Comment on Makó et al. Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary 2025, 8, 55
Abstract
1. Introduction
2. A Fundamental Methodological Error: Sedimentation Rate vs. Mass Accumulation Rate
- It oversimplifies depositional processes. Linear sedimentation rates do not account for changes in sediment compaction and porosity. Although Makó et al. [1] introduce stratigraphic boundaries in their Bacon age–depth models, such boundary flags do not automatically correct for compaction or porosity differences. They only indicate where the statistical model is allowed to change its accumulation rate behavior (priors or segmentation); they do not adjust the depth–mass relationship affected by compaction. Therefore, without incorporating bulk density or mass–depth corrections, the reported linear sedimentation rates cannot reflect the true variability in dust deposition because changes in sediment compaction, porosity, and composition, common in alternating loess and paleosol layers, alter the mass–depth relationship. A unit thickness of compacted paleosol represents more mass than the same thickness of uncompacted loess, yet linear rates treat them equally. Only mass accumulation rates (MARs), calculated as SR × BD, capture these mass-related changes and enable meaningful comparisons of dust flux across different lithologies and sites.
- By presenting sedimentation rates as a proxy for dust accumulation without this fundamental conversion, the study’s quantitative conclusions about the magnitude of dust deposition are methodologically unsound and potentially misleading.
3. Additional Methodological Concerns
4. Omission of Relevant Prior Research in the Region
5. The Central Issue: Systematic Bias from Dating Methodologies
5.1. Quantifying the Bias
5.2. Implications for the Makó et al. Findings and the “High Accumulation Axis”
5.3. Unacknowledged Limitations of Radiocarbon Dating
6. Factual Errors in the Geographical Locations of Key Sites
7. An Unsubstantiated Claim on Luminescence Dating Reliability
8. Conclusions and Way Forward
- A failure to engage with a demonstrated, major source of systematic error stemming from dating method biases [2].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Makó, L.; Cseh, P.; Hupuczi, J. Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary 2025, 8, 55. [Google Scholar] [CrossRef]
- Perić, Z.M.; Radaković, M.G.; Marković, R.S.; Marković, S.B. A Synthesis of Luminescence and 14C Dated Dust Mass Accumulation Rates for Loess-palaeosol Sequences from the Middle Danube Basin. Boreas 2025, 54, 179–201. [Google Scholar] [CrossRef]
- Kohfeld, K.E.; Harrison, S.P. DIRTMAP: The Geological Record of Dust. Earth-Sci. Rev. 2001, 54, 81–114. [Google Scholar] [CrossRef]
- Újvári, G.; Kovács, J.; Varga, G.; Raucsik, B.; Marković, S.B. Dust Flux Estimates for the Last Glacial Period in East Central Europe Based on Terrestrial Records of Loess Deposits: A Review. Quat. Sci. Rev. 2010, 29, 3157–3166. [Google Scholar] [CrossRef]
- Cosentino, N.J.; Torre, G.; Lambert, F.; Albani, S.; De Vleeschouwer, F.; Bory, A.J.-M. Paleo±Dust: Quantifying Uncertainty in Paleo-Dust Deposition across Archive Types. Earth Syst. Sci. Data 2024, 16, 941–959. [Google Scholar] [CrossRef]
- Fenn, K.; Durcan, J.A.; Thomas, D.S.G.; Banak, A. A 180 Ka Record of Environmental Change at Erdut (Croatia): A New Chronology for the Loess–Palaeosol Sequence and Its Implications for Environmental Interpretation. J. Quat. Sci. 2020, 35, 582–593. [Google Scholar] [CrossRef]
- Stevens, T.; Marković, S.B.; Zech, M.; Hambach, U.; Sümegi, P. Dust Deposition and Climate in the Carpathian Basin over an Independently Dated Last Glacial-Interglacial Cycle. Quat. Sci. Rev. 2011, 30, 662–681. [Google Scholar] [CrossRef]
