Comparative Characterization of High-Grade Glioma Models in Rats: Its Importance for Neurobiology
Abstract
1. Introduction
2. Neurobiological Mechanisms in Rat Glioma Models: From Synaptic Integration to Immune Evasion
3. Systemic Host Factors and Therapeutic Implications
4. Characteristics of Commonly Used Immunocompetent Laboratory Rat Strains
4.1. Spontaneous Tumors in Laboratory Rats
4.2. Wistar Strain Rats
4.3. Long-Evans Strain Rats
4.4. Sprague Dawley Strain Rats
4.5. Fischer Strain Rats
4.6. Lewis Strain Rats
4.7. Wistar Kyoto Strain Rats
5. Morphological and Molecular-Biological Characteristics of Major High-Grade Rat Glioma Models
5.1. Spontaneous Glioma
5.2. Glioma Model Immunogenicity: A Spectrum of Tumor Rejection and Immune Evasion
5.3. Invasion Patterns and Molecular Drivers in Rat Glioma Models
5.4. Molecular Heterogeneity and Receptor Status of Rat Glioma Models
5.5. Transplantable Tissue Glioblastoma Models (GB 101.8 and GB 15/47): Recapitulating Organotypic Heterogeneity and the BBB
6. A Practical Framework for Selecting Rat Glioma Models
6.1. Strategic Selection Guidelines
6.2. Strategic Model Selection Guidelines
6.3. Conclusions: Towards a Rational Selection Paradigm
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| 5-HT | Serotonin |
| 5-HT2A | Serotonin receptor 2A |
| Ace | Angiotensin-Converting Enzyme |
| ACh | Acetylcholine |
| ACTH | Adrenocorticotropic Hormone |
| AcylCn | Acyl carnitines |
| Ala | Alanine |
| AR | Adrenergic/Androgen receptor |
| Asp | Aspartate |
| ATP | Adenosine triphosphate |
| B2m | Beta-2-microglobulin |
| B7.1 | CD80 |
| BBB | Blood–brain barrier |
| BET | Bromodomain and Extra-Terminal motif proteins |
| BKR | Bradykinin receptor |
| CD133 | Prominin-1 (Stem cell marker) |
| Cdkn2a/b | Cyclin-Dependent Kinase Inhibitor 2A/B |
| CNS | Central Nervous System |
| CRH | Corticotropin-releasing hormone |
| CTLA-4 | Cytotoxic T-Lymphocyte-Associated Protein 4 |
| DA | Dopamine |
| DMBA | 7,12-Dimethylbenz[a]anthracene |
| E2 | Estradiol |
| Egfr/EGFR | Epidermal Growth Factor Receptor |
| ENU | N-Ethyl-N-nitrosourea |
| EPO | Erythropoietin |
| ER | Estrogen receptor |
| Erbb3 | Receptor Tyrosine-Protein Kinase ErbB-3 |
| F344 | Fischer 344 (rat strain) |
| GABA | Gamma-aminobutyric acid |
| GB | Glioblastoma |
| GFAP | Glial Fibrillary Acidic Protein |
| GH | Growth hormone |
| Gja1 | Gap junction alpha-1 protein |
| Gln | Glutamine |
| Glu | Glutamate |
| GPCho | Glycerophosphocholine |
| GR | Glucocorticoid receptor |
| GSH | Glutathione |
| Gua | Guanosine |
| Hif1a | Hypoxia Inducible Factor 1 Alpha |
| HPA | Hypothalamic–Pituitary–Adrenal axis |
| hs-CRP | high-sensitivity C-reactive protein |
| IDH | Isocitrate Dehydrogenase |
| IGF-1 | Insulin-like Growth Factor 1 |
| Igf1/2 | Insulin-like Growth Factor 1/2 (gene) |
| IL-6 | Interleukin-6 |
| Ins | Insulin |
| Lac | Lactate |
| LE | Long-Evans (rat strain) |
| Lip1.3 | Lipid peak at 1.3 ppm |
| Mct4 | Monocarboxylate transporter 4 |
| mIns | myo-Inositol |
| MHC | Major Histocompatibility Complex |
| MNU | N-Methyl-N-nitrosourea |
| Mut | Mutation |
| NAA | N-acetylaspartate |
| NADPH | Nicotinamide adenine dinucleotide phosphate |
