Approach for Analysis of Land-Cover Changes and Their Impact on Flooding Regime
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Land-Cover Change Analysis and Projection for Future
3.2. Flood Hazard Assessment and Impact Analysis
4. Results and Discussions
4.1. Results of Land-Cover Change Analysis and Projection for Future
4.2. Results of Flood Impact Analysis
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ranger, N.; Hallegatte, S.; Bhattacharya, S.; Bachu, M.; Priya, S.; Dhore, K.; Rafique, F.; Mathur, P.; Naville, N.; Henriet, F.; et al. An assessment of the potential impact of climate change on flood risk in Mumbai. Clim. Chang. 2011, 104, 139–167. [Google Scholar] [CrossRef]
- Blöschl, G.; Ardoin-Bardin, S.; Bonell, M.; Dorninger, M.; Goodrich, D.; Gutknecht, D.; Matamoros, D.; Merz, B.; Shand, P.; Szolgay, J. At what scales do climate variability and land cover change impact on flooding and low flows? Hydrol. Process. 2007, 21, 1241–1247. [Google Scholar] [CrossRef]
- Apollonio, C.; Balacco, G.; Novelli, A.; Tarantino, E.; Piccinni, A.F. Land use change impact on flooding areas: The case study of Cervaro basin (Italy). Sustainability 2016, 8, 996. [Google Scholar] [CrossRef]
- Iwami, Y.; Hasegawa, A.; Miyamoto, M.; Kudo, S.; Yusuke, Y.; Ushiyama, T.; Koike, T. Comparative study on climate change impact on precipitation and floods in Asian river basins. Hydrol. Res. Lett. 2017, 11, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Detrembleur, S.; Stilmant, F.; Dewals, B.; Erpicum, S.; Archambeau, P.; Pirotton, M. Impacts of climate change on future flood damage on the river Meuse, with a distributed uncertainty analysis. Nat. Hazards 2015, 77, 1533–1549. [Google Scholar] [CrossRef] [Green Version]
- Kimaro, T.A.; Tashikawa, Y.; Takara, K. Distributed hydrologic simulations to analyze the impacts of land use changes on flood characteristics in the Yasu River basin in Japan. J. Nat. Disaster Sci. 2005, 27, 85–94. [Google Scholar]
- Amini, A.; Ali, M.A.; Ghazali, A.H.B.; Aziz, A.A.; Akib, S.M. Impacts of land-use change on streamflows in the Damansara watershed, Malaysia. Arab. J. Sci. Eng. 2011, 36, 713–720. [Google Scholar] [CrossRef]
- Yulianto, F.; Prasasti, I.; Pasaribu, J.M.; Fitriana, H.L.; Zylshal; Haryani, N.S.; Sofan, P. The dynamics of land use/land cover change modeling and their implications for the flood damage assessment in the Tondano watershed, North Sulawesi, Indonesia. Model. Earth Syst. Environ. 2016, 2, 47. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of land use-land cover change and urbanization on flooding: A case study on Oshiwara River Basin in Mumbai, India. Catena 2016, 145, 142–154. [Google Scholar] [CrossRef]
- Fonji, S.F.; Taff, G.N. Using satellite data to monitor land-use land-cover change in North-eastern Latvia. SpringerPlus 2014, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Bagon, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 064015. [Google Scholar] [CrossRef]
- Panahi, A.; Alijani, B.; Mohammadi, H. The effect of the land use/land cover changes on the floods of the Madarsu basin Northeastern Iran. J. Water Resour. Protect. 2010, 2, 373–379. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, G.J.; Worthy, D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Pampanga River Basin Flood Forecasting and Warning Center (PRFFWC). Pampanga River Basin Flood Event 2015; PRFFWC Post-Flood Report; PRFFWC: San Fernando, Philippines, 2015.
- Shrestha, B.B.; Sawano, H.; Ohara, M.; Nagumo, N. Improvement of flood disaster damage assessment using highly accurate IfSAR DEM. J. Disaster Res. 2016, 11, 1137–1149. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Okazumi, T.; Mamoru, M.; Sawano, H. Flood damage assessment in the Pampanga river basin of the Philippines. J. Flood Risk Manag. 2016, 9, 355–369. [Google Scholar] [CrossRef]
- National Water Resources Board (NWRB); Japan International Cooperation Agency (JICA). The Study on Integrated Water Resources Management for Poverty Alleviation and Economic Development in the Pampanga River Basin; IWRM Report; NWRB: Quezon City, Philippines, 2011. Available online: http://www.nwrb.gov.ph/images/Publications/IWRM_Pampanga_River_Basin.pdf (accessed on 1 February 2018).
