Synchronous or Not? The Timing of the Younger Dryas and Greenland Stadial-1 Reviewed Using Tephrochronology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fieldwork
2.2. Labwork
2.2.1. μ-XRF Core Scanning
2.2.2. Carbon Content, Organic Matter, and Tephra Analysis
2.2.3. Chronology
3. Results and Discussion
3.1. Proxy Results and Age–Depth Modelling
3.2. Timing of the Younger Dryas and Greenland Stadial-1
3.3. Future Research Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stroeven, A.P.; Hättestrand, C.; Kleman, J.; Heyman, J.; Fabel, D.; Fredin, O.; Goodfellow, B.W.; Harbor, J.M.; Jansen, J.D.; Olsen, L.; et al. Deglaciation of Fennoscandia. Quat. Sci. Rev. 2016, 147, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A Stratigraphic Framework for Abrupt Climatic Changes during the Last Glacial Period Based on Three Synchronized Greenland Ice-Core Records: Refining and Extending the INTIMATE Event Stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Lowe, J.J.; Rasmussen, S.O.; Björck, S.; Hoek, W.Z.; Steffensen, J.P.; Walker, M.J.C.; Yu, Z.C. Synchronisation of Palaeoenvironmental Events in the North Atlantic Region during the Last Termination: A Revised Protocol Recommended by the INTIMATE Group. Quat. Sci. Rev. 2008, 27, 6–17. [Google Scholar] [CrossRef]
- Neugebauer, I.; Brauer, A.; Dräger, N.; Dulski, P.; Wulf, S.; Plessen, B.; Mingram, J.; Herzschuh, U.; Brande, A. A Younger Dryas Varve Chronology from the Rehwiese Palaeolake Record in NE-Germany. Quat. Sci. Rev. 2012, 36, 91–102. [Google Scholar] [CrossRef]
- Schenk, F.; Wohlfarth, B. The Imprint of Hemispheric-Scale Climate Transitions on the European Climate during the Last Deglaciation (15.9 Ka to 9 Ka BP); Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2019; pp. 1–98. [Google Scholar]
- Abrook, A.M.; Matthews, I.P.; Candy, I.; Palmer, A.P.; Francis, C.P.; Turner, L.; Brooks, S.J.; Self, A.E.; Milner, A.M. Complexity and Asynchrony of Climatic Drivers and Environmental Responses during the Last Glacial-Interglacial Transition (LGIT) in North-West Europe. Quat. Sci. Rev. 2020, 250, 106634. [Google Scholar] [CrossRef]
- Nakagawa, T.; Tarasov, P.; Staff, R.; Bronk Ramsey, C.; Marshall, M.; Schlolaut, G.; Bryant, C.; Brauer, A.; Lamb, H.; Haraguchi, T.; et al. The Spatio-Temporal Structure of the Lateglacial to Early Holocene Transition Reconstructed from the Pollen Record of Lake Suigetsu and Its Precise Correlation with Other Key Global Archives: Implications for Palaeoclimatology and Archaeology. Glob. Planet. Change 2021, 202, 103493. [Google Scholar] [CrossRef]
- Tierney, J.E.; Poulsen, C.J.; Montañez, I.P.; Bhattacharya, T.; Feng, R.; Ford, H.L.; Hönisch, B.; Inglis, G.N.; Petersen, S.V.; Sagoo, N.; et al. Past Climates Inform Our Future. Science 2020, 370, 680. [Google Scholar] [CrossRef]
- Mangerud, J. The Discovery of the Younger Dryas, and Comments on the Current Meaning and Usage of the Term. Boreas 2021, 50, 1–5. [Google Scholar] [CrossRef]
- Sirocko, F.; Martínez-García, A.; Mudelsee, M.; Albert, J.; Britzius, S.; Christl, M.; Diehl, D.; Diensberg, B.; Friedrich, R.; Fuhrmann, F.; et al. Muted Multidecadal Climate Variability in Central Europe during Cold Stadial Periods. Nat. Geosci. 2021, 14, 651–658. [Google Scholar] [CrossRef]
- Brauer, A.; Haug, G.H.; Dulski, P.; Sigman, D.M.; Negendank, J.F.W. An Abrupt Wind Shift in Western Europe at the Onset of the Younger Dryas Cold Period. Nat. Geosci. 2008, 1, 520–523. [Google Scholar] [CrossRef]
- Bakke, J.; Lie, Ø.; Heegaard, E.; Dokken, T.; Haug, G.H.; Birks, H.H.; Dulski, P.; Nilsen, T. Rapid Oceanic and Atmospheric Changes during the Younger Dryas Cold Period. Nat. Geosci. 2009, 2, 202–205. [Google Scholar] [CrossRef]
