Reconstructing Paleoflood Occurrence and Magnitude from Lake Sediments
Abstract
:1. Introduction
2. Generation of a Flood Deposit
3. Flood-Recording Systems
4. Identifying Flood Layers
4.1. Spatial Patterns (Stratigraphic Correlation from a Set of Cores)
4.2. Visual Description
4.3. Grain Size
4.4. Density
4.5. Mineral and Isotopic Geochemistry
- (i)
- (ii)
- Grain-size. Different geochemical composition between the finest (e.g., enriched in K and/or Fe) and the coarsest sediment fractions (e.g., enriched in Zr or Ca) were observed, allowing the robust reconstruction of mm-scale changes in grain size [43,47]. Then, these elements or rather elementary ratios such as Ca/K or Ca/Fe, Zr/Fe and Zr/K can be used as grain size proxies to identify flood deposits [38,43,47,61,82] (Figure 4 and Figure 5). The association between an elementary ratio and the grain size variability, however, needs to be tested and confirmed for each study site as it is bound to the mineralogy of the lake catchment and may also reflect changes in sediment origin or weathering processes. In addition, K might be preferred to Fe to represent fine particles in settings sensitive to redox processes.
- (iii)
- Organic matter (OM) content. By using the incoherence/coherence (Inc/Coh) ratio and the Br element, it is possible to distinguish the detrital-rich flood layers in organic-rich sediment sequences. The Compton (Inc) and Rayleigh (Coh) scattering are linked to the mean atomic number of the sample. Carbon-rich sediments generate high Compton and low Rayleigh scattering [83], which explains the relationship observed between the Inc/Coh ratio and the carbon content in some sediments [31] (Figure 5). Br is known to be incorporated into the biomass and is thus often correlated with the OM content [84,85,86]. Moreover, different relationships between the Br and OM were observed according to the source of organic material [86], making the Br/OM ratio potentially relevant for flood detection by distinguishing terrestrial from aquatic organic matter.
4.6. Magnetic Properties
4.7. Organic Matter
4.8. High-Resolution Imaging and Automatic Detection of Flood Layers
5. Flood Layers among Event Layers
6. Reconstructing Paleoflood Occurrence
6.1. Dating the Flood Deposits
6.2. Calibrating the Record of Flood Occurrence
7. Reconstructing Paleoflood Magnitude
7.1. Proxy of Flood Magnitude
7.2. Calibrating the Record of Flood Magnitude
8. Understanding the Drivers of the Paleoflood Records
8.1. Hydrometeorological Drivers
8.2. Long-Term Effect of Catchment Modification
9. Open Challenges for Improving Paleoflood Reconstructions and Their Uses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNISDR; CRED. The Human Cost of Natural Disasters: A Global Perspective; Centre for Research on the Epidemiology of Disaster: Brussels, Belgium, 2015. [Google Scholar]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and climate: Emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci. 2014, 14, 1921–1942. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, B.; Cánovas, J.A.B.; Macdonald, N.; Toonen, W.H.; Baker, V.; Barriendos, M.; Benito, G.; Brauer, A.; Corella, J.P.; Denniston, R.; et al. Interpreting historical, botanical, and geological evidence to aid preparations for future floods. Wiley Interdiscip. Rev. Water 2019, 6, e1318. [Google Scholar] [CrossRef] [Green Version]
- Glur, L.; Wirth, S.B.; Büntgen, U.; Gilli, A.; Haug, G.H.; Schär, C.; Beer, J.; Anselmetti, F.S. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Sci. Rep. 2013, 3, 2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimbu, N.; Czymzik, M.; Ionita, M.; Lohmann, G.; Brauer, A. Atmospheric circulation patterns associated with the variability of River Ammer floods: Evidence from observed and proxy data. Clim. Past 2016, 12, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Evin, G.; Wilhelm, B.; Jenny, J.-P. Flood hazard assessment of the Rhône River revisited with reconstructed discharges from lake sediments. Glob. Planet. Chang. 2019, 172, 114–123. [Google Scholar] [CrossRef]
- Munoz, S.E.; Giosan, L.; Therrell, M.D.; Remo, J.W.F.; Shen, Z.; Sullivan, R.; Wiman, C.; O’Donnell, M.; Donnelly, J.P. Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 2018, 556, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Brunck, H.; Sirocko, F.; Albert, J. The ELSA-Flood-Stack: A reconstruction from the laminated sediments of Eifel maar structures during the last 60,000 years. Glob. Planet. Chang. 2016, 142, 136–146. [Google Scholar] [CrossRef]
- Forel, F.A. Les ravins sous-lacustres des fleuves glaciaires. C. R. Acad. Sci. Paris 1885, 1–3. [Google Scholar]
- Houbolt, J.J.H.C.; Jonker, J.B.M. Recent sediments in the eastern part of the Lake of Geneva (Lac Leman). Geol. Mijnbouw 1968, 47, 131–148. [Google Scholar]
- Kremer, K.; Corella, J.P.; Adatte, T.; Garnier, E.; Zenhäusern, G.; Girardclos, S. Origin of turbidites in deep Lake Geneva (France–Switzerland) in the last 1500 years. J. Sediment. Res. 2015, 85, 1455–1465. [Google Scholar] [CrossRef]
- Sturm, M.; Matter, A. Turbidites and varves in Lake Brienz (Switzerland): Deposition of clastic detritus by density currents. Spec. Publ. Int. Assoc. Sedimentol. 1978, 2, 147–168. [Google Scholar]
- Page, M.J.; Trustrum, N.A.; DeRose, R.C. A high resolution record of storm-induced erosion from lake sediments, New Zealand. J. Paleolimnol. 1994, 11, 333–348. [Google Scholar] [CrossRef]
- Eden, D.N.; Page, M.J. Palaeoclimatic implications of a storm erosion record from late Holocene lake sediments, North Island, New Zealand. Palaeogeogr. Palaeoclim. Palaeoecol. 1998, 139, 37–58. [Google Scholar] [CrossRef]