| Ncam1 | Neural Cell Adhesion Molecule 1 |
| NE | Norepinephrine |
| NK-cells | Natural Killer Cells |
| NO | Nitric oxide |
| NPY | Neuropeptide Y |
| Olig2 | Oligodendrocyte Transcription Factor 2 |
| PCho | Phosphocholine |
| Pdgfr/PDGFR | Platelet-Derived Growth Factor Receptor |
| Pik3ca | Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha |
| PTAH | Phosphotungstic Acid Hematoxylin |
| Pten/PTEN | Phosphatase and TENsin homolog |
| Ras | Rat Sarcoma virus oncogene |
| RT1 | Rat Major Histocompatibility Complex |
| S100 | S100 Calcium Binding Protein |
| SD | Sprague Dawley (rat strain) |
| SP | Substance P |
| T3 | Triiodothyronine |
| Tau | Taurine |
| TERT | Telomerase Reverse Transcriptase |
| Test | Testosterone |
| TfR | Transferrin receptor |
| Th1/Th2 | T-helper type 1/2 immune response |
| TME | Tumor Microenvironment |
| TNF-α | Tumor Necrosis Factor Alpha |
| Tp53/Trp53 | Tumor Protein P53 |
| Tp53inp2 | Tumor Protein P53 Inducible Nuclear Protein 2 |
| VEGF | Vascular Endothelial Growth Factor |
| Vim | Vimentin |
| WHO | World Health Organization |
| WKY | Wistar Kyoto (rat strain) |
References
- Sipos, D.; Raposa, B.L.; Freihat, O.; Simon, M.; Mekis, N.; Cornacchione, P.; Kovács, Á. Glioblastoma: Clinical Presentation, Multidisciplinary Management, and Long-Term Outcomes. Cancers 2025, 17, 146. [Google Scholar] [CrossRef]
- Birzu, C.; French, P.; Caccese, M.; Cerretti, G.; Idbaih, A.; Zagonel, V.; Lombardi, G. Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. Cancers 2020, 13, 47. [Google Scholar] [CrossRef]
- Cao, X.; Liu, M.; Zou, D.; Zhang, J.; Huang, J.; Li, K. Multilayered insights into the full spectrum of diffuse gliomas: A novel prognostic evaluation model. Discov. Oncol. 2025, 16, 1744. [Google Scholar] [CrossRef]
- Rabah, N.; Ait Mohand, F.E.; Kravchenko-Balasha, N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int. J. Mol. Sci. 2023, 24, 14256. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chai, R.; Lin, Z.; Wu, R.; Yao, D.; Jiang, T.; Wang, Q. Evolution-driven crosstalk between glioblastoma and the tumor microenvironment. Cancer Biol. Med. 2023, 20, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Crivii, C.-B.; Boșca, A.B.; Melincovici, C.S.; Constantin, A.-M.; Mărginean, M.; Dronca, E.; Suflețel, R.; Gonciar, D.; Bungărdean, M.; Șovrea, A. Glioblastoma Microenvironment and Cellular Interactions. Cancers 2022, 14, 1092. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Chuang, Y.M.; Li, X.; Yu, Y.R.; Tzeng, S.F.; Teoh, S.T.; Lindblad, K.E.; Di Matteo, M.; Cheng, W.C.; Hsueh, P.C. Immunoediting instructs tumor metabolic reprogramming to support immune evasion. Cell Metab. 2023, 35, 118–133. [Google Scholar] [CrossRef]
- Dillard, C.; Reis, J.G.T.; Rusten, T.E. RasV12; scrib−/− Tumors: A Cooperative Oncogenesis Model Fueled by Tumor/Host Interactions. Int. J. Mol. Sci. 2021, 22, 8873. [Google Scholar] [CrossRef]
- Sinha, S.; Farfel, A.; Luker, K.E.; Parker, B.A.; Yeung, K.T.; Luker, G.D.; Ghosh, P. Growth signaling autonomy in circulating tumor cells aids metastatic seeding. PNAS Nexus 2024, 3, pgae014. [Google Scholar] [CrossRef]
