Calcium Silicate Hydrate Cation-Exchanger from Paper Recycling Ash and Waste Container Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrothermal Synthesis and Characterization
2.3. Cation Exchange Capacity and Cs+ Selectivity of TOB-7
2.4. Kinetics of Sorption of Pb2+, Cd2+, and Cs+ by TOB-7
3. Results
3.1. Characterization of PRA, WCG, and the Hydrothermal Products
3.2. Cation Exchange Capacity and Cs+ Selectivity
3.3. Kinetics of Sorption of Pb2+, Cd2+, and Cs+
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Example of XRD Phase Identification and Refinement
References
- Merlino, S.; Bonaccorsi, E.; Armbruster, T. The real structure of tobermorite 11 Å: Normal and anomalous forms, OD character and polytypic modifications. Eur. J. Mineral. 2001, 13, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Cao, D.; Jing, Z.; Zhang, Y.; Pu, L.; Jing, Y. Synthesis and microstructure analysis of autoclaved aerated concrete with carbide slag addition. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2014, 29, 1005–1010. [Google Scholar] [CrossRef]
- Galvánková, L.; Másilko, J.; Solný, T.; Štĕpánková, E. Tobermorite synthesis under hydrothermal conditions. Procedia Eng. 2016, 151, 100–107. [Google Scholar] [CrossRef]
- Martin, S.I. Synthesis of tobermorite: A cement phase expected under repository conditions. In Proceedings of the International High-Level Radioactive Waste Management Conference: Progress toward Understanding, Las Vegas, NV, USA, 1–5 May 1995. [Google Scholar]
- Atkinson, A.; Harris, A.W.; Hearne, J.A. Hydrothermal Alteration and Ageing of Synthetic Calcium Silicate Hydrate Gels, UK Nirex Report NSS/R374; UK Nirex Ltd.: Oxfordshire, UK, 1995. [Google Scholar]
- Jackson, M.D.; Mulcahy, S.R.; Chen, H.; Li, Y.; Li, Q.; Cappelletti, P.; Wenk, H.-R. Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am. Min. 2017, 102, 1435–1450. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Zhao, Z.; Zhao, X. Microstructure and characterization of aluminum incorporated calcium silicate hydrates (C-S-H) under hydrothermal conditions. RSC Adv. 2018, 8, 28198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurt, A.P.; Getti, G.; Coleman, N.J. Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration. Int. J. Biol. Macromol. 2014, 64, 11–16. [Google Scholar] [CrossRef]
- Coleman, N.J. Aspects of the in vitro bioactivity and antimicrobial properties of Ag+-and Zn2+-exchanged 11 Å tobermorites. J. Mater. Sci. Mater. Med. 2009, 20, 1347–1355. [Google Scholar] [CrossRef]
- Maeda, H.; Tamura, T.; Kasuga, T. Improving the biocompatibility of tobermorite by incorporating calcium phosphate clusters. Biomed. Mater. Eng. 2017, 28, 31–36. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, X.; Li, Q.; Yu, H. Crystallization and phase transition of tobermorite synthesized by hydrothermal reaction from dicalcium silicate. Int. J. Appl. Ceram. Technol. 2020, 17, 1213–1223. [Google Scholar] [CrossRef]
- Siauciunas, R.; Smalakys, G.; Dambrauskas, T. Porosity of calcium silicate hydrates synthesized from natural rocks. Materials 2021, 14, 5592. [Google Scholar] [CrossRef]
- Siauciunas, R.; Smalakys, G.; Eisinas, A.; Prichockiene, E. Synthesis of high crystallinity 1.13 nm tobermorite and xonotlite from natural rocks, their properties and application for heat-resistant products. Materials 2022, 15, 3474. [Google Scholar] [CrossRef] [PubMed]
- Youssef, H.; Ibrahim, D.; Komarneni, S.; Mackenzie, K.J.D. Synthesis of 11 Å Al-substituted tobermorite from trachyte rock by hydrothermal treatment. Ceram. Int. 2010, 36, 203–209. [Google Scholar] [CrossRef]
- Liu, S.; Qi, X.; Han, C.; Liu, J.; Sheng, X.; Li, H.; Luo, A.; Li, J. Novel nano-submicron mineral-based soil conditioner for sustainable agricultural development. J. Clean. Prod. 2017, 149, 896–903. [Google Scholar] [CrossRef]
- Malferrari, D.; Bernini, F.; Di Giuseppe, D.; Scognamiglio, V.; Gualtieri, A.F. Al-substituted tobermorites: An effective cation exchanger synthesized from “end-of-waste” materials. ACS Omega 2022, 7, 1694–1702. [Google Scholar] [CrossRef]