- Nesje, A.; Dahl, S.O.; Matthews, J.A.; Berrisford, M.S. A 4500-yr record of river floods obtained from a sediment core in Lake Atnsjoen, Eastern Norway. J. Paleolimnol. 2001, 25, 329–342. [Google Scholar] [CrossRef]
- Rodbell, D.T.; Seltzer, G.O.; Anderson, D.M.; Abbott, M.B.; Enfield, D.B.; Newman, J.H. An~15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 1999, 283, 516–520. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.L.; Bierman, P.R.; Lini, A.; Southon, J. 10,000 yr record of extreme hydrologic events. Geology 2000, 28, 335–338. [Google Scholar] [CrossRef]
- Noren, A.; Bierman, P.; Steig, E.J.; Lini, A.; Southon, J. Millennial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 2002, 419, 821–824. [Google Scholar] [CrossRef]
- Gilli, A.; Anselmetti, F.S.; Glur, L.; Wirth, S.B. Lake sediments as archives of recurrence rates and intensities of past flood events. In Dating Torrential Processes on Fans and Cones; Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 225–242. [Google Scholar]
- Schillereff, D.; Chiverrell, R.; Macdonald, N.; Hooke, J.M. Flood stratigraphies in lake sediments: A review. Earth-Sci. Rev. 2014, 135, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, B.; Canovas, J.A.B.; Aznar, J.P.C.; Kämpf, L.; Swierczynski, T.; Stoffel, M.; Støren, E.; Toonen, W. Recent advances in paleoflood hydrology: From new archives to data compilation and analysis. Water Secur. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Mulder, T.; Chapron, E. Flood deposits in continental and marine environments: Character and significance. In Sediment Transfer from Shelf to Deep Water—Revisiting the Delivery System: Aapg Studies in Geology; The American Association of Petroleum Geologists and SEPM: Tulsa, OK, USA, 2011; pp. 1–30. [Google Scholar]
- Crookshanks, S.; Gilbert, R. Continuous, diurnally fluctuating turbidity currents in Kluane Lake, Yukon Territory. Can. J. Earth Sci. 2008, 45, 1123–1138. [Google Scholar] [CrossRef]
- Wilhelm, B.; Sabatier, P.; Arnaud, F. Is a regional flood signal reproducible from lake sediments? Sedimentology 2015, 62, 1103–1117. [Google Scholar] [CrossRef]
- Swierczynski, T.; Lauterbach, S.; Dulski, P.; Delgado, J.; Merz, B.; Brauer, A. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quat. Sci. Rev. 2013, 80, 78–90. [Google Scholar] [CrossRef]
- Schillereff, D.N. A review of in situ measurement techniques for investigating suspended sediment dynamics in lakes. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 2015. [Google Scholar]
- Kämpf, L.; Brauer, A.; Swierczynski, T.; Czymzik, M.; Mueller, P.; Dulski, P. Processes of flood-triggered detrital layer deposition in the varved Lake Mondsee sediment record revealed by a dual calibration approach. J. Quat. Sci. 2014, 29, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Kämpf, L.; Mueller, P.; Höllerer, H.; Plessen, B.; Naumann, R.; Thoss, H.; Güntner, A.; Merz, B.; Brauer, A. Hydrological and sedimentological processes of flood layer formation in Lake Mondsee. Depos. Rec. 2015, 1, 18–37. [Google Scholar] [CrossRef]
- Schneider, J.-L.; Pollet, N.; Chapron, E.; Wessels, M.; Wassmer, P. Signature of Rhine Valley sturzstrom dam failures in Holocene sediments of Lake Constance, Germany. Sediment. Geol. 2004, 169, 75–91. [Google Scholar] [CrossRef]
- Chapron, E.; Juvigné, E.; Mulsow, S.; Ariztegui, D.; Magand, O.; Bertrand, S.; Pino, M.; Chapron, O. Recent clastic sedimentation processes in Lake Puyehue (Chilean Lake District, 40.5° S). Sediment. Geol. 2007, 201, 365–385. [Google Scholar] [CrossRef]
- Guyard, H.; Chapron, E.; St-Onge, G.; Anselmetti, F.; Arnaud, F.; Magand, O.; Francus, P.; Mélières, M.-A. High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif). Quat. Sci. Rev. 2007, 26, 2644–2660. [Google Scholar] [CrossRef]
- Støren, E.N.; Dahl, S.O.; Lie, Ø. Separation of late-Holocene episodic paraglacial events and glacier fluctuations in eastern Jotunheimen, central southern Norway. Holocene 2008, 18, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Osleger, D.A.; Heyvaert, A.C.; Stoner, J.S.; Verosub, K.L. Lacustrine turbidites as indicators of Holocene storminess and climate: Lake Tahoe, California and Nevada. J. Paleolimnol. 2009, 42, 103–122. [Google Scholar] [CrossRef]
- Ito, T.; Iwamoto, H.; Kamiya, K.; Fukushima, T.; Kumon, F. Use of flood chronology for detailed environmental analysis: A case study of Lake Kizaki in the northern Japanese Alps, central Japan. Environ. Earth Sci. 2010, 60, 1607–1618. [Google Scholar] [CrossRef]
- Saitoh, Y.; Masuda, F. Spatial change of grading pattern of subaqueous flood deposits in Lake Shinji, Japan. J. Sediment. Res. 2013, 83, 221–233. [Google Scholar] [CrossRef]
- Vannière, B.; Magny, M.; Joannin, S.; Simonneau, A.; Wirth, S.B.; Hamann, Y.; Chapron, E.; Gilli, A.; Desmet, M.; Anselmetti, F.S. Orbital changes, variation in solar activity and increased anthropogenic activities: Controls on the Holocene flood frequency in the Lake Ledro Area, northern Italy. Clim. Past 2013, 9, 1193–1209. [Google Scholar] [CrossRef] [Green Version]
- Santos-González, J.; Gómez-Villar, A.; González-Gutiérrez, R.B.; Corella, J.P.; Benito, G.; Redondo-Vega, J.M.; Melón-Nava, A.; Valero-Garcés, B. Geomorphological impact, hydraulics and watershed-lake connectivity during extreme floods in mountain areas: The 1959 Vega De Tera dam failure, NW Spain. Geomorphology 2021, 375, 107531. [Google Scholar] [CrossRef]