- Pearce, C.; Seidenkrantz, M.-S.; Kuijpers, A.; Massé, G.; Reynisson, N.F.; Kristiansen, S.M. Ocean Lead at the Termination of the Younger Dryas Cold Spell. Nat. Commun. 2013, 4, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenk, F.; Väliranta, M.; Muschitiello, F.; Tarasov, L.; Heikkilä, M.; Björck, S.; Brandefelt, J.; Johansson, A.V.; Näslund, J.-O.; Wohlfarth, B. Warm Summers during the Younger Dryas Cold Reversal. Nat. Commun. 2018, 9, 1634. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Zhang, H.; Spötl, C.; Baker, J.; Sinha, A.; Li, H.; Bartolomé, M.; Moreno, A.; Kathayat, G.; Zhao, J.; et al. Timing and Structure of the Younger Dryas Event and Its Underlying Climate Dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 23408–23417. [Google Scholar] [CrossRef]
- Reinig, F.; Wacker, L.; Jöris, O.; Oppenheimer, C.; Guidobaldi, G.; Nievergelt, D.; Adolphi, F.; Cherubini, P.; Engels, S.; Esper, J.; et al. Precise Date for the Laacher See Eruption Synchronizes the Younger Dryas. Nature 2021, 595, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Broecker, W.S.; Kennett, J.P.; Flower, B.P.; Teller, J.T.; Trumbore, S.; Bonani, G.; Wolfli, W. Routing of Meltwater from the Laurentide Ice Sheet during the Younger Dryas Cold Episode. Nature 1989, 341, 318–321. [Google Scholar] [CrossRef] [Green Version]
- Teller, J.T. Importance of Freshwater Injections into the Arctic Ocean in Triggering the Younger Dryas Cooling. Proc. Natl. Acad. Sci. USA 2012, 109, 19880–19881. [Google Scholar] [CrossRef] [Green Version]
- Firestone, R.B.; West, A.; Kennett, J.P.; Becker, L.; Bunch, T.E.; Revay, Z.S.; Schultz, P.H.; Belgya, T.; Kennett, D.J.; Erlandson, J.M.; et al. Evidence for an Extraterrestrial Impact 12,900 Years Ago That Contributed to the Megafaunal Extinctions and the Younger Dryas Cooling. Proc. Natl. Acad. Sci. USA 2007, 104, 16016–16021. [Google Scholar] [CrossRef] [Green Version]
- Sweatman, M.B. The Younger Dryas Impact Hypothesis: Review of the Impact Evidence. Earth-Sci. Rev. 2021, 218, 103677. [Google Scholar] [CrossRef]
- Baales, M.; Jöris, O.; Street, M.; Bittmann, F.; Weninger, B.; Wiethold, J. Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany. Quat. Res. 2002, 58, 273–288. [Google Scholar] [CrossRef]
- Baldini, J.U.L.; Brown, R.J.; Mawdsley, N. Evaluating the Link between the Sulfur-Rich Laacher See Volcanic Eruption and the Younger Dryas Climate Anomaly. Clim. Past 2018, 14, 969–990. [Google Scholar] [CrossRef] [Green Version]
- Abbott, P.M.; Niemeier, U.; Timmreck, C.; Riede, F.; McConnell, J.R.; Severi, M.; Fischer, H.; Svensson, A.; Toohey, M.; Reinig, F.; et al. Volcanic Climate Forcing Preceding the Inception of the Younger Dryas: Implications for Tracing the Laacher See Eruption. Quat. Sci. Rev. 2021, 274, 107260. [Google Scholar] [CrossRef]
- Lowell, T.; Waterson, N.; Fisher, T.; Loope, H.; Glover, K.; Comer, G.; Hajdas, I.; Denton, G.; Schaefer, J.; Rinterknecht, V.; et al. Testing the Lake Agassiz Meltwater Trigger for the Younger Dryas. Eos 2005, 86, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Pinter, N.; Scott, A.C.; Daulton, T.L.; Podoll, A.; Koeberl, C.; Anderson, R.S.; Ishman, S.E. The Younger Dryas Impact Hypothesis: A Requiem. Earth-Sci. Rev. 2011, 106, 247–264. [Google Scholar] [CrossRef]
- Lotter, A.F.; Birks, H.J.B.; Zolitschka, B. Late-Glacial Pollen and Diatom Changes in Response to Two Different Environmental Perturbations: Volcanic Eruption and Younger Dryas Cooling. J. Paleolimnol. 1995, 14, 23–47. [Google Scholar] [CrossRef] [Green Version]
- Kylander, M.E.; Ampel, L.; Wohlfarth, B.; Veres, D. High-Resolution X-Ray Fluorescence Core Scanning Analysis of Les Echets (France) Sedimentary Sequence: New Insights from Chemical Proxies. J. Quat. Sci. 2011, 26, 109–117. [Google Scholar] [CrossRef]
- Lane, C.S.; Brauer, A.; Blockley, S.P.E.; Dulski, P. Volcanic Ash Reveals Time-Transgressive Abrupt Climate Change during the Younger Dryas. Geology 2013, 41, 1251–1254. [Google Scholar] [CrossRef]
- Rach, O.; Brauer, A.; Wilkes, H.; Sachse, D. Delayed Hydrological Response to Greenland Cooling at the Onset of the Younger Dryas in Western Europe. Nat. Geosci. 2014, 7, 109–112. [Google Scholar] [CrossRef]
