Late-Glacial and Holocene Lake-Level Fluctuations on the Kenai Lowland, Reconstructed from Satellite-Fen Peat Deposits and Ice-Shoved Ramparts, Kenai Peninsula, Alaska
Abstract
:1. Introduction
The Study Area
2. Materials and Methods
2.1. Closed-Basin Lake Aerial LiDAR Surveys
2.2. Ice-Shoved Rampart (ISR) Studies
2.3. Lake Sediment and Fen Peat Coring
2.3.1. Jigsaw Lake Sediment Coring
2.3.2. Jigsaw Lake Satellite-Fen and Moraine Peat Coring
2.3.3. Satellite-Fen Peat Coring at Regional Lakes
2.4. Macrofossil Analysis
2.4.1. Macrofossil Examination
2.4.2. Macrofossil Interpretation
2.5. Testate Amoebae
2.6. Radiocarbon Dating
3. Results
3.1. Closed-Basin Lake LiDAR Survey—Scarp Elevations
3.2. ISR Age and Stratigraphy
3.2.1. Jigsaw Lake Sediment Coring
3.2.2. Jigsaw Lake Satellite-Fen and Moraine Peat Coring
3.2.3. Satellite-Fen Peat Coring at Regional Lakes
4. Discussion
4.1. Jigsaw Lake Transported Peats
4.2. Jigsaw Lake Satellite-Fen Peat Coring
4.3. Reconstructed Water Level Changes
4.4. Comparison with Interior Alaska
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 20 February 2022).
- Trenberth, K.E.; Hurrell, J.W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 1994, 9, 303–319. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Rodionov, S.N.; Bond, N.A.; Overland, J.E. The Aleutian Low, storm tracks, and winter climate variability. Deep-Sea Res. II 2007, 54, 2560–2577. [Google Scholar] [CrossRef]
- Clark, P.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The Last Glacial Maximum. Science 2009, 325, 710–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praetorius, S.K.; Mix, A.C.; Walczak, M.H.; McKay, J.; Du Jianghui, L. The role of Northeast Pacific meltwater events in deglacial climate change. Sci. Adv. 2020, 6, eaay2915. [Google Scholar] [CrossRef] [Green Version]
- Lora, J.M.; Mitchell, J.L.; Tripati, A.E. Abrupt reorganization of North Pacific and western North American climate during the last deglaciation. Geophys. Res. Lett. 2016, 43, 11,796–11,804. [Google Scholar] [CrossRef]
- Jones, M.C.; Yu, Z. Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proc. Natl. Acad. Sci. USA 2010, 107, 7347–7352. Available online: http://www.pnas.org/cgi/doi/10.1073/pnas.0911387107 (accessed on 20 January 2022). [CrossRef] [Green Version]
- Kaufman, D.S.; Anderson, R.S.; Hu, F.S.; Berg, E.; Werner, A. Evidence for a variable and wet Younger Dryas in southern Alaska. Quat. Sci. Rev. 2010, 29, 1445–1452. [Google Scholar] [CrossRef]
- Street-Perrott, A.F.; Roberts, N. Fluctuations in Closed-Basin Lakes as An Indicator of Past Atmospheric Circulation Patterns. In Variations in the Global Water Budget; Street-Perrott, A., Beran, M., Ratcliffe, R., Eds.; Springer: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Digerfeldt, G. Studies on Past Lake Level Fluctuations. In Handbook of Palaeoecology and Palaeohydrology; Berglund, B.E., Ed.; John Wiley & Sons Ltd: Chichester, UK, 1986; pp. 127–143. [Google Scholar]
- Klein, E.; Berg, E.E.; Dial, R. Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaska. Can. J. For. Res. 2005, 35, 1931–1941. [Google Scholar] [CrossRef]
- Jones, M.C.; Wooller, M.; Peteet, D.M. A deglacial and Holocene record of climate variability in south-central Alaska from stable oxygen isotopes and plant macrofossils in peat. Quat. Sci. Rev. 2014, 87, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.S.; Hallett, D.J.; Berg, E.; Jass, R.B.; Toney, J.L.; de Fontaine, C.S.; DeVolder, A. Holocene development of Boreal forests and fire regimes on the Kenai Lowlands of Alaska. Holocene 2006, 16, 791–803. [Google Scholar] [CrossRef]