- Corella, J.; Benito, G.; Rodriguez-Lloveras, X.; Brauer, A.; Garcés, B.V. Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quat. Sci. Rev. 2014, 93, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, B.; Vogel, H.; Crouzet, C.; Etienne, D.; Anselmetti, F.S. Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains. Clim. Past 2016, 12, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Corella, J.P.; Benito, G.; Monteoliva, A.P.; Sigro, J.; Calle, M.; Valero-Garcés, B.L.; Stefanova, V.; Rico, E.; Favre, A.-C.; Wilhelm, B. A 1400-years flood frequency reconstruction for the Basque country (N Spain): Integrating geological, historical and instrumental datasets. Quat. Sci. Rev. 2021, 262, 106963. [Google Scholar] [CrossRef]
- Wilhelm, B.; Malet, E.; Allignol, F.; Legaz, A.; Giguet-Covex, C.; Magand, O.; Enters, D.; Arnaud, F.; Revillon, S. Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record. Clim. Chang. 2012, 113, 563–581. [Google Scholar] [CrossRef]
- Brodzikowski, K.; van Loon, A.J. Glacigenic Sediments; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Wilhelm, B.; Arnaud, F.; Sabatier, P.; Magand, O.; Chapron, E.; Courp, T.; Tachikawa, K.; Fanget, B.; Malet, E.; Pignol, C. Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps. J. Quat. Sci. 2013, 28, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Vandekerkhove, E.; Bertrand, S.; Mauquoy, D.; McWethy, D.; Reid, B.; Stammen, S.; Saunders, K.M.; Torrejón, F. Neoglacial increase in high-magnitude glacial lake outburst flood frequency, upper Baker River, Chilean Patagonia (47° S). Quat. Sci. Rev. 2020, 248, 106572. [Google Scholar] [CrossRef]
- Simonneau, A.; Doyen, E.; Chapron, E.; Millet, L.; Vannière, B.; Di Giovanni, C.; Bossard, N.; Tachikawa, K.; Bard, E.; Albéric, P.; et al. Holocene land-use evolution and associated soil erosion in the French Prealps inferred from Lake Paladru sediments and archaeological evidences. J. Archaeol. Sci. 2013, 40, 1636–1645. [Google Scholar] [CrossRef] [Green Version]
- Bajard, M.; Poulenard, J.; Sabatier, P.; Bertrand, Y.; Crouzet, C.; Ficetola, G.F.; Blanchet, C.; Messager, E.; Giguet-Covex, C.; Gielly, L.; et al. Pastoralism increased vulnerability of a subalpine catchment to flood hazard through changing soil properties. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 538, 109462. [Google Scholar] [CrossRef]
- Giguet-Covex, C.; Arnaud, F.; Enters, D.; Poulenard, J.; Millet, L.; Francus, P.; David, F.; Rey, P.; Wilhelm, B.; Delannoy, J.J. Frequency and intensity of high-altitude floods over the last 3.5 ka in northwestern French Alps (Lake Anterne). Quat. Res. 2012, 77, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Giguet-Covex, C.; Arnaud, F.; Poulenard, J.; Disnar, J.; Delhon, C.; Francus, P.; David, F.; Enters, D.; Rey, P.-J.; Delannoy, J.J. Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 M Asl, NW French Alps): The role of climate and human activities. Holocene 2011, 21, 651–665. [Google Scholar] [CrossRef]
- Howarth, J.; Fitzsimons, S.J.; Norris, R.J.; Jacobsen, G.E. Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand. Geology 2012, 40, 1091–1094. [Google Scholar] [CrossRef]
- Fouinat, L.; Sabatier, P.; Poulenard, J.; Etienne, D.; Crouzet, C.; Develle, A.-L.; Doyen, E.; Malet, E.; Reyss, J.-L.; Sagot, C.; et al. One thousand seven hundred years of interaction between glacial activity and flood frequency in proglacial Lake Muzelle (western French Alps). Quat. Res. 2017, 87, 407–422. [Google Scholar] [CrossRef]
- Wirth, S.B.; Glur, L.; Gilli, A.; Anselmetti, F.S. Holocene flood frequency across the Central Alps—Solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quat. Sci. Rev. 2013, 80, 112–128. [Google Scholar] [CrossRef]
- Corella, J.P.; Valero-Garcés, B.; Vicente-Serrano, S.; Brauer, A.; Benito, G. On the frequency, seasonality and atmospheric drivers of late Holocene heavy rainfall in western Mediterranean. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kremer, K.; Corella, J.P.; Hilbe, M.; Marillier, F.; Dupuy, D.; Zenhäusern, G.; Girardclos, S. Changes in distal sedimentation regime of the Rhone delta system controlled by subaquatic channels (Lake Geneva, Switzerland/France). Mar. Geol. 2015, 370, 125–135. [Google Scholar] [CrossRef]
- Jenny, J.-P.; Wilhelm, B.; Arnaud, F.; Sabatier, P.; Covex, C.G.; Melo, A.; Fanget, B.; Malet, E.; Ployon, E.; Perga, M.E. A 4d sedimentological approach to reconstructing the flood frequency and intensity of the Rhône River (Lake Bourget, NW European Alps). J. Paleolimnol. 2014, 51, 469–483. [Google Scholar] [CrossRef]
- Czymzik, M.; Brauer, A.; Dulski, P.; Plessen, B.; Naumann, R.; von Grafenstein, U.; Scheffler, R. Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-alpine Lake Ammersee (southern Germany). Quat. Sci. Rev. 2013, 61, 96–110. [Google Scholar] [CrossRef]
- Støren, E.N.; Dahl, S.O.; Nesje, A.; Paasche, Ø. Identifying the sedimentary imprint of high-frequency Holocene river floods in lake sediments: Development and application of a new method. Quat. Sci. Rev. 2010, 29, 3021–3033. [Google Scholar] [CrossRef]
- Schillereff, D.; Chiverrell, R.; Macdonald, N.; Hooke, J.M. Hydrological thresholds and basin control over paleoflood records in lakes. Geology 2016, 44, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, B.; Nomade, J.; Crouzet, C.; Litty, C.; Sabatier, P.; Belle, S.; Rolland, Y.; Revel, M.; Courboulex, F.; Arnaud, F.; et al. Quantified sensitivity of small lake sediments to record historic earthquakes: Implications for paleoseismology. J. Geophys. Res. Earth Surf. 2016, 121, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.; Crookshanks, S.; Hodder, K.R.; Spagnol, J.; Stull, R.B. The record of an extreme flood in the sediments of Montane Lillooet Lake, British Columbia: Implications for paleoenvironmental assessment. J. Paleolimnol. 2006, 35, 737–745. [Google Scholar] [CrossRef]