- Muschitiello, F.; Wohlfarth, B. Time-Transgressive Environmental Shifts across Northern Europe at the Onset of the Younger Dryas. Quat. Sci. Rev. 2015, 109, 49–56. [Google Scholar] [CrossRef]
- Aichner, B.; Ott, F.; Słowiński, M.; Noryśkiewicz, A.M.; Brauer, A.; Sachse, D. Leaf Wax N-Alkane Distributions Record Ecological Changes during the Younger Dryas at Trzechowskie Paleolake (Northern Poland) without Temporal Delay. Clim. Past 2018, 14, 1607–1624. [Google Scholar] [CrossRef] [Green Version]
- Obreht, I.; Wörmer, L.; Brauer, A.; Wendt, J.; Alfken, S.; De Vleeschouwer, D.; Elvert, M.; Hinrichs, K.-U. An Annually Resolved Record of Western European Vegetation Response to Younger Dryas Cooling. Quat. Sci. Rev. 2020, 231, 106198. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Harkness, D.D.; Lowe, J.J. The Use of Microtephra Horizons to Correlate Late-Glacial Lake Sediment Successions in Scotland. J. Quat. Sci. 1997, 12, 525–531. [Google Scholar] [CrossRef]
- Lowe, J.J. Abrupt Climatic Changes in Europe during the Last Glacial–Interglacial Transition: The Potential for Testing Hypotheses on the Synchroneity of Climatic Events Using Tephrochronology. Glob. Planet. Change 2001, 30, 73–84. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Den Burg, K.V.; Wastegård, S.; Davies, S.M.; Whitehouse, N.J.; Pilcher, J.R.; Callaghan, C. North European Last Glacial–Interglacial Transition (LGIT; 15–9 Ka) Tephrochronology: Extended Limits and New Events. J. Quat. Sci. 2006, 21, 335–345. [Google Scholar] [CrossRef]
- Lane, C.S.; Blockley, S.P.E.; Bronk Ramsey, C.; Lotter, A.F. Tephrochronology and Absolute Centennial Scale Synchronisation of European and Greenland Records for the Last Glacial to Interglacial Transition: A Case Study of Soppensee and NGRIP. Quat. Int. 2011, 246, 145–156. [Google Scholar] [CrossRef]
- Lowe, D.J. Tephrochronology and Its Application: A Review. Quat. Geochronol. 2011, 6, 107–153. [Google Scholar] [CrossRef] [Green Version]
- Abbott, P.M.; Davies, S.M. Volcanism and the Greenland Ice-Cores: The Tephra Record. Earth-Sci. Rev. 2012, 115, 173–191. [Google Scholar] [CrossRef]
- Davies, S.M.; Abbott, P.M.; Pearce, N.J.G.; Wastegård, S.; Blockley, S.P.E. Integrating the INTIMATE Records Using Tephrochronology: Rising to the Challenge. Quat. Sci. Rev. 2012, 36, 11–27. [Google Scholar] [CrossRef]
- Lane, C.S.; Blockley, S.P.E.; Lotter, A.F.; Finsinger, W.; Filippi, M.L.; Matthews, I.P. A Regional Tephrostratigraphic Framework for Central and Southern European Climate Archives during the Last Glacial to Interglacial Transition: Comparisons North and South of the Alps. Quat. Sci. Rev. 2012, 36, 50–58. [Google Scholar] [CrossRef]
- Davies, S.M. Cryptotephras: The Revolution in Correlation and Precision Dating. J. Quat. Sci. 2015, 30, 114–130. [Google Scholar] [CrossRef] [Green Version]
- Lowe, J.J.; Ramsey, C.B.; Housley, R.A.; Lane, C.S.; Tomlinson, E.L. The RESET Project: Constructing a European Tephra Lattice for Refined Synchronisation of Environmental and Archaeological Events during the Last c. 100 Ka. Quat. Sci. Rev. 2015, 118, 1–17. [Google Scholar] [CrossRef]
- Lane, C.S.; Lowe, D.J.; Blockley, S.P.E.; Suzuki, T.; Smith, V.C. Advancing Tephrochronology as a Global Dating Tool: Applications in Volcanology, Archaeology, and Palaeoclimatic Research. Quat. Geochronol. 2017, 40, 1–7. [Google Scholar] [CrossRef]
- Lowe, D.J.; Pearce, N.J.G.; Jorgensen, M.A.; Kuehn, S.C.; Tryon, C.A.; Hayward, C.L. Correlating Tephras and Cryptotephras Using Glass Compositional Analyses and Numerical and Statistical Methods: Review and Evaluation. Quat. Sci. Rev. 2017, 175, 1–44. [Google Scholar] [CrossRef]
- Timms, R.G.O.; Matthews, I.P.; Lowe, J.J.; Palmer, A.P.; Weston, D.J.; MacLeod, A.; Blockley, S.P.E. Establishing Tephrostratigraphic Frameworks to Aid the Study of Abrupt Climatic and Glacial Transitions: A Case Study of the Last Glacial-Interglacial Transition in the British Isles (c. 16-8 Ka BP). Earth-Sci. Rev. 2019, 192, 34–64. [Google Scholar] [CrossRef]