- Ager, T.A. Holocene Vegetational History of Alaska. In Late Quaternary Environments of the United States; The Holocene; Wright, H.E., Ed.; University of Minnesota Press: Minneapolis, MN, USA, 1983; Volume 2, pp. 128–141. [Google Scholar]
- Broadman, E.; Kaufman, D.S.; Anderson, R.S.; Bogle, S.; Ford, M.; Fortin, D.; Henderson, A.C.G.; Lacey, J.H.; Leng, M.J.; McKay, N.P.; et al. Reconstructing postglacial hydrologic and environmental change in the Eastern Kenai Peninsula lowlands using proxy data and mass balance modeling. Quat.Res. 2022, in press. [Google Scholar] [CrossRef]
- Jones, M.C.; Peteet, D.M.; Kurdyla, D.; Guilderson, T. Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska. Quat. Res. 2009, 72, 207–217. [Google Scholar] [CrossRef]
- Clegg, B.F.; Kelly, R.; Clarke, G.H.; Walker, I.R.; Hu, F.S. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska. Proc. Natl. Acad. Sci. USA 2011, 108, 19299–19304. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.S.; Berg, E.; Williams, C.; Clark, T. Postglacial vegetation community change over an elevational gradient on the western Kenai Peninsula, Alaska: Pollen records from Sunken Island and Choquette Lakes. J. Quat. Sci. 2019, 34, 309–322. [Google Scholar] [CrossRef]
- Broadman, E.; Kaufman, D.S.; Henderson, A.C.H.; Berg, E.E.; Anderson, R.S.; Leng, M.J.; Stahnke, S.A.; Muñoz, S.E. Multi-proxy evidence for millennial-scale changes in North Pacific Holocene hydroclimate from the Kenai Peninsula lowlands, south-central Alaska. Quat. Sci. Rev. 2020, 241, 106420. [Google Scholar] [CrossRef]
- Reger, R.D.; Sturmann, A.G.; Berg, E.E.; Burns, P.A.C. A Guide to the Late Quaternary History of Northern and Western Kenai Peninsula, Alaska: Guidebook 8; State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys: Anchorage, Alaska, 2007. Available online: http://dggs.alaska.gov/webpubs/dggs/gb/text/gb008.pdf (accessed on 20 February 2022).
- Mann, D.H.; Peteet, D.M. Extent and timing of the last glacial maximum in southwestern Alaska. Quat. Res. 1994, 42, 136–148. [Google Scholar] [CrossRef]
- Karlstrom, T.N.V. Quaternary Geology of the Kenai Lowland and Glacial History of the Cook Inlet Region, Alaska; U.S. Geological Survey Professional Paper 443; U.S. Geological Survey: Reston, VA, USA, 1964.
- Berg, E.E. Refuge Notebook: Permafrost on the Kenai Lowlands. Kenai Peninsula Clarion, 13 November 2009. [Google Scholar]
- Jones, B.M.; Baughman, C.A.; Romanovsky, V.E.; Parsekian, A.D.; Babcock, E.L.; Stephani, E.; Jones, M.C.; Grosse, G.; Berg, E.E. Presence of rapidly degrading permafrost plateaus in south-central Alaska. Cryosphere 2016, 10, 2673–2692. [Google Scholar] [CrossRef] [Green Version]
- Winter, T. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Western Region Climate Center. Data for Homer 1932–2017, Kenai 1944–2017, Seward 1908–2007, and Whittier 1983–2010: Missing Values were Estimated for Homer and Kenai. Available online: https://wrcc.dri.edu/summary/Climsmak.html (accessed on 13 February 2018).
- National Oceanic and Atmospheric; Climate Reference Network. Data for the Kenai Moose Research Center Station 2011–2019. Available online: https://www.ncei.noaa.gov/pub/data/uscrn/products/monthly01/CRNM0102-AK_Kenai_29_ENE.txt (accessed on 2 April 2022).