- Schnurrenberger, D.; Russell, J.; Kelts, K. Classification of lacustrine sediments based on sedimentary components. J. Paleolimnol. 2003, 29, 141–154. [Google Scholar] [CrossRef]
- Rapuc, W.; Sabatier, P.; Arnaud, F.; Palumbo, A.; Develle, A.; Reyss, J.; Augustin, L.; Régnier, E.; Piccin, A.; Chapron, E. Holocene-long record of flood frequency in the southern Alps (Lake Iseo, Italy) under human and climate forcing. Glob. Planet. Chang. 2019, 175, 160–172. [Google Scholar] [CrossRef]
- Monecke, K.; Anselmetti, F.S.; Becker, A.; Sturm, M.; Giardini, D. The record of historic earthquakes in lake sediments of Central Switzerland. Tectonophysics 2004, 394, 21–40. [Google Scholar] [CrossRef]
- Corella, J.P.; Moreno, A.; Morellón, M.; Rull, V.; Giralt, S.; Rico, M.T.; Pérez-Sanz, A.; Valero-Garcés, B.L. Climate and human impact on a meromictic lake during the last 6000 years (Montcortès Lake, central Pyrenees, Spain). J. Paleolimnol. 2011, 46, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Czymzik, M.; Dulski, P.; Plessen, B.; Von Grafenstein, U.; Naumann, R.; Brauer, A. A 450 year record of spring-summer flood layers in annually laminated sediments from Lake Ammersee (southern Germany). Water Resour. Res. 2010, 46, W11528. [Google Scholar] [CrossRef] [Green Version]
- Corella, J.P.; Brauer, A.; Mangili, C.; Rull, V.; Vegas-Vilarrúbia, T.; Morellón, M.; Valero-Garcés, B.L. The 1.5-ka varved record of Lake Montcortès (Southern Pyrenees, NE Spain). Quat. Res. 2012, 78, 323–332. [Google Scholar] [CrossRef]
- Cockburn, J.; Lamoureux, S. Century-scale variability in late-summer rainfall events recorded over seven centuries in subannually laminated lacustrine sediments, White Pass, British Columbia. Quat. Res. 2007, 67, 193–203. [Google Scholar] [CrossRef]
- Mangili, C.; Brauer, A.; Moscariello, A.; Naumann, R. Microfacies of detrital event layers deposited in Quaternary varved lake sediments of the Pianico-Sellere Basin (northern Italy). Sedimentology 2005, 52, 927–943. [Google Scholar] [CrossRef]
- Amann, B.; Szidat, S.; Grosjean, M. A millennial-long record of warm season precipitation and flood frequency for the North-western Alps inferred from varved lake sediments: Implications for the future. Quat. Sci. Rev. 2015, 115, 89–100. [Google Scholar] [CrossRef]
- Loizeau, J.-L.; Arbouille, D.; Santiago, S.; Vernet, J.P. Evaluation of a wide range laser diffraction grain size analyser for use with sediments. Sedimentology 1994, 41, 353–361. [Google Scholar] [CrossRef]
- Parris, A.S.; Bierman, P.R.; Noren, A.J.; Prins, M.A.; Lini, A. Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States. J. Paleolimnol. 2010, 43, 29–49. [Google Scholar] [CrossRef]
- Arnaud, F.; Lignier, V.; Revel, M.; Desmet, M.; Beck, C.; Pourchet, M.; Charlet, F.; Trentesaux, A.; Tribovillard, N. Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps). Terra Nova 2002, 14, 225–232. [Google Scholar] [CrossRef]
- Wilhelm, B.; Arnaud, F.; Sabatier, P.; Crouzet, C.; Brisset, E.; Chaumillon, E.; Disnar, J.; Guiter, F.; Malet, E.; Reyss, J. 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quat. Res. 2012, 78, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Engeland, K.; Aano, A.; Steffensen, I.; Støren, E.; Paasche, Ø. New flood frequency estimates for the largest river in Norway based on the combination of short and long time series. Hydrol. Earth Syst. Sci. 2020, 24, 5595–5619. [Google Scholar] [CrossRef]
- Boyce, R.E. Definitions and laboratory techniques of compressional sound velocity parameters and wet water content, bulk density, and porosity parameters by gravimetric and gamma-ray attenuation techniques. Initial Rep. Deep Sea Drill. Proj. 1976, 33, 931–958. [Google Scholar]
- Boes, E.; Van Daele, M.; Moernaut, J.; Schmidt, S.; Jensen, B.J.; Praet, N.; Kaufman, D.; Haeussler, P.; Loso, M.G.; De Batist, M. Varve formation during the past three centuries in three large proglacial lakes in south-central Alaska. GSA Bull. 2018, 130, 757–774. [Google Scholar] [CrossRef]
- Røthe, T.O.; Bakke, J.; Støren, E.W.N. Glacier outburst floods reconstructed from lake sediments and their implications for Holocene variations of the plateau glacier Folgefonna in western Norway. Boreas 2019, 48, 616–634. [Google Scholar] [CrossRef]
- Fortin, D.; Francus, P.; Gebhardt, A.C.; Hahn, A.; Kliem, P.; Lisé-Pronovost, A.; The PASADO Science Team. Destructive and non-destructive density determination: Method comparison and evaluation from the Laguna Potrok Aike sedimentary record. Quat. Sci. Rev. 2013, 71, 147–153. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rothwell, R.G. Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences; Springer: New York, NY, USA, 2015; Volume 17. [Google Scholar]
- Moreno, A.; López-Merino, L.; Leira, M.; Marco-Barba, J.; González-Sampériz, P.; Valero-Garcés, B.L.; López-Sáez, J.A.; Santos, L.; Mata, P.; Ito, E.; et al. Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J. Paleolimnol. 2011, 46, 327–349. [Google Scholar] [CrossRef] [Green Version]
- Kampf, L.; Brauer, A.; Dulski, P.; Lami, A.; Marchetto, A.; Gerli, S.; Ambrosetti, W.; Guilizzoni, P. Detrital layers marking flood events in recent sediments of Lago Maggiore (N. Italy) and their comparison with instrumental data. Freshw. Biol. 2012, 57, 2076–2090. [Google Scholar] [CrossRef]