- Abbott, P.M.; Jensen, B.J.L.; Lowe, D.J.; Suzuki, T.; Veres, D. Crossing New Frontiers: Extending Tephrochronology as a Global Geoscientific Research Tool. J. Quat. Sci. 2020, 35, 1–8. [Google Scholar] [CrossRef]
- Reinig, F.; Cherubini, P.; Engels, S.; Esper, J.; Guidobaldi, G.; Jöris, O.; Lane, C.; Nievergelt, D.; Oppenheimer, C.; Park, C.; et al. Towards a Dendrochronologically Refined Date of the Laacher See Eruption around 13,000 Years Ago. Quat. Sci. Rev. 2020, 229, 106128. [Google Scholar] [CrossRef] [Green Version]
- Mangerud, J.; Lie, S.E.; Furnes, H.; Kristiansen, I.L.; Lømo, L. A Younger Dryas Ash Bed in Western Norway, and Its Possible Correlations with Tephra in Cores from the Norwegian Sea and the North Atlantic. Quat. Res. 1984, 21, 85–104. [Google Scholar] [CrossRef]
- Van den Bogaard, P.; Schmincke, H.-U. Laacher See Tephra: A Widespread Isochronous Late Quaternary Tephra Layer in Central and Northern Europe. Geol. Soc. Am. Bull. 1985, 96, 1554–1571. [Google Scholar] [CrossRef]
- Larsson, S.A.; Wastegård, S. The Laacher See Tephra Discovered in Southernmost Sweden. J. Quat. Sci. 2018, 33, 477–481. [Google Scholar] [CrossRef]
- Kletetschka, G.; Vondrák, D.; Hruba, J.; van der Knaap, W.O.; van Leeuwen, J.F.N.; Heurich, M. Laacher See Tephra Discovered in the Bohemian Forest, Germany, East of the Eruption. Quat. Geochronol. 2019, 51, 130–139. [Google Scholar] [CrossRef]
- Procházka, V.; Mizera, J.; Kletetschka, G.; Vondrák, D. Late Glacial Sediments of the Stará Jímka Paleolake and the First Finding of Laacher See Tephra in the Czech Republic. Int. J. Earth Sci. 2019, 108, 357–378. [Google Scholar] [CrossRef]
- Krüger, S.; van den Bogaard, C. Small Shards and Long Distances—Three Cryptotephra Layers from the Nahe Palaeolake Including the First Discovery of Laacher See Tephra in Schleswig-Holstein (Germany). J. Quat. Sci. 2021, 36, 8–19. [Google Scholar] [CrossRef]
- Hammarlund, D.; Lemdahl, G. A Late Weichselian Stable Isotope Stratigraphy Compared with Biostratigraphical Data: A Case Study from Southern Sweden. J. Quat. Sci. 1994, 9, 13–31. [Google Scholar] [CrossRef]
- Larsson, S.A.; Wastegård, S. A High-Resolution Lateglacial–Early Holocene Tephrostratigraphy from Southernmost Sweden with Comments on the Borrobol–Penifiler Tephra Complex. Quat. Geochronol. 2022, 67, 101239. [Google Scholar] [CrossRef]
- Fredén, C. Sveriges Nationalatlas: Berg Och Jord; Kartförlaget: Gävle, Sweden, 2009. [Google Scholar]
- Geological Survey of Sweden. Berggrund 1:50 000-1:250 000; Sveriges Geologiska Undersökning: Uppsala, Sweden, 2017.
- Jowsey, P.C. An Improved Peat Sampler. New Phytol. 1966, 65, 245–248. [Google Scholar] [CrossRef]
- Brooks, S.J.; Matthews, I.P.; Birks, H.H.; Birks, H.J.B. High Resolution Lateglacial and Early-Holocene Summer Air Temperature Records from Scotland Inferred from Chironomid Assemblages. Quat. Sci. Rev. 2012, 41, 67–82. [Google Scholar] [CrossRef]
- Wohlfarth, B.; Luoto, T.P.; Muschitiello, F.; Väliranta, M.; Björck, S.; Davies, S.M.; Kylander, M.; Ljung, K.; Reimer, P.J.; Smittenberg, R.H. Climate and Environment in Southwest Sweden 15.5–11.3 Cal. Ka BP. Boreas 2018, 47, 687–710. [Google Scholar] [CrossRef] [Green Version]
- Wulf, S.; Ott, F.; Słowiński, M.; Noryśkiewicz, A.M.; Dräger, N.; Martin-Puertas, C.; Czymzik, M.; Neugebauer, I.; Dulski, P.; Bourne, A.J.; et al. Tracing the Laacher See Tephra in the Varved Sediment Record of the Trzechowskie Palaeolake in Central Northern Poland. Quat. Sci. Rev. 2013, 76, 129–139. [Google Scholar] [CrossRef]
- Ott, F.; Wulf, S.; Serb, J.; Słowiński, M.; Obremska, M.; Tjallingii, R.; Błaszkiewicz, M.; Brauer, A. Constraining the Time Span between the Early Holocene Hässeldalen and Askja-S Tephras through Varve Counting in the Lake Czechowskie Sediment Record, Poland. J. Quat. Sci. 2016, 31, 103–113. [Google Scholar] [CrossRef]