- Perić, Z.M.; Marković, S.B.; Sipos, G.; Gavrilov, M.B.; Thiel, C.; Zeeden, C.; Murray, A.S. A Post-IR IRSL Chronology and Dust Mass Accumulation Rates of the Nosak Loess-Palaeosol Sequence in Northeastern Serbia. Boreas 2020, 49, 841–857. [Google Scholar] [CrossRef]
- Perić, Z.M.; Marković, S.B.; Avram, A.; Timar-Gabor, A.; Zeeden, C.; Nett, J.J.; Fischer, P.; Fitzsimmons, K.E.; Gavrilov, M.B. Initial Quartz OSL and Dust Mass Accumulation Rate Investigation of the Kisiljevo Loess Sequence in North-Eastern Serbia. Quat. Int. 2022, 620, 13–23. [Google Scholar] [CrossRef]
- Perić, Z.; Lagerbäck Adolphi, E.; Stevens, T.; Újvári, G.; Zeeden, C.; Buylaert, J.P.; Marković, S.B.; Hambach, U.; Fischer, P.; Schmidt, C.; et al. Quartz OSL Dating of Late Quaternary Chinese and Serbian Loess: A Cross Eurasian Comparison of Dust Mass Accumulation Rates. Quat. Int. 2019, 502, 30–44. [Google Scholar] [CrossRef]
- Perić, Z.M.; Stevens, T.; Obreht, I.; Hambach, U.; Lehmkuhl, F.; Marković, S.B. Detailed Luminescence Dating of Dust Mass Accumulation Rates over the Last Two Glacial-Interglacial Cycles from the Irig Loess-Palaeosol Sequence, Carpathian Basin. Glob. Planet. Change 2022, 215, 103895. [Google Scholar] [CrossRef]
- Perić, Z.M.; Ryan, C.S.; Thompson, W.; Radaković, M.G.; Krsmanović, P.; Alexanderson, H.; Marković, S.B. Palaeoenvironmental Changes Recorded at the Velika Vrbica Loess-Palaeosol Sequence, Wallachian Basin, during MIS 3–MIS 1. Boreas 2025. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Újvári, G.; Molnár, M.; Novothny, Á.; Páll-Gergely, B.; Kovács, J.; Várhegyi, A. AMS 14C and OSL/IRSL Dating of the Dunaszekcső Loess Sequence (Hungary): Chronology for 20 to 150 Ka and Implications for Establishing Reliable Age–Depth Models for the Last 40 Ka. Quat. Sci. Rev. 2014, 106, 140–154. [Google Scholar] [CrossRef]
- Goodfriend, G.A.; Hood, D.G. Carbon Isotope Analysis of Land Snail Shells: Implications for Carbon Sources and Radiocarbon Dating. Radiocarbon 1983, 25, 810–830. [Google Scholar] [CrossRef]
- Pigati, J.S.; Rech, J.A.; Quade, J.; Bright, J. Desert Wetlands in the Geologic Record. Earth-Sci. Rev. 2014, 132, 67–81. [Google Scholar] [CrossRef]
- Spooner, N.A. Optical Dating: Preliminary Results on the Anomalous Fading of Luminescence from Feldspars. Quat. Sci. Rev. 1992, 11, 139–145. [Google Scholar] [CrossRef]
- Geyh, M.; Benzler, J.; Roeschmann, G. Problems of Dating Pleistocene and Holocene Soils by Radiometric Methods. In Paleopedology; Israel University Press: Jerusalem, Israel, 1971; pp. 63–75. [Google Scholar]
- Geyh, M.A.; Schleicher, H. Absolute Age Determination: Physical and Chemical Dating Methods and Their Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 3-642-74826-0. [Google Scholar]
- Gilet-Blein, N.; Marien, G.; Evin, J. Unreliability of 14C Dates from Organic Matter of Soils. Radiocarbon 1980, 22, 919–929. [Google Scholar] [CrossRef]
- Hogg, A.G.; Heaton, T.J.; Hua, Q.; Palmer, J.G.; Turney, C.S.; Southon, J.; Bayliss, A.; Blackwell, P.G.; Boswijk, G.; Ramsey, C.B. SHCal20 Southern Hemisphere Calibration, 0–55,000 Years Cal BP. Radiocarbon 2020, 62, 759–778. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]
- Aitken, M.J. Science-Based Dating in Archaeology; Routledge: London, UK, 2014; ISBN 978-1-315-83664-5. [Google Scholar]
- Radaković, M.G.; Gavrilović, B.; Gavrilov, M.B.; Marković, R.S.; Hao, Q.; Schaetzl, R.J.; Zeeden, C.; Cai, B.; Perić, Z.M.; Antić, A.; et al. A Glacial–Interglacial Malacofauna Record from the Titel Loess Plateau, Serbia, between ~350 and 250 Ka. Quaternary 2024, 7, 28. [Google Scholar] [CrossRef]
- Antoine, P.; Rousseau, D.D.; Fuchs, M.; Hatté, C.; Gauthier, C.; Marković, S.B.; Jovanović, M.; Gaudenyi, T.; Moine, O.; Rossignol, J. High-Resolution Record of the Last Climatic Cycle in the Southern Carpathian Basin (Surduk, Vojvodina, Serbia). Quat. Int. 2009, 198, 19–36. [Google Scholar] [CrossRef]