- Rahman, H.; Li, Q.; Coleman, N.J. Waste glass-derived tobermorite carriers for Ag+ and Zn2+ ions. J. Compos. Sci. 2022, 6, 52. [Google Scholar] [CrossRef]
- Coleman, N.J. 11 Å tobermorite ion exchanger from recycled container glass. Int. J. Environ. Waste Manag. 2011, 8, 366–382. [Google Scholar] [CrossRef]
- Coleman, N.J.; Li, Q.; Raza, A. Synthesis, structure and performance of calcium silicate ion exchangers from recycled container glass. Physicochem. Probl. Miner. Process. 2014, 50, 5–16. [Google Scholar] [CrossRef]
- Coleman, N.J.; Trice, C.J.; Nicholson, J.W. 11 Å tobermorite from cement bypass dust and waste container glass: A feasibility study. Int. J. Miner. Process. 2009, 93, 73–78. [Google Scholar] [CrossRef]
- Majdinasab, A.; Yuan, Q. Synthesis of Al-substituted 11Å tobermorite using waste glass cullet: A study on the microstructure. Mater. Chem. Phys. 2020, 250, 123069. [Google Scholar] [CrossRef]
- Lamidi, Y.D.; Owoeye, S.S.; Abegunde, S.M. Removal of heavy metals (Cd and Pb) from aqueous solutions by adsorption using synthetic tobermorite prepared from bio-municipal wastes as adsorbent. Glob. J. Eng. Technol. Adv. 2021, 6, 076–090. [Google Scholar] [CrossRef]
- Wang, S.; Peng, X.; Tang, L.; Zeng, L.; Lan, C. Influence of inorganic admixtures on the 11 Å-tobermorite formation prepared from steel slags: XRD and FTIR analysis. Con. Build. Mater. 2014, 60, 42–47. [Google Scholar] [CrossRef]
- Li, G.; Li, M.; Zhang, X.; Cao, P.; Jiang, H.; Luo, J.; Jiang, T. Hydrothermal synthesis of zeolites-calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)2-NaOH for aqueous heavy metals removal. Int. J. Min. Sci. Technol. 2022, in press. [Google Scholar] [CrossRef]
- Coleman, N.J. Interactions of Cd (II) with waste-derived 11 Å tobermorites. Sep. Purif. Technol. 2006, 48, 62–70. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, L.; Wu, D.; Zheng, S. Hydrothermal synthesis of mesoporous tobermorite from fly ash with enhanced removal performance towards Pb2+ from wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127775. [Google Scholar] [CrossRef]
- Tsutsumi, T.; Nishimoto, S.; Kameshima, Y.; Miyake, M. Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption. J. Hazard. Mater. 2014, 266, 174–181. [Google Scholar] [CrossRef]
- Reinik, J.; Heinmaa, I.; Kirso, U.; Kallaste, T.; Ritamäki, J.; Boström, D.; Pongrácz, E.; Huuhtanen, M.; Larsson, W.; Keiski, R.; et al. Alkaline modified oil shale fly ash: Optimal synthesis conditions and preliminary tests on CO2 adsorption. J. Hazard. Mater. 2011, 196, 180–186. [Google Scholar] [CrossRef]
- Coleman, N.J.; Brassington, D.S. Synthesis of Al-substituted 11 Å tobermorite from newsprint recycling residue: A feasibility study. Mater. Res. Bull. 2003, 38, 485–497. [Google Scholar] [CrossRef]
- Coleman, N.J. Synthesis, structure and ion exchange properties of 11 Å tobermorites from newsprint recycling residue. Mater. Res. Bull. 2005, 40, 2000–2013. [Google Scholar] [CrossRef]
- Cao, P.; Li, G.; Luo, J.; Rao, M.; Jiang, H.; Peng, Z.; Jiang, T. Alkali-reinforced hydrothermal synthesis of lathy tobermorite fibers using mixture of coal fly ash and lime. Constr. Build. Mater. 2020, 238, 117655. [Google Scholar] [CrossRef]
- Zou, J.; Guo, C.; Zhou, X.; Sun, Y.; Yang, Z. Sorption capacity and mechanism of Cr3+ on tobermorite derived from fly ash acid residue and carbide slag. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 825–833. [Google Scholar] [CrossRef]
- Luo, F.; Wei, C.; Xue, B.; Wang, S.; Jiang, Y. Dynamic hydrothermal synthesis of Al-substituted 11 Å tobermorite from solid waste fly ash residue-extracted Al2O3. Res. Chem. Intermed. 2013, 39, 693–705. [Google Scholar] [CrossRef]
- Smalakys, G.; Siauciunas, R. The hydrothermal synthesis of 1.13 nm tobermorite from granite sawing powder waste. Ceram. Silik. 2020, 64, 239–248. [Google Scholar] [CrossRef]