- Mock, C.J.; Bar2tlein, P.J.; Anderson, P.M. Atmospheric circulation patterns and spatial climatic variations in Beringia. Int. J. Climatol. 1998, 10, 1085–1104. [Google Scholar] [CrossRef]
- Anderson, L.; Abbott, M.B.; Finney, B.P.; Edwards, M.E. Palaeohydrology of the Southwest Yukon Territory, Canada, based on multiproxy analyses of lake sediment cores from a depth transect. Holocene 2005, 15, 1172–1183. [Google Scholar] [CrossRef]
- Rodionov, S.N.; Overland, J.E.; Bond, N.A. Spatial and temporal variability of the Aleutian climate. Fish. Oceanogr. 2005, 14, 3–21. [Google Scholar] [CrossRef]
- Schiff, C.J.; Kaufman, D.S.; Wolfe, A.P.; Dodd, J.; Sharp, Z. Late Holocene storm trajectory changes inferred from the oxygen isotope composition of lake diatoms, south Alaska. J. Paleolimnol. 2009, 41, 189e208. [Google Scholar] [CrossRef]
- Tyrrell, J.B. Ice on Canadian lakes. Trans. Can. lnst. 1910, 9, 13–21. [Google Scholar]
- Scott, I.D. Ice push on lake shores. Pap. Mich. Acad. Sci. 1927, 7, 107–123. [Google Scholar]
- Dionne, J.-C. Ice action in the lacustrine environment. A review with particular reference to subarctic Quebec, Canada. Earth-Sci. Rev. 1979, 15, 185–212. [Google Scholar] [CrossRef]
- Dionne, J.-C. Ice-push features. Can. Geogr. 1992, 36, 86–91. [Google Scholar] [CrossRef]
- de la Montagne, J.M. Ice expansion ramparts on south arm of Yellowstone Lake, Wyoming. Rocky Mt. Geol. 1963, 2, 43–46. [Google Scholar]
- Pessl, F., Jr. Formation of a Modern Ice-Push Ridge by Thermal Expansion of Lake Ice in Southeastern Connecticut. In Research Report, Cold Regions Research and Engineering Laboratory; No. 259; Cold Regions Research and Engineering Laboratory: New Hampshire, NH, USA, 1969; Available online: https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/5743/1/CRREL-Research-Report-259.pdf (accessed on 2 April 2022).
- Alaska Division of Geological & Geophysical Surveys Elevation Portal. Available online: https://elevation.alaska.gov/ (accessed on 2 April 2022).
- Laker, M. Refuge Notebook: LiDAR anyone? Kenai Peninsula Clarion, 21 October 2011. [Google Scholar]
- Mauquoy, D.M.; Hughes, P.D.M.; van Geel, B. A protocol for plant macrofossil analysis of peat deposits. Mires Peat 2010, 7, 1–5. Available online: https://hdl.handle.net/11245/1.345803 (accessed on 20 January 2022).
- Grimm, E.C. TILIA Software. Version 2.1.1. Available online: https://www.tiliait.com/download/ (accessed on 20 January 2022).
- Andrus, R.E.; Wagner, D.J.; Titus, J.E. Vertical zonation of Sphagnum mosses along hummock-hollow gradients. Can. J. Bot. 1983, 61, 3128–3139. [Google Scholar] [CrossRef]
- Andrus, R.E. Some aspects of Sphagnum ecology. Can. J. Bot. 1986, 64, 416–426. [Google Scholar] [CrossRef]
- Vitt, D.H.; Slack, N.G. An analysis of the vegetation of Sphagnum-dominated kettle-hole bogs in relation to environmental gradients. Can. J. Bot. 1975, 53, 332–359. [Google Scholar] [CrossRef] [Green Version]
- Kuhry, P.; Nicholson, B.J.; Gignac, L.D.; Vitt, D.H.; Bayley, S.E. Development of Sphagnum-dominated peatlands in boreal continental Canada. Can. J. Bot. 1993, 71, 10–22. [Google Scholar] [CrossRef]
- McIntyre, C.D.; Phinney, H.K.; Larson, G.L.; Buktenica, M. The vertical distribution of a deep-water moss and its epiphytes in Crater Lake, Oregon. Northwest Sci. 1994, 68, 11–21. [Google Scholar]
- Riis, T.; Sand-Jensen, K. Growth reconstruction and photosynthesis of aquatic mosses: Influence of light, temperature and carbon dioxide at depth. J. Ecol. 1997, 85, 359–372. [Google Scholar] [CrossRef]
- Glime, J. Bryophyte Ecology; Michigan Technological University: Houghton, MI, USA, 2007; Available online: http://www.bryoecol.mtu.edu/# (accessed on 3 June 2021).