- Whittington, G.; Edwards, K.J.; Zanchetta, G.; Keen, D.H.; Bunting, M.J.; Fallick, A.E.; Bryant, C.L. Lateglacial and Early Holocene Climates of the Atlantic Margins of Europe: Stable Isotope, Mollusc and Pollen Records from Orkney, Scotland. Quat. Sci. Rev. 2015, 122, 112–130. [Google Scholar] [CrossRef]
- Timms, R.G.O.; Matthews, I.P.; Palmer, A.P.; Candy, I. Toward a Tephrostratigraphic Framework for the British Isles: A Last Glacial to Interglacial Transition (LGIT c. 16-8 Ka) Case Study from Crudale Meadow, Orkney. Quat. Geochronol. 2018, 46, 28–44. [Google Scholar] [CrossRef]
- Francis, C.P.; Engels, S.; Matthews, I.P.; Palmer, A.P.; Timms, R.G.O.; Jourdan, A.; Candy, I. A Multi-proxy Record of Abrupt Cooling Events during the Windermere Interstadial at Crudale Meadow, Orkney, UK. J. Quat. Sci. 2021, 36, 325–338. [Google Scholar] [CrossRef]
- Lane, C.S.; De Klerk, P.; Cullen, V.L. A Tephrochronology for the Lateglacial Palynological Record of the Endinger Bruch (Vorpommern, North-East Germany). J. Quat. Sci. 2012, 27, 141–149. [Google Scholar] [CrossRef]
- Davies, S.M.; Wastegård, S.; Wohlfarth, B. Extending the Limits of the Borrobol Tephra to Scandinavia and Detection of New Early Holocene Tephras. Quat. Res. 2003, 59, 345–352. [Google Scholar] [CrossRef]
- Wohlfarth, B.; Blaauw, M.; Davies, S.M.; Andersson, M.; Wastegård, S.; Hormes, A.; Possnert, G. Constraining the Age of Lateglacial and Early Holocene Pollen Zones and Tephra Horizons in Southern Sweden with Bayesian Probability Methods. J. Quat. Sci. 2006, 21, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Wohlfarth, B.; Muschitiello, F.; Greenwood, S.L.; Andersson, A.; Kylander, M.; Smittenberg, R.H.; Steinthorsdottir, M.; Watson, J.; Whitehouse, N.J. Hässeldala—A Key Site for Last Termination Climate Events in Northern Europe. Boreas 2017, 46, 143–161. [Google Scholar] [CrossRef] [Green Version]
- Lohne, Ø.S.; Mangerud, J.; Birks, H.H. Precise 14C Ages of the Vedde and Saksunarvatn Ashes and the Younger Dryas Boundaries from Western Norway and Their Comparison with the Greenland Ice Core (GICC05) Chronology. J. Quat. Sci. 2013, 28, 490–500. [Google Scholar] [CrossRef]
- Lohne, Ø.S.; Mangerud, J.; Birks, H.H. IntCal13 Calibrated Ages of the Vedde and Saksunarvatn Ashes and the Younger Dryas Boundaries from Kråkenes, Western Norway. J. Quat. Sci. 2014, 29, 506–507. [Google Scholar] [CrossRef]
- Finsinger, W.; Lane, C.S.; van Den Brand, G.J.; Wagner-Cremer, F.; Blockley, S.P.E.; Lotter, A.F. The Lateglacial Quercus Expansion in the Southern European Alps: Rapid Vegetation Response to a Late Allerød Climate Warming? J. Quat. Sci. 2011, 26, 694–702. [Google Scholar] [CrossRef]
- Davies, S.M.; Turney, C.S.M.; Lowe, J.J. Identification and Significance of a Visible, Basalt-Rich Vedde Ash Layer in a Late-Glacial Sequence on the Isle of Skye, Inner Hebrides, Scotland. J. Quat. Sci. 2001, 16, 99–104. [Google Scholar] [CrossRef]
- Brauer, A.; Endres, C.; Günter, C.; Litt, T.; Stebich, M.; Negendank, J.F.W. High Resolution Sediment and Vegetation Responses to Younger Dryas Climate Change in Varved Lake Sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 1999, 18, 321–329. [Google Scholar] [CrossRef]
- Lane, C.S.; Brauer, A.; Martín-Puertas, C.; Blockley, S.P.E.; Smith, V.C.; Tomlinson, E.L. The Late Quaternary Tephrostratigraphy of Annually Laminated Sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 2015, 122, 192–206. [Google Scholar] [CrossRef]
- Krüger, S.; Mortensen, M.F.; Dörfler, W. Sequence Completed—Palynological Investigations on Lateglacial/Early Holocene Environmental Changes Recorded in Sequentially Laminated Lacustrine Sediments of the Nahe Palaeolake in Schleswig-Holstein, Germany. Rev. Palaeobot. Palynol. 2020, 280, 104271. [Google Scholar] [CrossRef]
- Timms, R.G.O.; Matthews, I.P.; Palmer, A.P.; Candy, I.; Abel, L. A High-Resolution Tephrostratigraphy from Quoyloo Meadow, Orkney, Scotland: Implications for the Tephrostratigraphy of NW Europe during the Last Glacial-Interglacial Transition. Quat. Geochronol. 2017, 40, 67–81. [Google Scholar] [CrossRef]