- Wajima, T. Synthesis of tobermorite from the ash after treatment of asbesto-containing disaster waste, and its removal ability of Cs(I) from aqueous solution. Eng. J. 2016, 20, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Coleman, N.J.; Brassington, D.S.; Raza, A.; Mendham, A.P. Sorption of Co2+ and Sr2+ by waste-derived 11 Å tobermorite. Waste Manag. 2006, 26, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zhu, W.; Liang Yue, L.; Jing, Z. Reutilizing paper mill sludge as humidity regulating material by hydrothermal solidifying. Waste Biomass Valorization 2022, in press. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, D.; Jiao, Y.; Fang, C.; Kang, D.; Yan, C.; Zhang, J. Crystal evolution of calcium silicate minerals synthesized by calcium silicon slag and silica fume with increase of hydrothermal synthesis temperature. Materials 2022, 15, 1620. [Google Scholar] [CrossRef] [PubMed]
- Elmes, V.K.; Hurt, A.P.; Coleman, N.J. Mixed-phase ion-exchangers from waste amber container glass. Materials 2021, 14, 4887. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Wang, H.; Li, S. Preparation of hydrothermally solidified materials from waste cathode ray tube panel glass for construction applications. Environ. Sci. Pollut. Res. 2022, in press. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H.; Peng, T.; Zeng, L.; Zhou, X. Mild hydrothermal synthesis of 11Å-TA from alumina extracted coal fly ash and its application in water adsorption of heavy metal ions (Cu(II) and Pb(II)). Int. J. Environ. Res. Public Health 2022, 19, 616. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Z.; Zheng, S.; Wu, D.; Cai, W. Effective removal of Pb2+ and Cd2+ from wastewater by mesoporous tobermorite synthesized from alumina-extracted fly ash. Desalination Water Treat. 2021, 235, 209–220. [Google Scholar] [CrossRef]
- Tian, H.; Stephan, D.; Lothenbach, B.; Lehmann, C. Influence of foreign ions on calcium silicate hydrate under hydrothermal conditions: A review. Constr. Build. Mater. 2020, 301, 124071. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, S.; Zheng, S.; Wang, X. Incorporation of Al and Na in hydrothermally synthesized tobermorite. J. Am. Ceram. Soc. 2017, 100, 792–799. [Google Scholar] [CrossRef]
- Zhao, Z.; Wei, J.; Li, F.; Qu, X.; Shi, L.; Zhang, H.; Yu, Q. Synthesis, characterization and hexavalent chromium adsorption characteristics of aluminum- and sucrose-incorporated tobermorite. Materials 2017, 10, 597. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, N.Y.; Kishar, E.A.; Abo-El-Enein, S.A. FTIR study and cation exchange capacity of Fe3+- and Mg2+-substituted calcium silicate hydrates. J. Alloys Compd. 2009, 473, 538–542. [Google Scholar] [CrossRef]
- Mostafa, N.Y.; Shaltout, A.A.; Omarb, H.; Abo-El-Enein, S.A. Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites. J. Alloys Compd. 2009, 467, 332–337. [Google Scholar] [CrossRef]
- Kamei, S.; Ihara, T.; Ouchi, T.; Uzawa, M.; Machinaga, O. A novel synthesis of phosphorus-substituted tobermorite with calcium silicate hydrate. J. Ceram. Soc. Jpn. 2014, 122, 664–667. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Ananias, D.; Carlos, L.D.; Morais, C.M.; Rocha, J. Novel microporous lanthanide silicates with tobermorite-like structure. J. Am. Chem. Soc. 2003, 125, 14573–14579. [Google Scholar] [CrossRef]
- Shrivastava, O.P.; Shrivastava, R. Study on selective sorption of Cs-137 on Al-substituted calcium silicate hydroxy hydrate. J. Indian Chem. Soc. 2001, 78, 392–394. [Google Scholar]
- Mandaliev, P.; Wieland, E.; Dähn, R.; Tits, J.; Churakov, S.V.; Zaharko, O. Mechanisms of Nd(III) uptake by 11 Å tobermorite and xonotlite. Appl. Geochem. 2010, 25, 763–777. [Google Scholar] [CrossRef]
- Komarneni, S.; Roy, R.; Roy, D.M. Pseudomorphism in xonotlite and tobermorite with Co2+ and Ni2+ exchange for Ca2+ at 25 °C. Cem. Concr. Res. 1986, 16, 47–58. [Google Scholar] [CrossRef]
- Al-Wakeel, E.I.; El-Korashy, S.A.; El-Hemaly, S.A.; Rizk, M.A. Divalent ion uptake of heavy metal cations by (aluminum + alkali metals)—Substituted synthetic 1.1 nm-tobermorites. J. Mater. Sci. 2001, 36, 2405–2415. [Google Scholar] [CrossRef]
- European Paper Recycling Council. Monitoring Report 2020. Available online: https://www.cepi.org/wp-content/uploads/2021/07/WEB-PAGES_EPRC-Monitoring-Report-2020_20210716.pdf (accessed on 8 June 2022).