- Hausmann, D.; Hoffmann, D.C.; Venkataramani, V.; Jung, E.; Horschitz, S.; Tetzlaff, S.K.; Jabali, A.; Hai, L.; Kessler, T.; Azorín, D.D. Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature 2023, 613, 179–186. [Google Scholar] [CrossRef]
- Xu, W.; Xu, Q.; Luo, P.; Qu, X.; Guo, D.; Xie, Z.; Hang, N.; Kuang, M.; Chen, E.; Wang, L. Gut-Brain-Microbiome Axis in the Regulation of Cancer Immune Escape and Immunotherapy in Tumors. Research 2025, 8, 0885. [Google Scholar] [CrossRef]
- Wang, Y.F.; Dong, Z.K.; Jin, W.L. Hijacking homeostasis: The brain-body neural circuitry in tumor pathogenesis and emerging therapeutic frontiers. Mol. Cancer 2025, 24, 206. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Liu, C.; Hu, A. Understanding the immunosuppressive microenvironment of glioma: Mechanistic insights and clinical perspectives. J. Hematol. Oncol. 2024, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Chongsathidkiet, P.; Jackson, C.; Koyama, S.; Loebel, F.; Cui, X.; Farber, S.H.; Woroniecka, K.; Elsamadicy, A.A.; Dechant, C.A.; Kemeny, H.R. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 2018, 24, 1459–1468, Erratum in Nat. Med. 2019, 25, 529. https://doi.org/10.1038/s41591-019-0355-0. [Google Scholar] [CrossRef]
- Bilgic, S.N.; Domaniku, A.; Toledo, B.; Agca, S.; Weber, B.Z.C.; Arabaci, D.H.; Ozornek, Z.; Lause, P.; Thissen, J.P.; Loumaye, A.; et al. EDA2R-NIK signalling promotes muscle atrophy linked to cancer cachexia. Nature 2023, 617, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Berghoff, A.S.; Wippel, C.; Starzer, A.M. Hypothyroidism correlates with favourable survival prognosis in patients with brain metastatic cancer. Eur. J. Cancer 2020, 135, 150–158. [Google Scholar] [CrossRef]
- Bello-Alvarez, C.; Camacho-Arroyo, I. Impact of sex in the prevalence and progression of glioblastomas: The role of gonadal steroid hormones. Biol. Sex Differ. 2021, 12, 28. [Google Scholar] [CrossRef]
- G-García, M.E.; De la Rosa-Herencia, A.S.; Flores-Martínez, Á. Assessing the diagnostic, prognostic, and therapeutic potential of the somatostatin/cortistatin system in glioblastoma. Cell Mol. Life Sci. 2025, 82, 173. [Google Scholar] [CrossRef]
- Andersen, M.L.; Bignotto, M.; Machado, R.B.; Tufik, S. Different stress modalities result in distinct steroid hormone responses by male rats. Braz. J. Med. Biol. Res. 2004, 37, 791–797. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014, 58, 193–210. [Google Scholar] [CrossRef]
- Peters, M.A.M. Studies on the Role of Dopamine and Serotonin in Tumors and Their Microenvironment. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Ahangari, G.; Norioun, H. The dual role of dopamine and serotonin in cancer progression and inflammation: Mechanisms and therapeutic potential. Neuroscience 2025, 569, 184–194. [Google Scholar] [CrossRef]
- Bulava, A.; Alexandrov, Y. Reconsolidation and cognitive novelty. In Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics; Springer: Cham, Switzerland, 2021; Volume 1358, pp. 504–509. [Google Scholar] [CrossRef]