- Abrook, A.M.; Matthews, I.P.; Milner, A.M.; Candy, I.; Palmer, A.P.; Timms, R.G.O. Environmental Variability in Response to Abrupt Climatic Change during the Last Glacial–Interglacial Transition (16–8 cal ka BP): Evidence from Mainland, Orkney. Scott. J. Geol. 2020, 56, 30–46. [Google Scholar] [CrossRef]
- Timms, R.G.O.; Abrook, A.M.; Matthews, I.P.; Francis, C.P.; Mroczkowska, A.; Candy, I.; Brooks, S.J.; Milner, A.M.; Palmer, A.P. Evidence for Centennial-scale Lateglacial and Early Holocene Climatic Complexity from Quoyloo Meadow, Orkney, Scotland. J. Quat. Sci. 2021, 36, 339–359. [Google Scholar] [CrossRef]
- Hajdas, I.; Ivy-Ochs, S.D.; Bonani, G.; Loiter, A.F.; Zolitschka, B.; Schlüchter, C. Radiocarbon Age of the Laacher See Tephra: 11,230 ± 40 BP. Radiocarbon 1995, 37, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Blockley, S.P.E.; Lane, C.S.; Lotter, A.F.; Pollard, A.M. Evidence for the Presence of the Vedde Ash in Central Europe. Quat. Sci. Rev. 2007, 26, 3030–3036. [Google Scholar] [CrossRef]
- Blockley, S.P.E.; Ramsey, C.B.; Lane, C.S.; Lotter, A.F. Improved Age Modelling Approaches as Exemplified by the Revised Chronology for the Central European Varved Lake Soppensee. Quat. Sci. Rev. 2008, 27, 61–71. [Google Scholar] [CrossRef]
- Kletetschka, G.; Vondrák, D.; Hruba, J.; Prochazka, V.; Nabelek, L.; Svitavská-Svobodová, H.; Bobek, P.; Horicka, Z.; Kadlec, J.; Takac, M.; et al. Cosmic-Impact Event in Lake Sediments from Central Europe Postdates the Laacher See Eruption and Marks Onset of the Younger Dryas. J. Geol. 2018, 126, 561–575. [Google Scholar] [CrossRef]
- Mortensen, M.F.; Birks, H.H.; Christensen, C.; Holm, J.; Noe-Nygaard, N.; Odgaard, B.V.; Olsen, J.; Rasmussen, K.L. Lateglacial Vegetation Development in Denmark—New Evidence Based on Macrofossils and Pollen from Slotseng, a Small-Scale Site in Southern Jutland. Quat. Sci. Rev. 2011, 30, 2534–2550. [Google Scholar] [CrossRef]
- Larsen, J.J.; Noe-Nygaard, N. Lateglacial and Early Holocene Tephrostratigraphy and Sedimentology of the Store Slotseng Basin, SW Denmark: A Multi-Proxy Study: Lateglacial and Early Holocene Tephrostratigraphy and Sedimentology, SW Denmark. Boreas 2014, 43, 349–361. [Google Scholar] [CrossRef]
- Candy, I.; Abrook, A.; Elliot, F.; Lincoln, P.; Matthews, I.P.; Palmer, A. Oxygen Isotopic Evidence for High-Magnitude, Abrupt Climatic Events during the Lateglacial Interstadial in North-West Europe: Analysis of a Lacustrine Sequence from the Site of Tirinie, Scottish Highlands. J. Quat. Sci. 2016, 31, 607–621. [Google Scholar] [CrossRef] [Green Version]
- Housley, R.A.; MacLeod, A.; Nalepka, D.; Jurochnik, A.; Masojć, M.; Davies, L.; Lincoln, P.C.; Bronk Ramsey, C.; Gamble, C.S.; Lowe, J.J. Tephrostratigraphy of a Lateglacial Lake Sediment Sequence at Węgliny, Southwest Poland. Quat. Sci. Rev. 2013, 77, 4–18. [Google Scholar] [CrossRef]
- Ringberg, B. Beskrivning Till Jordartskartan Helsingborg SO; Liber Distribution: Stockholm, Sweden, 1984. [Google Scholar]
- Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and Evaluation of a New Multi-Function X-Ray Core Scanner. Geol. Soc. Lond. Spec. Publ. 2006, 267, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Aitchison, J. The Statistical Analysis of Compositional Data; Monographs on Statistics and Applied Probability; Chapman & Hall Ltd.: London, UK, 1986. [Google Scholar]
- Kucera, M.; Malmgren, B.A. Logratio Transformation of Compositional Data. Mar. Micropaleontol. 1998, 34, 117–120. [Google Scholar] [CrossRef]
- Weltje, G.J.; Tjallingii, R. Calibration of XRF Core Scanners for Quantitative Geochemical Logging of Sediment Cores: Theory and Application. Earth Planet. Sci. Lett. 2008, 274, 423–438. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on Ignition as a Method for Estimating Organic and Carbonate Content in Sediments: Reproducibility and Comparability of Results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Turney, C.S.M. Extraction of Rhyolitic Component of Vedde Microtephra from Minerogenic Lake Sediments. J. Paleolimnol. 1998, 19, 199–206. [Google Scholar] [CrossRef]