- Marshall, M.H.; Lamb, H.F.; Huws, D.; Davies, S.J.; Bates, R.; Bloemendal, J.; Boyle, J.; Leng, M.J.; Umer, M.; Bryant, C. Late Pleistocene and Holocene drought events at Lake Tana, the source of the Blue Nile. Glob. Planet. Chang. 2011, 78, 147–161. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Z.; He, Z.; Zhou, L.; Xu, J. New insights into dating the sediment sequence within a landslide-dammed reservoir on the Chinese Loess Plateau. Holocene 2019, 29, 1020–1029. [Google Scholar] [CrossRef]
- Croudace, I.; Rindby, A.; Rothwell, R.G. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. In New Techniques in Sediment Core Analysis; Rothwell, R.G., Ed.; The Geological Society of London: London, UK, 2006; pp. 51–63. [Google Scholar]
- Gilfedder, B.S.; Petri, M.; Wessels, M.; Biester, H. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance. Geochim. Cosmochim. Acta 2011, 75, 3385–3401. [Google Scholar] [CrossRef]
- Bajard, M.; Sabatier, P.; David, F.; Develle, A.-L.; Reyss, J.-L.; Fanget, B.; Malet, E.; Arnaud, D.; Augustin, L.; Crouzet, C.; et al. Erosion record in Lake La Thuile sediments (Prealps, France): Evidence of montane landscape dynamics throughout the Holocene. Holocene 2016, 26, 350–364. [Google Scholar] [CrossRef]
- Guevara, S.R.; Rizzo, A.; Daga, R.; Williams, N.; Villa, S. Bromine as indicator of source of lacustrine sedimentary organic matter in paleolimnological studies. Quat. Res. 2019, 92, 257–271. [Google Scholar] [CrossRef]
- Kämpf, L.; Plessen, B.; Lauterbach, S.; Nantke, C.; Meyer, H.; Chapligin, B.; Brauer, A.; Kämp, L. Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy. Geology 2020, 48, 3–7. [Google Scholar] [CrossRef]
- Jouve, G.; Lisé-Pronovost, A.; Francus, P.; De Coninck, A.S.; The PASADO Science Team. Climatic influence of the latest Antarctic isotope maximum of the last glacial period (AIM4) on Southern Patagonia. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 472, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Wirth, S.B.; Gilli, A.; Simonneau, A.; Ariztegui, D.; Vannière, B.; Glur, L.; Chapron, E.; Magny, M.; Anselmetti, F.S. A 2000 year long seasonal record of floods in the southern European Alps. Geophys. Res. Lett. 2013, 40, 4025–4029. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.; Oldfield, F. The Rhode River, Chesapeake Bay, an integrated catchment study. In Environmental Magnetism; Springer: Dordrecht, The Netherlands, 1986; pp. 185–197. [Google Scholar] [CrossRef]
- Bøe, A.-G.; Dahl, S.O.; Lie, Ø.; Nesje, A. Holocene river floods in the upper Glomma catchment, southern Norway: A high-resolution multiproxy record from lacustrine sediments. Holocene 2006, 16, 445–455. [Google Scholar] [CrossRef]
- Støren, E.W.N.; Paasche, Ø.; Hirt, A.M.; Kumari, M. Magnetic and geochemical signatures of flood layers in a lake system. Geochem. Geophys. Geosystems 2016, 17, 4236–4253. [Google Scholar] [CrossRef]
- Lauterbach, S.; Chapron, E.; Brauer, A.; Hülsbusch, M.; Gilli, A.; Arnaud, F.; Piccin, A.; Nomade, J.; Desmet, M.; von Grafenstein, U.; et al. A sedimentary record of Holocene surface runoff events and earthquake activity from Lake Iseo (Southern Alps, Italy). Holocene 2012, 22, 749–760. [Google Scholar] [CrossRef]
- Vasskog, K.; Nesje, A.; Støren, E.N.; Waldmann, N.; Chapron, E.; Ariztegui, D. A Holocene record of snow-avalanche and flood activity reconstructed from a lacustrine sedimentary sequence in Oldevatnet, western Norway. Holocene 2011, 21, 597–614. [Google Scholar] [CrossRef]
- Kvisvik, B.C.; Paasche, Ø.; Dahl, S.O. Holocene cirque glacier activity in Rondane, Southern Norway. Geomorphology 2015, 246, 433–444. [Google Scholar] [CrossRef]
- Ota, Y.; Kawahata, H.; Sato, T.; Seto, K. Flooding history of Lake Nakaumi, western Japan, inferred from sediment records spanning the past 700 years. J. Quat. Sci. 2017, 32, 1063–1074. [Google Scholar] [CrossRef]
- Johansson, F.E.; Bakke, J.; Støren, E.N.; Paasche, Ø.; Engeland, K.; Arnaud, F. Lake sediments reveal large variations in flood frequency over the last 6,500 years in south-western Norway. Front. Earth Sci. 2020, 8, 239. [Google Scholar] [CrossRef]
- Lanci, L.; Lowrie, W. Magnetostratigraphic evidence that ‘tiny wiggles’ in the oceanic magnetic anomaly record represent geomagnetic paleointensity variations. Earth Planet. Sci. Lett. 1997, 148, 581–592. [Google Scholar] [CrossRef]
- Gilli, A.; Anselmetti, F.S.; Ariztegui, D.; McKenzie, J.A. A 600-year sedimentary record of flood events from two sub-alpine lakes (Schwendiseen, Northeastern Switzerland). In Lake Systems from the Ice Age to Industrial Time; Ariztegui, D., Ed.; Birkhäuser: Basel, Switzerland, 2003; pp. 49–58. [Google Scholar]
- Schlolaut, G.; Brauer, A.; Marshall, M.H.; Nakagawa, T.; Staff, R.A.; Ramsey, C.B.; Lamb, H.F.; Bryant, C.L.; Naumann, R.; Dulski, P. Event layers in the Japanese Lake Suigetsu ‘Sg06’sediment core: Description, interpretation and climatic implications. Quat. Sci. Rev. 2014, 83, 157–170. [Google Scholar] [CrossRef]
- Moreno, A.; Valero-Garcés, B.L.; González-Sampériz, P.; Rico, M. Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J. Paleolimnol. 2008, 40, 943–961. [Google Scholar] [CrossRef] [Green Version]