- Okazumi, T.; Tanaka, S.; Kwak, Y.; Shrestha, B.B.; Sugiura, A. Flood vulnerability assessment in the light of rice cultivation characteristics in Mekong river flood plain in Cambodia. Paddy Water Environ. 2014, 12, 275–286. [Google Scholar] [CrossRef]
- Sayama, T.; Ozawa, G.; Kawakami, T.; Nabesaka, S.; Fukami, K. Rainfall-Runoff-Inundation analysis of Pakistan flood 2010 at the Kabul river basin. Hydrol. Sci. J. 2012, 57, 298–312. [Google Scholar] [CrossRef]
- Reis, S. Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey. Sensors 2008, 8, 6188–6202. [Google Scholar] [CrossRef]
- Stephens, D.; Diesing, M. A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLoS ONE 2014, 9, 93950. [Google Scholar] [CrossRef]
- Bargiel, D. Capabilities of high resolution satellite radar for the detection of semi-natural habitat structures and grasslands in agricultural landscapes. Ecol. Inform. 2013, 13, 9–16. [Google Scholar] [CrossRef]
- Yousefi, S.; Mirzaee, S.; Tezah, M.; Pourghasemi, H.; Karimi, H. Comparison of different algorithms for land use mapping in dry climate using satellite images: A case study of central regions of Iran. Desert 2015, 20, 1–10. [Google Scholar]
- Sangermano, F.; Eastman, J.R.; Zhu, H. Similarity weighted instance-based learning for the generation of transition potentials in land use change modeling. Trans. GIS 2010, 14, 569–580. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet Manual; Clarklabs: Clark University, Worcester, MA, USA, 2016. [Google Scholar]
- Scharffenberg, W. Hydrological Modeling System HEC-HMS.; User’s Manual; Publication of US Army Corps of Engineers: Davis, CA, USA, 2016.
- Beven, K.J.; Lamb, R.; Quinn, P.F.; Romanowicz, R.; Freer, J. Top model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Littleton, CO, USA, 1995; pp. 627–668. [Google Scholar]
- Sugawara, M. Automatic calibration of the tank model. Hydrol. Sci. Bull. Hydrol. 1979, 24, 375–388. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Perera, E.D.P.; Kudo, S.; Miyamoto, M.; Yamazaki, Y.; Kuribayashi, D.; Sawano, H.; Sayama, T.; Magome, J.; Hasegawa, A.; et al. Assessing flood disaster impacts in agriculture under climate change in the river basin of Southeast Asia. Nat. Hazards 2019, 97, 157–192. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Sawano, H.; Ohara, M.; Yamazaki, Y.; Tokunaga, Y. Methodology for agricultural flood damage assessment. In Recent Advances in Flood Risk Management; Abbot, J., Hammond, A., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Pampanga River Basin Flood Forecasting and Warning Center (PRFFWC). Event: Typhoons “Pedring” (Nesat) and “Quiel” (Nalgae), September 26 to October 04, 2011; Post-flood Report; PRFFWC: San Fernando, Philippines, 2011. Available online: http://prffwc.synthasite.com/resources/PRB%20flood-Sept2011-Pedring-Quiel.pdf (accessed on 18 September 2018).
Class Number | Land Cover Class | Descriptions | Training Sample Sizes (Selected) | |
---|---|---|---|---|
1996 | 2016 | |||
1 | Water bodies | Rivers, lakes, watersheds, streams, reservoirs | 49 | 99 |
2 | Wetlands (permanent) | Permanent wet croplands, fishponds | 70 | 103 |
3 | Croplands | Permanent croplands, paddy field, irrigated cropland, rainfed croplands, other crops | 330 | 552 |
4 | Built up | Commercial and business buildings, public buildings, residential buildings, informal settlements, industrial sites, streets/roads, airports | 114 | 245 |
5 | Vegetation | Naturally occurring multitude of species of plants in the form of bush, grassland, flora or collective plants | 58 | 80 |
6 | Forest | Open forest, dense forest, mixed forest | 22 | 30 |
7 | Bare areas | Bare sand/soil | 29 | 19 |
Class Number | Land Cover Class | Area (km2) | ||||
---|---|---|---|---|---|---|
1996 | 2016 | 2030 | 2040 | 2050 | ||
1 | Water bodies | 80.9 | 100.44 | 100.44 | 100.44 | 100.44 |
2 | Wetlands (permanent) | 260.84 | 351.54 | 351.54 | 351.54 | 351.54 |
3 | Croplands | 5488.67 | 5125.07 | 4824.76 | 4651.63 | 4548.15 |
4 | Built up | 227.34 | 600.4 | 882.1 | 1049.76 | 1160.33 |
5 | Vegetation | 2458.64 | 2289.8 | 2190.04 | 2127.87 | 2075.83 |
6 | Forest | 1951.73 | 2158 | 2276.1 | 2343.74 | 2388.69 |
7 | Bare areas | 177.16 | 20.04 | 20.04 | 20.04 | 20.04 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, B.B. Approach for Analysis of Land-Cover Changes and Their Impact on Flooding Regime. Quaternary 2019, 2, 27. https://doi.org/10.3390/quat2030027
Shrestha BB. Approach for Analysis of Land-Cover Changes and Their Impact on Flooding Regime. Quaternary. 2019; 2(3):27. https://doi.org/10.3390/quat2030027
Chicago/Turabian StyleShrestha, Badri Bhakta. 2019. "Approach for Analysis of Land-Cover Changes and Their Impact on Flooding Regime" Quaternary 2, no. 3: 27. https://doi.org/10.3390/quat2030027
APA StyleShrestha, B. B. (2019). Approach for Analysis of Land-Cover Changes and Their Impact on Flooding Regime. Quaternary, 2(3), 27. https://doi.org/10.3390/quat2030027