- Warner, B.G. Testate Amoebae (Protozoa). Methods in quaternary ecology #5. Geosci. Can. 1988, 15, 65–74. Available online: https://journals.lib.unb.ca/index.php/GC/article/view/3574 (accessed on 20 January 2022).
- Payne, R.J.; Mitchell, E.A.D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimn. 2009, 42, 483–495. [Google Scholar] [CrossRef]
- Payne, R.J.; Kishaba, K.; Blackford, J.J.; Mitchell, E.A.D. Ecology of testate amoebae (Protista) in south-central Alaska peatlands: Building transfer-function models for palaeoenvironmental studies. Holocene 2006, 16, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Stuiver, M.; Reimer, P.J.; Reimer, R.W. CALIB 8.2. Available online: http://calib.org/ (accessed on 16 February 2021).
- Moser, J.V.; Lowell, T.V.; Wiles, G. Basin Subsidence Inferred from Geophysical Data, Jigsaw Lake, Kenai Peninsula, AK. In Proceedings of the 23rd Annual Keck Symposium, Houston, TX, USA, April 2010. Available online: https://keckgeology.org/files/pdf/symvol/23rd/Kenai/Moser.pdf (accessed on 2 April 2022).
- Shiller, J.A.; Finkelstein, S.A.; Cowling, S.A. Relative importance of climatic and autogenic controls on Holocene carbon accumulation in a temperate bog in southern Ontario, Canada. Holocene 2014, 24, 1105–1116. [Google Scholar] [CrossRef]
- Porter, S.C.; Carson, R.J., III. Problems of interpreting radiocarbon dates from dead-ice terrain, with an example from the Puget Lowland of Washington. Quat. Res. 1971, 1, 410–414. [Google Scholar] [CrossRef]
- Attig, J.W.; Rawlings, J.E. Influence of Persistent Buried Ice on Late Glacial Landscape Development in Part of Wisconsin’s Northern Highlands. In Quaternary Glaciation of the Great Lakes Region: Process, Landforms, Sediments, and Chronology; Kehew, A.E., Curry, B.B., Eds.; GSA Special Paper 530; Illinois State Geological Survey: Champaign, IL, USA, 2018. [Google Scholar] [CrossRef]
- Cubizolle, H.; Bonnel, P.; Oberlin, C.; Tourman, A.; Porteret, J. Advantages and limits of radiocarbon dating applied to peat inception during the end of the Lateglacial and the Holocene: The example of mires in the Eastern Massif Central (France). Quaternaire 2007, 18, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, D.S.; Agerb, A.; Andersonc, N.J.; Andersond, P.M.; Andrewse, J.T.; Bartleinf, P.J.; Brubakerg, L.B.; Coatsh, L.L.; Cwynari, L.C.; Duvall, M.L.; et al. Holocene Thermal Maximum in the western Arctic (0–180° W). Quat. Sci. Rev. 2004, 23, 529–560. [Google Scholar] [CrossRef] [Green Version]
- Praetorius, S.K.; Mix, A.C. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 2014, 345, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Berger, A. Orbital Variations and Insolation Database; IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 92-007; NOAA/NGDC Paleoclimatology Program: Boulder, CO, USA, 1992. Available online: https://www.ncei.noaa.gov/access/paleo-search/study/5776 (accessed on 20 January 2022).
- Tulenko, J.P.; Ash, B.J.; Briner, J.P.; Reger, R.D. The Culmination of the Last Glaciation in the Kenai Peninsula, Alaska Based on 10Be Ages from Alaska’s Biggest Moraine Boulders. In Proceedings of the 50th International Arctic Workshop, Boulder, CO, USA, 15–17 April 2021; Available online: https://instaar.colorado.edu/meetings/AW2021/abstract_details.php?abstract_id=42 (accessed on 20 January 2022).