- Bousios, S.; Worrell, E. Towards a Multiple Input-Multiple Output paper mill: Opportunities for alternative raw materials and sidestream valorisation in the paper and board industry. Resour. Conserv. Recycl. 2017, 125, 218–232. [Google Scholar] [CrossRef]
- Wajima, T. Chemical conversion of paper sludge ash into cation exchanger via acid leaching. J. Ion Exch. 2022, 33, 27–31. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.C.; Mo, K.H.; Shi, C. A critical review of waste glass powder—Multiple roles of utilization in cement-based materials and construction products. J. Environ. Manag. 2019, 242, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Conradt, R. Prospects and physical limits of processes and technologies in glass melting. J. Asian Ceram. Soc. 2019, 7, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Majdinasab, A.; Yuan, Q. Post-consumer cullet and potential engineering applications in North America. Resour. Concerv. Recy. 2019, 147, 1–9. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Lye, C.Q.; Dhir, R.K. The role of glass waste in the production of ceramic-based products and other applications: A review. J. Clean. Prod. 2017, 167, 346–364. [Google Scholar] [CrossRef]
- Ayala Valderrama, D.M.; Gómez Cuaspud, J.A.; Roether, J.A.; Boccaccini, A.R. Development and characterization of glass-ceramics from combinations of slag, fly ash, and glass cullet without adding nucleating agents. Materials 2019, 12, 2032. [Google Scholar] [CrossRef] [Green Version]
- Bobirică, C.; Shim, J.-H.; Park, J.-Y. Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram. Int. 2018, 44, 5886–5893. [Google Scholar] [CrossRef]
- Giro-Paloma, J.; Barreneche, C.; Maldonado-Alameda, A.; Royo, M.; Formosa, J.; Inés Fernández, A.; Chimenos, J.M. Alkali-activated cements for TES materials in buildings’ envelops formulated with glass cullet recycling waste and microencapsulated phase change materials. Materials 2019, 12, 2144. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.H.; Elmes, V.E.; Hurt, A.P.; Coleman, N.J. Synthesis of feldspathoids and zeolite K–F from waste amber container glass. Mater. Chem. Phys. 2020, 246, 122805. [Google Scholar] [CrossRef]
- Elmes, V.E.; Mendham, A.P.; Coleman, N.J. A waste-derived lithium metasilicate basic catalyst. MATEC Web Conf. 2017, 109, 03004. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.D.; Hans, J.; Jakobsen, H.J.; Skibsted, J. Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2004, 34, 857–868. [Google Scholar] [CrossRef]
- Komarneni, S.; Roy, D.M.; Roy, R. Al-substituted tobermorite: Shows cation exchange. Cem. Concr. Res. 1982, 12, 773–780. [Google Scholar] [CrossRef]
- Komarneni, S.; Roy, D.M. Tobermorites: A new family of cation exchangers. Science 1983, 221, 647–648. [Google Scholar] [CrossRef] [PubMed]
- Komarneni, S.; Roy, D.M. New tobermorite cation exchangers. J. Mater. Sci. 1985, 20, 2930–2936. [Google Scholar] [CrossRef]