- Dugmore, A.J.; Larsen, G.; Newton, A.J. Seven Tephra Isochrones in Scotland. Holocene 1995, 5, 257–266. [Google Scholar] [CrossRef]
- Hayward, C. High Spatial Resolution Electron Probe Microanalysis of Tephras and Melt Inclusions without Beam-Induced Chemical Modification. Holocene 2012, 22, 119–125. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Fedotov, A.P.; Phedorin, M.A.; Enushchenko, I.V.; Vershinin, K.E.; Melgunov, M.S.; Khodzher, T.V. A Reconstruction of the Thawing of the Permafrost during the Last 170 Years on the Taimyr Peninsula (East Siberia, Russia). Glob. Planet. Change 2012, 98–99, 139–152. [Google Scholar] [CrossRef]
- Kalugin, I.; Darin, A.; Rogozin, D.; Tretyakov, G. Seasonal and Centennial Cycles of Carbonate Mineralisation during the Past 2500 Years from Varved Sediment in Lake Shira, South Siberia. Quat. Int. 2013, 290–291, 245–252. [Google Scholar] [CrossRef]
- Olsen, J.; Anderson, N.J.; Leng, M.J. Limnological Controls on Stable Isotope Records of Late-Holocene Palaeoenvironment Change in SW Greenland: A Paired Lake Study. Quat. Sci. Rev. 2013, 66, 85–95. [Google Scholar] [CrossRef]
- Lauterbach, S.; Brauer, A.; Andersen, N.; Danielopol, D.L.; Dulski, P.; Hüls, M.; Milecka, K.; Namiotko, T.; Obremska, M.; Von Grafenstein, U.; et al. Environmental Responses to Lateglacial Climatic Fluctuations Recorded in the Sediments of Pre-Alpine Lake Mondsee (Northeastern Alps). J. Quat. Sci. 2011, 26, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Kylander, M.E.; Klaminder, J.; Wohlfarth, B.; Löwemark, L. Geochemical Responses to Paleoclimatic Changes in Southern Sweden since the Late Glacial: The Hässeldala Port Lake Sediment Record. J. Paleolimnol. 2013, 50, 57–70. [Google Scholar] [CrossRef]
- Lowe, D.J.; Hogg, A.G.; Hendy, C.H. Detection of Thin Tephra Deposits in Peat and Organic Lake Sediments by Rapid X-Radiography and X-Ray Fluorescence Techniques. In Proceedings of the Tephra Workshop, Wellington, New Zealand, 30 June–1 July 1980; Victoria University of Wellington: Wellington, New Zealand, 1981; Volume 20, pp. 74–77. [Google Scholar]
- Wastegård, S.; Veres, D.; Kliem, P.; Hahn, A.; Ohlendorf, C.; Zolitschka, B. Towards a Late Quaternary Tephrochronological Framework for the Southernmost Part of South America—The Laguna Potrok Aike Tephra Record. Quat. Sci. Rev. 2013, 71, 81–90. [Google Scholar] [CrossRef]
- Høgaas, F.; Larsson, S.A.; Klug, M.; Olsen, L.; Wastegård, S. Palaeolake Sediment Records Reveal a Mid- to Late Younger Dryas Ice-sheet Maximum in Mid-Norway. Boreas 2022, 51, 41–60. [Google Scholar] [CrossRef]
- Gehrels, M.J.; Newnham, R.M.; Lowe, D.J.; Wynne, S.; Hazell, Z.J.; Caseldine, C. Towards Rapid Assay of Cryptotephra in Peat Cores: Review and Evaluation of Various Methods. Quat. Int. 2008, 178, 68–84. [Google Scholar] [CrossRef]
- Vogel, H.; Zanchetta, G.; Sulpizio, R.; Wagner, B.; Nowaczyk, N. A Tephrostratigraphic Record for the Last Glacial-Interglacial Cycle from Lake Ohrid, Albania and Macedonia. J. Quat. Sci. 2010, 25, 320–338. [Google Scholar] [CrossRef]
- Kylander, M.E.; Lind, E.M.; Wastegård, S.; Löwemark, L. Recommendations for Using XRF Core Scanning as a Tool in Tephrochronology. Holocene 2012, 22, 371–375. [Google Scholar] [CrossRef]
- Damaschke, M.; Sulpizio, R.; Zanchetta, G.; Wagner, B.; Böhm, A.; Nowaczyk, N.; Rethemeyer, J.; Hilgers, A. Tephrostratigraphic Studies on a Sediment Core from Lake Prespa in the Balkans. Clim. Past 2013, 9, 267–287. [Google Scholar] [CrossRef] [Green Version]
- Kolling, H.; Bauch, A.H. A Stratigraphical-Sedimentological Study of the Last Interglacial Period in the Central Nordic Seas on the Basis of XRF Core Scanning. Polarforschung 2017, 87, 15–22. [Google Scholar] [CrossRef]
