Y3F17:Yb:Ce solid solution by excitation of Ce3+ in UV spectral range. Opt. Mater. 2020, 108, 110185. [Google Scholar] [CrossRef]
- Zhai, X.; Lei, P.; Zhang, P.; Wang, Z.; Song, S.; Xu, X.; Zhang, H. Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes. Biomaterials 2015, 65, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Grzechnik, A.; Crichton, W.A.; Bouvier, P.; Dmitriev, V.; Weber, H.P.; Gesland, J.Y. Decomposition of LiGdF4 scheelite at high pressures. J. Phys. Condens. Matter 2004, 16, 7779. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Q.; Liu, T.; Song, M.; Wang, X.; Zhang, H. Ab initio lattice relaxation and electronic structures of LiYF4 crystals containing VF color center. Phys. B Condens. Matter 2009, 404, 1053–1057. [Google Scholar] [CrossRef]
- Xiong, J.; Peng, H.; Hu, P.; Hang, Y.; Zhang, L. Optical characterization of Tm3+ in LiYF4 and LiLuF4 crystals. J. Phys. D Appl. Phys. 2010, 43, 185402. [Google Scholar] [CrossRef]
- Gulliver, G.H. The Quantitative Effect of Rapid Cooling Upon the Constitution of Binary Alloys. J. Inst. Met. 1913, 9, 120–157. [Google Scholar]
- Mayerhöfer, T.G.; Pipa, A.V.; Popp, J. Beer’s law-why integrated absorbance depends linearly on concentration. ChemPhysChem 2019, 20, 2748–2753. [Google Scholar] [CrossRef] [PubMed]
- De Vries, A.J.; Hazenkamp, M.F.; Blasse, G. On the Gd3+ luminescence and energy migration in Li(Y,Gd)F4−Tb3+. J. Lumin. 1988, 42, 275–282. [Google Scholar] [CrossRef]
- Pudovkin, M.S.; Ginkel, A.K.; Morozov, O.A.; Kiiamov, A.G.; Kuznetsov, M.D. Highly-sensitive lifetime optical thermometers based on Nd3+, Yb3+:YF3 phosphors. J. Lumin. 2022, 249, 119037. [Google Scholar] [CrossRef]
- Feldmann, C.; Jüstel, T.; Ronda, C.R.; Wiechert, D.U. Quantum efficiency of down-conversion phosphor LiGdF4: Eu. J. Lumin. 2001, 92, 245–254. [Google Scholar] [CrossRef]
- Sun, Y.; Zou, H.; Zhang, B.; Zhou, X.; Song, Y.; Zheng, K.; Sheng, Y. Luminescent properties and energy transfer of Gd3+/Eu3+ co-doped cubic CaCO3. J. Lumin. 2016, 178, 307–313. [Google Scholar] [CrossRef]
- Reid, M.F.; Van Pieterson, L.; Wegh, R.T.; Meijerink, A. Spectroscopy and calculations for 4fN→ 4fN−15d transitions of lanthanide ions in LiYF4. Phys. Rev. B 2000, 62, 14744. [Google Scholar] [CrossRef]
- Lo, D.; Makhov, V.N.; Khaidukov, N.M.; Krupa, J.C. Two-photon excitation to 4f65d configuration of Gd3+ in LiGdF4 crystal by KrF excimer laser. J. Lumin. 2006, 119, 28–32. [Google Scholar] [CrossRef]
- Niranjana, V.; Janani, K.; Darba, V.R.; Ramasubramanian, S. Investigations on the synthesis dependent luminescence property of LiGdF4:Eu3+ microcrystals. Optik 2019, 198, 163233. [Google Scholar]
- Donega, C.D.M.; Meijerink, A.; Blasse, G. Non-radiative relaxation processes of the Pr3+ ion in solids. J. Phys. Chem. Solids 1995, 56, 673–685. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, S.X.; Di Alberto, L.; Yu, G.L.; Yu, H.H.; Zhang, H.J.; Wang, J.Y. Temperature-dependent fluorescence properties and diode-pumped deep red laser performance of Pr: LiGdF4 crystal. Chin. Phys. Lett. 2015, 32, 054210. [Google Scholar] [CrossRef]
- Sheoran, S.; Singh, V.; Singh, S.; Kadyan, S.; Singh, J.; Singh, D. Down-conversion characteristics of Eu3+ doped M2Y2Si2O9 (M = Ba, Ca, Mg and Sr) nanomaterials for innovative solar panels. Prog. Nat. Sci. Mater. Int. 2019, 29, 457–465. [Google Scholar] [CrossRef]
- Pudovkin, M.S.; Ginkel, A.K.; Lukinova, E.V. Temperature sensitivity of Nd3+, Yb3+:YF3 ratiometric luminescent thermometers at different Yb3+ concentration. Opt. Mater. 2021, 119, 111328. [Google Scholar] [CrossRef]