- Komarneni, S.; Komarneni, J.S.; Newalkar, B.; Stout, S. Microwave-hydrothermal synthesis of Al-substituted tobermorite from zeolites. Mater. Res. Bull. 2002, 37, 1025–1032. [Google Scholar] [CrossRef]
- Komarneni, S.; Breval, E.; Miyake, M.; Roy, R. Cation-exchange properties of (Al + Na)-substituted synthetic tobermorites. Clays Clay Miner. 1987, 35, 385–390. [Google Scholar] [CrossRef]
- Ma, W.; Brown, P.W.; Komarneni, S. Characterization and cation exchange properties of zeolite synthesized from fly ashes. J. Mater. Res. 1998, 13, 3–7. [Google Scholar] [CrossRef]
- Bu, J.; Gonzalez Teresa, R.; Brown, K.G.; Sanchez, F. Adsorption mechanisms of cesium at calcium-silicate-hydrate surfaces using molecular dynamics simulations. J. Nucl. Mater. 2019, 515, 35–51. [Google Scholar] [CrossRef]
- Komarneni, S.; Breval, E.; Roy, D.M.; Roy, R. Reactions of some calcium silicates with metal cations. Cem. Concr. Res. 1988, 18, 204–220. [Google Scholar] [CrossRef]
- Miyake, M.; Komarneni, S.; Roy, R. Kinetics equilibria and thermodynamics of ion exchange in substituted tobermorites. Mater. Res. Bull. 1989, 24, 311–320. [Google Scholar] [CrossRef]
- Miyake, M.; Niiya, S.; Matsuda, M. Microwave-assisted Al-substituted tobermorite synthesis. J. Mater. Res. 2000, 15, 850–853. [Google Scholar] [CrossRef]
- Yao, Z.; Tamura, C.; Kusano, F.; Matsuda, M.; Miyake, M. Resource recovery of waste incineration fly ash: Synthesis of tobermorite as an ion exchanger. J. Mater. Res. 1999, 14, 4437–4442. [Google Scholar] [CrossRef]
- Chiang, Y.W.; Ghyselbrecht, K.; Santos, R.M.; Meesschaert, B.; Martens, J.A. Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catal. Today 2012, 190, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
Oxide | PRA (wt%) | WCG (wt%) |
---|---|---|
SiO2 | 30.4 | 72.50 |
Na2O | 0.23 | 13.22 |
CaO | 41.3 | 11.11 |
Al2O3 | 18.6 | 1.31 |
MgO | 3.84 | 0.96 |
TiO2 | 0.64 | 0.05 |
K2O | 0.52 | 0.44 |
P2O5 | 0.34 | - |
Fe2O3 | 0.86 | 0.10 |
WO3 | 0.33 | - |
SO3 | 0.98 | 018 |
Cr2O3 | 0.01 | - |
Loss on ignition | 2.26 | - |
Component | TOB-1 | TOB-2 | TOB-7 |
---|---|---|---|
Tobermorite (wt%) (PDF® 00-019-0052) | 36.7 | 37.6 | 50.3 |
Katoite (wt%) (PDF® 00-038-0368) | 3.7 | 5.0 | 6.1 |
Portlandite (wt%) (PDF® 01-070-5492) | 5.9 | 6.3 | 2.5 |
Calcite (wt%) (PDF® 01-078-3262) | 3.6 | 2.6 | 7.8 |
Gehlenite (wt%) (PDF® 00-020-0199) | 6.6 | 6.0 | - |
Amorphous content (wt%) | 43.5 | 42.5 | 33.3 |
Weighted profile R-factor (Rwp) | 18.5 | 18.3 | 25.7 |
Goodness of fit (GOF) | 1.8 | 1.8 | 2.7 |
Parameter | Chemical Shift (ppm) | Quantity |
---|---|---|
Q1 | −79.1 | 10.6% |
Q2(1Al) | −81.9 | 19.6% |
Q2 | −85.0 | 28.6% |
Q3(1Al) | −91.2 | 15.9% |
Q3 | −97.7 | 11.0% |
Q4 | −107.4 | 14.3% |
Amorphous-content | - | 25.4% |
MCL | - | 8.74 |
Al:Si ratio | - | 0.202 |
Kinetic Parameter | Pb | Cd | Cs |
---|---|---|---|
Pseudo-first-order model | |||
k1 (min−1) | 2.39 × 10−3 | 3.05 × 10−3 | 0.102 |
qcalc. (mmol g−1) | 1.25 | 2.27 | 2.66 |
R2 | 0.871 | 0.912 | 0.890 |
Pseudo-second-order model | |||