- Lemcke, G.; Heiri, O.; Lotter, A.F. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Behar, F.; Beaumont, V.; Penteado, H.D.B. Rock-Eval 6 technology: Performances and developments. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Graz, Y.; Di-Giovanni, C.; Copard, Y.; Laggoun-Défarge, F.; Boussafir, M.; Lallier-Vergès, E.; Baillif, P.; Perdereau, L.; Simonneau, A. Quantitative palynofacies analysis as a new tool to study transfers of fossil organic matter in recent terrestrial environments. Int. J. Coal Geol. 2010, 84, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Bertrand, S.; Sterken, M.; Vargas-Ramirez, L.; de Batist, M.; Vyverman, W.; Lepoint, G.; Fagel, N. Bulk organic geochemistry of sediments from Puyehue Lake and its watershed (Chile, 40 S): Implications for paleoenvironmental reconstructions. Palaeogeogr. Palaeoclim. Palaeoecol. 2010, 294, 56–71. [Google Scholar] [CrossRef]
- Meyers, P.A.; Teranes, J.L. Tracking Environmental Change Using Lake Sediments; Springer: Berlin, Germany, 2001; pp. 239–270. [Google Scholar]
- Debret, M.; Sebag, D.; Desmet, M.; Balsam, W.; Copard, Y.; Mourier, B.; Susperrigui, A.S.; Arnaud, F.; Bentaleb, I.; Chapron, E.; et al. Spectrocolorimetric interpretation of sedimentary dynamics: The new “Q7/4 diagram”. Earth-Sci. Rev. 2011, 109, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Rapuc, W.; Jacq, K.; Develle-Vincent, A.-L.; Sabatier, P.; Fanget, B.; Perrette, Y.; Coquin, D.; Debret, M.; Wilhelm, B.; Arnaud, F. XRF and hyperspectral analyses as an automatic way to detect flood events in sediment cores. Sediment. Geol. 2020, 409, 105776. [Google Scholar] [CrossRef]
- Jacq, K.; Ployon, E.; Rapuc, W.; Blanchet, C.; Pignol, C.; Coquin, D.; Fanget, B. Structure-from-motion, multi-view stereo photogrammetry applied to line-scan sediment core images. J. Paleolimnol. 2021, 66, 249–260. [Google Scholar] [CrossRef]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Fouinat, L.; Sabatier, P.; David, F.; Montet, X.; Schoeneich, P.; Chaumillon, E.; Poulenard, J.; Arnaud, F. Wet avalanches: Long-term evolution in the Western Alps under climate and human forcing. Clim. Past 2018, 14, 1299–1313. [Google Scholar] [CrossRef] [Green Version]
- Foucher, A.; Evrard, O.; Cerdan, O.; Chabert, C.; Lecompte, F.; Lefèvre, I.; Vandromme, R.; Salvador-Blanes, S. A quick and low-cost technique to identify layers associated with heavy rainfall in sediment archives during the anthropocene. Sedimentology 2020, 67, 486–501. [Google Scholar] [CrossRef]
- Beck, C. Late quaternary lacustrine paleo-seismic archives in north-western Alps: Examples of earthquake-origin assessment of sedimentary disturbances. Earth-Sci. Rev. 2009, 96, 327–344. [Google Scholar] [CrossRef]
- Van Daele, M.; Moernaut, J.; Doom, L.; Boes, E.; Fontijn, K.; Heirman, K.; Vandoorne, W.; Hebbeln, D.; Pino, M.; Urrutia, R.; et al. A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology. Sedimentology 2015, 62, 1466–1496. [Google Scholar] [CrossRef]
- Praet, N.; Van Daele, M.; Collart, T.; Moernaut, J.; Vandekerkhove, E.; Kempf, P.; Haeussler, P.J.; De Batist, M. Turbidite stratigraphy in proglacial lakes: Deciphering trigger mechanisms using a statistical approach. Sedimentology 2020, 67, 2332–2359. [Google Scholar] [CrossRef]
- Le Dantec, N.; Stark, N.; Gerard, J.; González-Quijano, M.; Loizeau, J.-L.; Hilbe, M.; Corella, J.; Girardclos, S.; Kremer, K. The role of mass-transport deposits and turbidites in shaping modern lacustrine deepwater channels. Mar. Petrol. Geol. 2016, 77, 515–525. [Google Scholar] [CrossRef]
- Sabatier, P.; Wilhelm, B.; Ficetola, G.F.; Moiroux, F.; Poulenard, J.; Develle, A.-L.; Bichet, A.; Chen, W.; Pignol, C.; Reyss, J.-L.; et al. 6-kyr record of flood frequency and intensity in the western Mediterranean Alps—Interplay of solar and temperature forcing. Quat. Sci. Rev. 2017, 170, 121–135. [Google Scholar] [CrossRef]
- Giguet-Covex, C.; Arnaud, F.; Poulenard, J.; Enters, D.; Reyss, J.; Millet, L.; Lazzaroto, J.; Vidal, O. Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps. J. Paleolimnol. 2010, 43, 171–190. [Google Scholar] [CrossRef]
- Wilhelm, B.; Vogel, H.; Anselmetti, F. A multi-centennial record of past floods and earthquakes in Valle D’aosta, Mediterranean Italian Alps. Nat. Hazards Earth Syst. Sci. 2017, 17, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Passega, R. Grain size representation by CM patterns as a geologic tool. J. Sediment. Res. 1964, 34, 830–847. [Google Scholar] [CrossRef]
- Van Daele, M.; Haeussler, P.J.; Witter, R.C.; Praet, N.; de Batist, M. The sedimentary record of the 2018 anchorage earthquake in Eklutna Lake, Alaska: Calibrating the lacustrine seismograph. Seismol. Res. Lett. 2020, 91, 126–141. [Google Scholar] [CrossRef]
- Bruel, R.; Sabatier, P. Serac: Ar Package for shortlived radionuclide chronology of recent sediment cores. J. Environ. Radioact. 2020, 225, 106449. [Google Scholar] [CrossRef] [PubMed]
- Zander, P.D.; Szidat, S.; Kaufman, D.S.; Żarczyński, M.; Poraj-Górska, A.I.; Boltshauser-Kaltenrieder, P.; Grosjean, M. Miniature radiocarbon measurements (<150 μg C) from sediments of Lake Żabińskie, Poland: Effect of precision and dating density on age-depth models. Geochronology 2020, 2, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Labuhn, I.; Hammarlund, D.; Chapron, E.; Czymzik, M.; Dumoulin, J.-P.; Nilsson, A.; Régnier, E.; Robygd, J.; Von Grafenstein, U. Holocene hydroclimate variability in central Scandinavia inferred from flood layers in contourite drift deposits in Lake Storsjön. Quaternary 2018, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Chiverrell, R.; Sear, D.; Warburton, J.; Macdonald, N.; Schillereff, D.; Dearing, J.; Croudace, I.; Brown, J.; Bradley, J. Using lake sediment archives to improve understanding of flood magnitude and frequency: Recent extreme flooding in northwest UK. Earth Surf. Process. Landf. 2019, 44, 2366–2376. [Google Scholar] [CrossRef]