- Hayes, W.; Yamaga, M.; Robbins, D.J.; Cockayne, B. Optical detection of excitation EPR in LiYF4. J. Phys. C Solid State Phys. 1980, 13, L1011. [Google Scholar] [CrossRef]
- Belsky, A.N.; Chevallier, P.; Gesland, J.Y.; Kirikova, N.Y.; Krupa, J.C.; Makhov, V.N.; Queffelec, M. Emission properties of Nd3+ in several fluoride crystals. J. Lumin. 1997, 72, 146–148. [Google Scholar] [CrossRef]
- Meijer, J.M.; Aarts, L.; van der Ende, B.M.; Vlugt, T.J.; Meijerink, A. Downconversion for solar cells in YF3:Nd3+, Yb3+. Phys. Rev. B 2010, 81, 035107. [Google Scholar] [CrossRef]
- Santos, H.D.A.; Novais, S.M.V.; Jacinto, C. Optimizing the Nd:YF3 phosphor by impurities control in the synthesis procedure. J. Lumin. 2018, 201, 156–162. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Trends in luminescence thermometry. J. Appl. Phys. 2020, 128, 040902. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Mamonova, D.V.; Kurochkin, M.A.; Kolesnikov, E.Y.; Lahderanta, E. Optical thermometry by monitoring dual emissions from YVO4 and Eu3+ in YVO4:Eu3+ nanoparticles. ACS Appl. Nano Mater. 2021, 4, 1959–1966. [Google Scholar] [CrossRef]
- Dramićanin, M.D.; Antić, Ž.; Ćulubrk, S.; Ahrenkiel, S.P.; Nedeljković, J.M. Self-referenced luminescence thermometry with Sm3+ doped TiO2 nanoparticles. Nanotechnology 2014, 25, 485501. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, L.; Guo, Y.; Yu, H. Up-conversion luminescence lifetime thermometry based on the 1G4 state of Tm3+ modulated by cross relaxation processes. Dalton Trans. 2019, 48, 16034–16040. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, K.; Bednarkiewicz, A.; Marciniak, L. NIR luminescence lifetime nanothermometry based on phonon assisted Yb3+–Nd3+ energy transfer. Nanoscale Adv. 2021, 3, 4918–4925. [Google Scholar] [CrossRef] [PubMed]
- Siaï, A.; Haro-González, P.; Naifer, K.H.; Férid, M. Optical temperature sensing of Er3+/Yb3+ doped LaGdO3 based on fluorescence intensity ratio and lifetime thermometry. Opt. Mater. 2018, 76, 34–41. [Google Scholar] [CrossRef]
- Vergeer, P.; van Den Pol, E.; Meijerink, A. Time and temperature dependence of the emissions from the quantum-cutting phosphor LiGdF4:Eu3+. J. Lumin. 2006, 121, 456–464. [Google Scholar] [CrossRef]
- Takeuchi, N.; Ishida, S.; Matsumura, A.; Ishikawa, Y.I. Time-Resolved Study of Luminescence in LiGd1−xF4: Eu3+x. J. Phys. Chem. B 2004, 108, 12397–12403. [Google Scholar] [CrossRef]
- Solarz, P.; Ryba-Romanowski, W. Effect of temperature and activator concentration on relaxation of excited states of Eu3+ in K5Li2La1−xEuxF10 crystals. J. Phys. Chem. Solids 2003, 64, 1289–1296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleynikova, E.I.; Morozov, O.A.; Korableva, S.L.; Pudovkin, M.S. LiGdxY1−xF4 and LiGdF4:Eu3+ Microparticles as Potential Materials for Optical Temperature Sensing. Ceramics 2024, 7, 276-290. https://doi.org/10.3390/ceramics7010018
Oleynikova EI, Morozov OA, Korableva SL, Pudovkin MS. LiGdxY1−xF4 and LiGdF4:Eu3+ Microparticles as Potential Materials for Optical Temperature Sensing. Ceramics. 2024; 7(1):276-290. https://doi.org/10.3390/ceramics7010018
Chicago/Turabian StyleOleynikova, Ekaterina I., Oleg A. Morozov, Stella L. Korableva, and Maksim S. Pudovkin. 2024. "LiGdxY1−xF4 and LiGdF4:Eu3+ Microparticles as Potential Materials for Optical Temperature Sensing" Ceramics 7, no. 1: 276-290. https://doi.org/10.3390/ceramics7010018
APA StyleOleynikova, E. I., Morozov, O. A., Korableva, S. L., & Pudovkin, M. S. (2024). LiGdxY1−xF4 and LiGdF4:Eu3+ Microparticles as Potential Materials for Optical Temperature Sensing. Ceramics, 7(1), 276-290. https://doi.org/10.3390/ceramics7010018