k2 (g mmol−1 min−1) | 0.010 | 0.027 | 1.635 |
qcalc. (mol g−1) | 1.66 | 0.62 | 0.35 |
R2 | 0.997 | 0.996 | 0.999 |
Tobermorite | Cs+ CEC (meq 100 g−1) | Kd (Cs+ vs. Na+) (cm3 g−1) | Kd (Cs+ vs. Ca2+) (cm3 g−1) |
---|---|---|---|
PRA and WCG-derived tobermorite (this study) | 59 ± 4 | 574 ± 13 | 658 ± 34 |
Bespoke tobermorites [68] | 13–57 | - | 100–3400 |
Bespoke tobermorites [69,70] | 12–197 | 120–20370 | 130–12,850 |
Bespoke tobermorites (microwave synthesis) [71] | - | 621–2648 | 852–118,589 |
Bespoke tobermorites [72] | 12–77 | 20–5600 | 90–15,100 |
Fly ash-derived tobermorite [73] | 7.68–7.75 | 2265–2374 | - |
Container glass-derived tobermorite [18] | 36.7 ± 1.0 | 181 ± 53 | 102 ± 19 |
Blast furnace slag-derived tobermorites [27] | - | 731 | 514 |
PRA-derived tobermorite [30] | 38.3 ± 4.9 | 93 ± 9 | 125 ± 24 |
Sodium silicate and PRA-derived tobermorites [30] | 66.3–85.2 | 733–5434 | 708–5538 |
Tobermorite | Pb2+-Uptake (mmol g−1) | Cd2+-Uptake (mmol g−1) | Cs+-Uptake (mmol g−1) |
---|---|---|---|
PRA and WCG-derived tobermorite (this study) | 1.78 ± 0.04 | 0.65 ± 0.06 | 0.36 ± 0.03 |
Bespoke tobermorites [75] | 1.85 | 0.945 | - |
Bespoke tobermorites [76] | - | - | 0.84 |
Bespoke tobermorites (microwave synthesis) [77] | - | - | 0.6 |
Bespoke tobermorites [53] | 0.08–0.895 | 0.04–1.36 | - |
Bespoke tobermorites [72] | - | - | 0.564–0.572 |
Container glass-derived tobermorite [18] | 1.66 ± 0.05 | 0.48 ± 0.01 | - |
Sodium silicate and PRA-derived tobermorites [25] | - | 0.63–1.12 | - |
Snail shell ash and waste glass-derived tobermorite [22] | 0.060 | 0.111 | - |
Blast furnace slag-derived tobermorites [27] | - | - | 0.112–0.587 |
Asbestos-bearing disaster waste-derived tobermorite [35] | - | - | 0.31–0.51 |
Fly ash-derived mesoporous tobermorite [26] | 1.287 | - | - |
Alumina-extracted coal fly ash-derived tobermorite [42] | 1.636 | 0.937 | - |
Alumina-extracted coal fly ash-derived tobermorite [41] | 0.850 | ||
Cement bypass dust and glass-derived tobermorite [20] | 2.25 | 1.52 | - |
Incineration fly ash-derived tobermorite [78] | - | - | 0.40 |
Bottom ash-derived tobermorite/zeolite mixture [79] | 0.381 | 0.196 | |
Coal ash-derived tobermorite/zeolite mixture [24] | 1.98 | 1.31 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurt, A.P.; Coleman, A.A.; Ma, H.; Li, Q.; Coleman, N.J. Calcium Silicate Hydrate Cation-Exchanger from Paper Recycling Ash and Waste Container Glass. Ceramics 2022, 5, 301-317. https://doi.org/10.3390/ceramics5030024
Hurt AP, Coleman AA, Ma H, Li Q, Coleman NJ. Calcium Silicate Hydrate Cation-Exchanger from Paper Recycling Ash and Waste Container Glass. Ceramics. 2022; 5(3):301-317. https://doi.org/10.3390/ceramics5030024
Chicago/Turabian StyleHurt, Andrew P., Aimee A. Coleman, Haosen Ma, Qiu Li, and Nichola J. Coleman. 2022. "Calcium Silicate Hydrate Cation-Exchanger from Paper Recycling Ash and Waste Container Glass" Ceramics 5, no. 3: 301-317. https://doi.org/10.3390/ceramics5030024