- Schillereff, D.; Chiverrell, R.; Macdonald, N.; Hooke, J.; Welsh, K.; Piliposian, G.; Croudace, I. Convergent human and climate forcing of late-Holocene flooding in Northwest England. Glob. Planet. Chang. 2019, 182, 102998. [Google Scholar] [CrossRef]
- Crouzet, C.; Wilhelm, B.; Sabatier, P.; Demory, F.; Thouveny, N.; Pignol, C.; Reyss, J.-L.; Magand, O.; Jeltsch-Thömmes, A.; Bajard, M.; et al. Palaeomagnetism for chronologies of recent alpine lake sediments: Successes and limits. J. Paleolimnol. 2019, 62, 259–278. [Google Scholar] [CrossRef]
- Trachsel, M.; Telford, R.J. All age–depth models are wrong, but are getting better. Holocene 2017, 27, 860–869. [Google Scholar] [CrossRef]
- Zolitschka, B.; Francus, P.; Ojala, A.E.K.; Schimmelmann, A. Varves in lake sediments–A review. Quat. Sci. Rev. 2015, 117, 1–41. [Google Scholar] [CrossRef]
- Swierczynski, T.; Brauer, A.; Lauterbach, S.; Martín-Puertas, C.; Dulski, P.; von Grafenstein, U.; Rohr, C. A 1600 yr seasonally resolved record of decadal-scale flood variability from the Austrian Pre-Alps. Geology 2012, 40, 1047–1050. [Google Scholar] [CrossRef]
- Witt, A.; Malamud, B.D.; Mangili, C.; Brauer, A. Analysis and modelling of a 9.3 kyr palaeoflood record: Correlations, clustering, and cycles. Hydrol. Earth Syst. Sci. 2017, 21, 5547–5581. [Google Scholar] [CrossRef] [Green Version]
- Irmler, R.; Daut, G.; Mäusbacher, R. A debris flow calendar derived from sediments of lake Lago Di Braies (N. Italy). Geomorphology 2006, 77, 69–78. [Google Scholar] [CrossRef]
- Stewart, M.M.; Grosjean, M.; Kuglitsch, F.G.; Nussbaumer, S.U.; von Gunten, L. Reconstructions of late Holocene paleofloods and glacier length changes in the Upper Engadine, Switzerland (Ca. 1450 Bc–Ad 420). Palaeogeogr. Palaeoclim. Palaeoecol. 2011, 311, 215–223. [Google Scholar] [CrossRef]
- Lapointe, F.; Francus, P.; Lamoureux, S.F.; Saïd, M.; Cuven, S. 1750 years of large rainfall events inferred from particle size at East Lake, Cape Bounty, Melville Island, Canada. J. Paleolimnol. 2012, 48, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, I.; Brauer, A.; Schwab, M.J.; Dulski, P.; Frank, U.; Hadzhiivanova, E.; Kitagawa, H.; Litt, T.; Schiebel, V.; Taha, N. Evidences for centennial dry periods at ~3300 and ~2800 cal. yr BP from micro-facies analyses of the Dead Sea sediments. Holocene 2015, 25, 1358–1371. [Google Scholar] [CrossRef]
- Schiefer, E.; Menounos, B.; Slaymaker, O. Extreme sediment delivery events recorded in the contemporary sediment record of a Montane Lake, Southern Coast Mountains, British Columbia. Can. J. Earth Sci. 2006, 43, 1777–1790. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.G.; Wegmann, K.W.; Leithold, E.L.; Bohnenstiehl, D.R. A 4000-year record of hydrologic variability from the Olympic Mountains, Washington, DC, USA. Holocene 2019, 29, 1273–1291. [Google Scholar] [CrossRef]
- Kämpf, L.; Brauer, A.; Dulski, P.; Feger, K.; Jacob, F.; Klemt, E. Sediment imprint of the severe 2002 summer flood in the Lehnmühle Reservoir, Eastern Erzgebirge (Germany). E&G Quat. Sci. J. 2011, 61, 3–15. [Google Scholar]
- Corella, J.; Benito, G.; Wilhelm, B.; Montoya, E.; Rull, V.; Vegas-Vilarrúbia, T.; Valero-Garcés, B. A millennium-long perspective of flood-related seasonal sediment yield in Mediterranean watersheds. Glob. Planet. Chang. 2019, 177, 127–140. [Google Scholar] [CrossRef]
- Schiefer, E.; Gilbert, R.; Hassan, M.A. A lake sediment-based proxy of floods in the Rocky Mountain Front Ranges, Canada. J. Paleolimnol. 2011, 45, 137–149. [Google Scholar] [CrossRef]
- Schiefer, E.; Geck, J.; Ostman, J.S.; McKay, N.P.; Praet, N.; Loso, M.G.; Kaufman, D.S. Fluvial suspended sediment transfer and lacustrine sedimentation of recent flood turbidites in proglacial Eklutna Lake, Western Chugach Mountains, Alaska. Hydrol. Process. 2021, 35, e14375. [Google Scholar] [CrossRef]
- Tarasova, L.; Merz, R.; Kiss, A.; Basso, S.; Blöschl, G.; Merz, B.; Viglione, A.; Plötner, S.; Guse, B.; Schumann, A.; et al. Causative classification of river flood events. WIREs Water 2019, 6, e1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, F.; Wilhelm, B.; Anquetin, S. Is precipitation the main trigger of medium-magnitude floods in large alpine catchments? Water 2019, 11, 2507. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Kohnová, G.S.; Bálint, M.; Barbuc, M.; Borga, P.; Claps, S.; Cheval, A.; Dumitrescu, E.; Gaume, K.; Hlavčová, R.; et al. Seasonal characteristics of flood regimes across the Alpine–Carpathian range. J. Hydrol. 2010, 394, 78–89. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Kemter, M.; Merz, B.; Marwan, N.; Vorogushyn, S.; Blöschl, G. Joint trends in flood magnitudes and spatial extents across Europe. Geophys. Res. Lett. 2020, 47, e2020GL087464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Støren, E.N.; Kolstad, E.W.; Paasche, Ø. Linking past flood frequencies in Norway to regional atmospheric circulation anomalies. J. Quat. Sci. 2012, 27, 71–80. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G.; Ionita, M.; Czymzik, M.; Brauer, A. Interannual to millennial-scale variability of River Ammer floods and its relationship with solar forcing. Int. J. Climatol. 2021, 41, E644–E655. [Google Scholar] [CrossRef]
- Conticello, F.R.; Cioffi, F.; Lall, U.; Merz, B. Synchronization and delay between circulation patterns and high streamflow events in Germany. Water Resour. Res. 2020, 56, e2019WR025598. [Google Scholar] [CrossRef]