- Peti, L.; Augustinus, P.C.; Gadd, P.S.; Davies, S.J. Towards Characterising Rhyolitic Tephra Layers from New Zealand with Rapid, Non-Destructive μ-XRF Core Scanning. Quat. Int. 2019, 514, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Balascio, N.L.; Francus, P.; Bradley, R.S.; Schupack, B.B.; Miller, G.H.; Kvisvik, B.C.; Bakke, J.; Thordarson, T. Investigating the Use of Scanning X-Ray Fluorescence to Locate Cryptotephra in Minerogenic Lacustrine Sediment: Experimental Results. In Micro-XRF Studies of Sediment Cores; Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2015; Volume 17, pp. 305–324. [Google Scholar]
- Björck, S.; Rundgren, M.; Ingólfsson, Ó.; Funder, S. The Preboreal Oscillation around the Nordic Seas: Terrestrial and Lacustrine Responses. J. Quat. Sci. 1997, 12, 455–465. [Google Scholar] [CrossRef]
- Björck, S.; Muscheler, R.; Kromer, B.; Andresen, C.S.; Heinemeier, J.; Johnsen, S.J.; Conley, D.; Koç, N.; Spurk, M.; Veski, S. High-Resolution Analyses of an Early Holocene Climate Event May Imply Decreased Solar Forcing as an Important Climate Trigger. Geology 2001, 29, 1107. [Google Scholar] [CrossRef]
- Staff, R.A.; Liu, R. Radiocarbon Calibration: The next Generation. Sci. China Earth Sci. 2021, 64, 507–510. [Google Scholar] [CrossRef]
- Davies, S.J.; Lamb, H.F.; Roberts, S.J. Micro-XRF Core Scanning in Palaeolimnology: Recent Developments. In Micro-XRF Studies of Sediment Cores; Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2015; Volume 17, pp. 189–226. [Google Scholar]
Country | Site | YD Onset | YD End | Tephras | References |
---|---|---|---|---|---|
Scotland | Loch Ashik | 13,600 a | 11,400 ± 773 | VA | [59,73] |
Scotland | Abernethy Forest | 13,000 ± 610 | 11,550 ± 200 | VA | [59] |
Scotland | Tirinie | 12,820 ± 290 | 11,710 ± 260 | VA | [6,86] |
Scotland | Crudale Meadow | 12,990 ± 500 | 12,100–11,500 a | HDT, VA | [63,64,65] |
Scotland | Quoyloo Meadow | 13,120 ± 570 | 11,460 ± 220 | HDT, VA | [77,78,79] |
Norway | Kråkenes | 12,737 ± 31 | 11,535 ± 58 | VA | [70,71] |
Sweden | Atteköpsmosse | 12,900 a | 11,500 a | HDT, VA | [5,60] |
Sweden | Hässeldala port | 12,931 ± 90 | 11,564 ± 158 | HDT, VA | [5,67,68,69] |
Denmark | Store Slotseng | 12,405 ± 233 | 11,500 b | HDT, VA | [84,85] |
Germany | Nahe | 12,540 b | 11,560 b | VA, LST | [53,76] |
Germany | Endinger Bruch | 12,679–12,212 | 12,138–11,631 | HDT, VA, LST | [66] |
Germany | Meerfelder Maar | 12,679 v | 11,590 v | VA, LST | [32,74,75] |
Germany | Rehwiese | 12,675 v | 11,690 v | LST | [4] |
Poland | Wegliny | 12,626 ± 101 | 11,471 ± 85 | HDT, LST | [87] |
Poland | Czechowskie/Trzechowskie | 12,678 v | 11,540 b | LST | [31,61,62] |
Czech Republic | Stará Jímka | 12,727 ± 92 * | 11,435 ± 221 | LST | [52,83] |
Switzerland | Soppensee | 12,750–12,450 | 11,600–11,220 | VA, LST | [36,40,80,81,82] |
Italy | Lago Piccolo di Avigliana | 12,900–12,500 | n/a | VA, LST | [40,72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larsson, S.A.; Kylander, M.E.; Sannel, A.B.K.; Hammarlund, D. Synchronous or Not? The Timing of the Younger Dryas and Greenland Stadial-1 Reviewed Using Tephrochronology. Quaternary 2022, 5, 19. https://doi.org/10.3390/quat5020019
Larsson SA, Kylander ME, Sannel ABK, Hammarlund D. Synchronous or Not? The Timing of the Younger Dryas and Greenland Stadial-1 Reviewed Using Tephrochronology. Quaternary. 2022; 5(2):19. https://doi.org/10.3390/quat5020019
Chicago/Turabian StyleLarsson, Simon A., Malin E. Kylander, A. Britta K. Sannel, and Dan Hammarlund. 2022. "Synchronous or Not? The Timing of the Younger Dryas and Greenland Stadial-1 Reviewed Using Tephrochronology" Quaternary 5, no. 2: 19. https://doi.org/10.3390/quat5020019
APA StyleLarsson, S. A., Kylander, M. E., Sannel, A. B. K., & Hammarlund, D. (2022). Synchronous or Not? The Timing of the Younger Dryas and Greenland Stadial-1 Reviewed Using Tephrochronology. Quaternary, 5(2), 19. https://doi.org/10.3390/quat5020019