- Otto-Bleisner, B.L.; Brady, E.C.; Clauzet, G.; Tomas, R.; Levis, S.; Kothavala, Z. Last glacial maximum and holocene climate in CCSM3. J. Clim. 2006, 19, 2526–2544. Available online: https://www.cgd.ucar.edu/staff/ottobli/pubs/Otto-Bliesner-JClimate-Paleo-19.pdf (accessed on 20 January 2022). [CrossRef] [Green Version]
- Tulenko, J.P.; Lofverstrom, M.; Briner, J.P. Ice sheet influence on atmospheric circulation explains the patterns of Pleistocene alpine glacier records in North America. Earth Planet Sci. Lett. 2020, 534, 116115. [Google Scholar] [CrossRef]
- Hoek, W.Z. Bølling-Allerød Interstadial. In Encyclopedia of Paleoclimatology and Ancient Environments; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2009; pp. 100–103. [Google Scholar] [CrossRef]
- Manley, W.F. Postglacial Flooding of the Bering Land Bridge: A Geospatial Animation: INSTAAR; University of Colorado: Boulder, CO, USA, 2002; Volume 1, Available online: http://instaar.colorado.edu/QGISL/bering_land_bridge (accessed on 20 January 2022).
- Bartlein, P.J.; Edward, M.E.; Hostetler, S.W.; Shafer, S.L.; Anderson, P.M.; Brubaker, L.B.; Lozhkin, A.V. Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes. Clim. Past Discuss. 2015, 11, 1197–1222. [Google Scholar] [CrossRef] [Green Version]
- Barron, J.A.; Anderson, L. Enhanced late Holocene ENSO/PDO expression along the margins of the eastern North Pacific. Quat. Int. 2010, 235, 3–12. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1272&context=usgsstaffpub (accessed on 20 January 2022). [CrossRef] [Green Version]
- Kaufman, D.S.; Axford, Y.L.; Henderson, A.C.G.; McKay, N.P.; Oswald, W.W.; Saenger, C.; Anderson, R.S.; Bailey, H.L.; Clegg, B.; Gajewski, K.; et al. Holocene climate changes in eastern Beringia (NW North America)—A systematic review of multi-proxy evidence. Quat. Sci. Rev. 2016, 147, 312–339. [Google Scholar] [CrossRef] [Green Version]
- Wiles, G.C.; Calkin, P.E. Late Holocene, high resolution glacial chronologies and climate, Kenai Mountains, Alaska. Geol. Soc. Am. Bull. 1994, 106, 281–303. [Google Scholar] [CrossRef]
- NOAA PSL. NOAA Physical Sciences Laboratory Website. NCEP Reanalysis Derived Data Provided by the NOAA/OAR/ESRL PSL. Available online: https://psl.noaa.gov/ (accessed on 5 February 2020).