- Arnaud, F.; Poulenard, J.; Giguet-Covex, C.; Wilhelm, B.; Révillon, S.; Jenny, J.-P.; Revel, M.; Enters, D.; Bajard, M.; Fouinat, L.; et al. Erosion under climate and human pressures: An alpine lake sediment perspective. Quat. Sci. Rev. 2016, 152, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ahlborn, M.; Haberzettl, T.; Wang, J.; Alivernini, M.; Schlütz, F.; Schwarz, A.; Su, Y.; Frenzel, P.; Daut, G.; Zhu, L. Sediment dynamics and hydrologic events affecting small lacustrine systems on the southern-central Tibetan plateau—The example of TT Lake. Holocene 2015, 25, 508–522. [Google Scholar] [CrossRef]
- Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; et al. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res. 2017, 53, 5209–5219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sastre, V.; Loizeau, J.-L.; Greinert, J.; Naudts, L.; Arpagaus, P.; Anselmetti, F.; Wildi, W. Morphology and recent history of the Rhone river delta in Lake Geneva (Switzerland). Swiss J. Geosci. 2010, 103, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Girardclos, S.; Hilbe, M.; Corella, J.P.; Loizeau, J.L.; Kremer, K.; Delsontro, T.; Arantegui, A.; Moscariello, A.; Arlaud, F.; Akhtman, Y.; et al. Searching the Rhone delta channel in Lake Geneva since François Alphonse Forel. Arch. Sci. 2012, 65, 103–118. [Google Scholar]
- Corella, J.P.; Arantegui, A.; Loizeau, J.L.; DelSontro, T.; le Dantec, N.; Stark, N.; Anselmetti, F.S.; Girardclos, S. Sediment dynamics in the subaquatic channel of the Rhone delta (Lake Geneva, France/Switzerland). Aquat. Sci. 2014, 76, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Pansu, J.; Giguet-Covex, C.; Ficetola, G.F.; Gielly, L.; Boyer, F.; Zinger, L.; Arnaud, F.; Poulenard, J.; Taberlet, P.; Choler, P. Reconstructing long-term human impacts on plant communities: An ecological approach based on lake sediment DNA. Mol. Ecol. 2015, 24, 1485–1498. [Google Scholar] [CrossRef]
- Holzhauser, H.; Magny, M.J.; Zumbuühl, H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 2005, 15, 789–801. [Google Scholar] [CrossRef]
- Giguet-Covex, C.; Pansu, J.; Arnaud, F.F.; Rey, P.-J.; Griggo, C.; Gielly, L.; Domaizon, I.; Coissac, E.; David, F.; Choler, P.; et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 2014, 5, 3211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etienne, D.; Wilhelm, B.; Sabatier, P. Influences of sampled environments and livestock number on Sporormiella abundances in modern samples sediments in French Alps. J. Paleolimnol. 2013, 49, 117–127. [Google Scholar] [CrossRef]
- Ejarque, A.; Miras, Y.; Riera, S. Pollen and non-pollen palynomorph indicators of vegetation and highland grazing activities obtained from modern surface and dung datasets in the eastern Pyrenees. Rev. Palaeobot. Palynol. 2011, 167, 123–139. [Google Scholar] [CrossRef]
- Capo, E.; Giguet-Covex, C.; Rouillard, A.; Nota, K.; Heintzman, P.D.; Vuillemin, A.; Ariztegui, D.; Arnaud, F.; Belle, S.; Bertilsson, S.; et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: Overview and recommendations. Quaternary 2021, 4, 6. [Google Scholar] [CrossRef]
- Dubois, N.; Jacob, J. Molecular biomarkers of anthropic impacts in natural archives: A review. Front. Ecol. Evol. 2016, 4, 92. [Google Scholar] [CrossRef] [Green Version]
- England, J.F., Jr.; Julien, P.Y.; Velleux, M.L. Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds. J. Hydrol. 2014, 510, 228–245. [Google Scholar] [CrossRef]
- Smith, J.A.; Cox, A.A.; Baeck, M.L.; Yang, L.; Bates, P. Strange floods: The upper tail of flood peaks in the United States. Water Resour. Res. 2018, 54, 6510–6542. [Google Scholar] [CrossRef]
- Ward, P.J.; Renssen, H.; Aerts, J.C.J.H.; van Balen, R.T.; Vandenberghe, J. Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: Impacts of long-term anthropogenic land use change and climate variability. Hydrol. Earth Syst. Sci. 2008, 12, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Rogger, M.; Pirkl, H.; Viglione, A.; Komma, J.; Kohl, B.; Kirnbauer, R.; Merz, R.; Blöschl, G. Step changes in the flood frequency curve: Process controls. Water Resour. Res. 2012, 48, 15. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, J.; Lall, U.; Kushnir, Y.; Robertson, A.W.; Seager, R. Dynamical structure of extreme floods in the U.S. Midwest and the United Kingdom. J. Hydrometeorol. 2013, 14, 485–504. [Google Scholar] [CrossRef]
- George, S.S.; Hefner, A.M.; Avila, J. Paleofloods stage a comeback. Nat. Geosci. 2020, 13, 766–768. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilhelm, B.; Amann, B.; Corella, J.P.; Rapuc, W.; Giguet-Covex, C.; Merz, B.; Støren, E. Reconstructing Paleoflood Occurrence and Magnitude from Lake Sediments. Quaternary 2022, 5, 9. https://doi.org/10.3390/quat5010009
Wilhelm B, Amann B, Corella JP, Rapuc W, Giguet-Covex C, Merz B, Støren E. Reconstructing Paleoflood Occurrence and Magnitude from Lake Sediments. Quaternary. 2022; 5(1):9. https://doi.org/10.3390/quat5010009
Chicago/Turabian StyleWilhelm, Bruno, Benjamin Amann, Juan Pablo Corella, William Rapuc, Charline Giguet-Covex, Bruno Merz, and Eivind Støren. 2022. "Reconstructing Paleoflood Occurrence and Magnitude from Lake Sediments" Quaternary 5, no. 1: 9. https://doi.org/10.3390/quat5010009
APA StyleWilhelm, B., Amann, B., Corella, J. P., Rapuc, W., Giguet-Covex, C., Merz, B., & Støren, E. (2022). Reconstructing Paleoflood Occurrence and Magnitude from Lake Sediments. Quaternary, 5(1), 9. https://doi.org/10.3390/quat5010009