- Fuchs, M.; Rousseau, D.D.; Antoine, P.; Hatté, C.; Gauthier, C.; Marković, S.; Zoeller, L. Chronology of the Last Climatic Cycle (Upper Pleistocene) of the Surduk Loess Sequence, Vojvodina, Serbia. Boreas 2008, 37, 66–73. [Google Scholar] [CrossRef]
- Marković, S.B.; Stevens, T.; Kukla, G.J.; Hambach, U.; Fitzsimmons, K.E.; Gibbard, P.; Buggle, B.; Zech, M.; Guo, Z.; Hao, Q.; et al. Danube Loess Stratigraphy—Towards a Pan-European Loess Stratigraphic Model. Earth-Sci. Rev. 2015, 148, 228–258. [Google Scholar] [CrossRef]
- Buylaert, J.P.; Vandenberghe, D.; Murray, A.S.; Huot, S.; De Corte, F.; Van den Haute, P. Luminescence Dating of Old (>70 Ka) Chinese Loess: A Comparison of Single-Aliquot OSL and IRSL Techniques. Quat. Geochronol. 2007, 2, 9–14. [Google Scholar] [CrossRef]
- Buylaert, J.-P.; Jain, M.; Murray, A.S.; Thomsen, K.J.; Thiel, C.; Sohbati, R. A Robust Feldspar Luminescence Dating Method for Middle and Late Pleistocene Sediments. Boreas 2012, 41, 435–451. [Google Scholar] [CrossRef]
- Murray, A.S.; Svendsen, J.I.; Mangerud, J.; Astakhov, V.I. Testing the Accuracy of Quartz OSL Dating Using a Known-Age Eemian Site on the River Sula, Northern Russia. Quat. Geochronol. 2007, 2, 102–109. [Google Scholar] [CrossRef]
- Murray, A.S.; Schmidt, E.D.; Stevens, T.; Buylaert, J.P.; Marković, S.B.; Tsukamoto, S.; Frechen, M. Dating Middle Pleistocene Loess from Stari Slankamen (Vojvodina, Serbia)—Limitations Imposed by the Saturation Behaviour of an Elevated Temperature IRSL Signal. CATENA 2014, 117, 34–42. [Google Scholar] [CrossRef]
- Roberts, H.M.; Muhs, D.R.; Wintle, A.G.; Duller, G.A.T.; Bettis, E.A. Unprecedented Last-Glacial Mass Accumulation Rates Determined by Luminescence Dating of Loess from Western Nebraska. Quat. Res. 2003, 59, 411–419. [Google Scholar] [CrossRef]
- Avram, A.; Constantin, D.; Veres, D.; Kelemen, S.; Obreht, I.; Hambach, U.; Marković, S.B.; Timar-Gabor, A. Testing Polymineral Post-IR IRSL and Quartz SAR-OSL Protocols on Middle to Late Pleistocene Loess at Batajnica, Serbia. Boreas 2020, 49, 615–633. [Google Scholar] [CrossRef]
- Újvári, G.; Stevens, T.; Molnár, M.; Demény, A.; Lambert, F.; Varga, G.; Jull, A.J.T.; Páll-Gergely, B.; Buylaert, J.-P.; Kovács, J. Coupled European and Greenland Last Glacial Dust Activity Driven by North Atlantic Climate. Proc. Natl. Acad. Sci. USA 2017, 114, E10632–E10638. [Google Scholar] [CrossRef]
- Aitken, M.J. Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence; Clarendon Press: Oxford, UK, 1998; ISBN 0-19-158927-6. [Google Scholar]
- Murray, A.S. Developments in Optically Stimulated Luminescence and Photo-Transferred Thermoluminescence Dating of Young Sediments: Application to a 2000-Year Sequence of Flood Deposits. Geochim. Cosmochim. Acta 1996, 60, 565–576. [Google Scholar] [CrossRef]
- Wintle, A.G. Luminescence Dating of Aeolian Sands: An Overview. Geol. Soc. Lond. Spec. Publ. 1993, 72, 49–58. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Perić, Z.M.; Bosnić, M.G.; Marković, R.S.; Marković, S.B. Comment on Makó et al. Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary 2025, 8, 55. Quaternary 2026, 9, 10. https://doi.org/10.3390/quat9010010
Perić ZM, Bosnić MG, Marković RS, Marković SB. Comment on Makó et al. Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary 2025, 8, 55. Quaternary. 2026; 9(1):10. https://doi.org/10.3390/quat9010010
Chicago/Turabian StylePerić, Zoran M., Milica G. Bosnić, Rastko S. Marković, and Slobodan B. Marković. 2026. "Comment on Makó et al. Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary 2025, 8, 55" Quaternary 9, no. 1: 10. https://doi.org/10.3390/quat9010010
APA StylePerić, Z. M., Bosnić, M. G., Marković, R. S., & Marković, S. B. (2026). Comment on Makó et al. Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary 2025, 8, 55. Quaternary, 9(1), 10. https://doi.org/10.3390/quat9010010