- Gaglioti, B.V.; Mann, D.H.; Williams, A.P.; Wiles, G.C.; Stoffel, M.; Oelkers, R.; Jones, B.M.; Andreu-Hayles, L. Traumatic resin ducts in Alaska mountain hemlock trees provide a new proxy for winter storminess. J. Geophys. Res. Biogeosci. 2019, 124, 1923–1938. [Google Scholar] [CrossRef]
- Osterberg, E.C.; Winski, D.A.; Kreutz, K.J.; Wake, C.P.; Ferris, D.G.; Campbell, S.; Introne, D.; Handley, M.; Birkel, S. The 1200 year composite ice core record of Aleutian Low intensification. Geophys. Res. Lett. 2017, 44, 7447–7454. [Google Scholar] [CrossRef] [Green Version]
- Berg, E.E.; McDonnell, K.D.; Dial, R.; DeRuwe, A. Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska: A major regime shift after 18,000 years of wet Sphagnum–Sedge peat recruitment. Can. J. For. Res. 2009, 39, 2033–2046. [Google Scholar] [CrossRef]
- Berg, E.E.; Henry, J.D.; Fastie, C.L.; de Volder, A.D.; Matsuoka, S. Long-term histories of spruce beetle outbreaks in spruce forests on the western Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory; relationships with summer temperature. For. Ecol. Manag. 2006, 227, 219–232. [Google Scholar] [CrossRef]
- Csank, A.Z.; Sherriff, R.L.; Miller, A.E.; Berg, E.; Welker, J. Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska. Ecology 2016, 26, 2001–2020. [Google Scholar] [CrossRef]
- Duffy, P.A.; Walsh, J.; Graham, J.; Mann, D.H.; Rupp, T. Impacts of large-scale atmospheric-ocean variability on Alaskan fire season severity. Ecol. Appl. 2005, 15, 1317–1330. [Google Scholar] [CrossRef] [Green Version]
- Mann, D.H.; Rupp, T.S.; Olson, M.A.; Duffy, P.A. Is Alaska’s boreal forest now crossing a major ecological threshold? Arct. Antarct. Alp. Res. 2012, 44, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Abbott, M.B.; Finney, B.P.; Edwards, M.E.; Kelts, K.R. Lake-level reconstructions and paleohydrology of Birch Lake, central Alaska, based on seismic reflection profiles and core transects. Quat. Res. 2000, 53, 154–166. [Google Scholar] [CrossRef]
- Finkenbinder, M.S.; Abbott, M.B.; Edwards, M.E.; Langdon, C.T.; Steinman, B.A.; Finney, B.P. A 31,000 year record of paleoenvironmental and lake-level change from Harding Lake, Alaska, USA. Quat. Sci. Rev. 2014, 87, 98–113. [Google Scholar] [CrossRef]
- Viau, A.; Gajewski, K.; Sawada, M.; Bunbury, J. Low- and high-frequency climate variability in Beringia during the past 25,000 years. Can. J. Earth Sci. 2008, 45, 1435–1453. [Google Scholar] [CrossRef]
- Nepop, R.K.; Agatova, A.R.; Uspenskaya, O.N. Climatically driven late Pleistocene–Holocene hydrological system transformation and landscape evolution in the eastern periphery of Chuya basin, SE Altai, Russia. Quat. Int. 2020, 53, 63–79. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berg, E.E.; Kaufman, D.S.; Anderson, R.S.; Wiles, G.C.; Lowell, T.V.; Mitchell, E.A.D.; Hu, F.S.; Werner, A. Late-Glacial and Holocene Lake-Level Fluctuations on the Kenai Lowland, Reconstructed from Satellite-Fen Peat Deposits and Ice-Shoved Ramparts, Kenai Peninsula, Alaska. Quaternary 2022, 5, 23. https://doi.org/10.3390/quat5020023
Berg EE, Kaufman DS, Anderson RS, Wiles GC, Lowell TV, Mitchell EAD, Hu FS, Werner A. Late-Glacial and Holocene Lake-Level Fluctuations on the Kenai Lowland, Reconstructed from Satellite-Fen Peat Deposits and Ice-Shoved Ramparts, Kenai Peninsula, Alaska. Quaternary. 2022; 5(2):23. https://doi.org/10.3390/quat5020023
Chicago/Turabian StyleBerg, Edward E., Darrell S. Kaufman, R. Scott Anderson, Gregory C. Wiles, Thomas V. Lowell, Edward A. D. Mitchell, Feng Sheng Hu, and Alan Werner. 2022. "Late-Glacial and Holocene Lake-Level Fluctuations on the Kenai Lowland, Reconstructed from Satellite-Fen Peat Deposits and Ice-Shoved Ramparts, Kenai Peninsula, Alaska" Quaternary 5, no. 2: 23. https://doi.org/10.3390/quat5020023
APA StyleBerg, E. E., Kaufman, D. S., Anderson, R. S., Wiles, G. C., Lowell, T. V., Mitchell, E. A. D., Hu, F. S., & Werner, A. (2022). Late-Glacial and Holocene Lake-Level Fluctuations on the Kenai Lowland, Reconstructed from Satellite-Fen Peat Deposits and Ice-Shoved Ramparts, Kenai Peninsula, Alaska. Quaternary, 5(2), 23. https://doi.org/10.3390/quat5020023