- Lissek, T. Activity-dependent induction of younger biological phenotypes. Adv. Biol. 2022, 6, 2200119. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.S.S.; Lacerda, T.R.; Fidélis, D.E.D.S.; Santos, G.C.J.; Filgueira, T.O.; de Souza, R.F.; Lagranha, C.J.; Lira, F.S.; Castoldi, A.; Souto, F.O. Environmental Enrichment in Cancer as a Possible Tool to Combat Tumor Development: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 16516. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, X.; Wang, Y. Social support and cancer survival: A systematic review and meta-analysis. Front. Psychol. 2023, 14, 1119106. [Google Scholar]
- Bulava, A.I.; Alexandrov, Y.I. Relationship Between the BDNF Level in Areas of the Medial Prefrontal Cortex of Rats during Motivation-Driven Learning of a Formed Behavior: Approach/Avoidance. Neurosci. Behav. Physiol. 2025, 55, 961–967. [Google Scholar] [CrossRef]
- Kanter, N.G.; Cohen-Woods, S.; Balfour, D.A.; Burt, M.G.; Waterman, A.L.; Koczwara, B. Hypothalamic-Pituitary-Adrenal Axis Dysfunction in People with Cancer: A Systematic Review. Cancer Med. 2024, 13, e70366. [Google Scholar] [CrossRef]
- Sanchís-Ollé, M.; Sánchez-Benito, L.; Fuentes, S.; Gagliano, H.; Belda, X.; Molina, P.; Carrasco, J.; Nadal, R.; Armario, A. Male long-Evans rats: An outbred model of marked hypothalamic-pituitary-adrenal hyperactivity. Neurobiol. Stress 2021, 15, 100355. [Google Scholar] [CrossRef]
- Vodička, M.; Vavřínová, A.; Mikulecká, A.; Zicha, J.; Behuliak, M. Hyper-reactivity of HPA axis in Fischer 344 rats is associated with impaired cardiovascular and behavioral adaptation to repeated restraint stress. Stress 2020, 23, 667–677. [Google Scholar] [CrossRef]
- Francesco, F.; Alice, N.; Filippo, G.; Daniela, R.; Enrico, B.; Emanuela, A. Stress Axis in the Cancer Patient: Clinical Aspects and Management. Endocrines 2021, 2, 502–513. [Google Scholar] [CrossRef]
- Duan, J.; Wang, Y. Modeling nervous system tumors with human stem cells and organoids. Cell Regen. 2023, 12, 4. [Google Scholar] [CrossRef]
- Yoshida, G.J. Applications of patient-derived tumor xenograft models and tumor organoids. J. Hematol. Oncol. 2020, 13, 4. [Google Scholar] [CrossRef]
- Cho, S.Y. Patient-derived xenografts as compatible models for precision oncology. Lab. Anim. Res. 2020, 36, 14. [Google Scholar] [CrossRef]
- Jin, J.; Yoshimura, K.; Sewastjanow-Silva, M.; Song, S.; Ajani, J.A. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers 2023, 15, 4352. [Google Scholar] [CrossRef]
- Caro, C.; Arias-Ramos, N.; Urbano-Gámez, J.D. A multiparametric perspective on C6 and F98 cell lines in orthotopic rat models for glioblastoma research. Sci. Rep. 2025, 15, 22547. [Google Scholar] [CrossRef]
- Thomas, G.; Rahman, R. Evolution of Preclinical Models for Glioblastoma Modelling and Drug Screening. Curr. Oncol. Rep. 2025, 27, 601–624. [Google Scholar] [CrossRef]
- Hetze, S.; Sure, U.; Schedlowski, M.; Hadamitzky, M.; Barthel, L. Rodent Models to Analyze the Glioma Microenvironment. ASN Neuro 2021, 13, 17590914211005074. [Google Scholar] [CrossRef] [PubMed]
- Ikeno, Y. Ethylnitrosourea-induced gliomas: A song in the attic? Aging Pathobiol. Ther. 2023, 5, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Alekseeva, A.I.; Sentyabreva, A.V.; Kudelkina, V.V. Rat Glioma 101.8 Tissue Strain: Molecular and Morphological Features. Int. J. Mol. Sci. 2025, 26, 8992. [Google Scholar] [CrossRef]
- Kudelkina, V.V.; Kosyreva, A.M.; Pavlova, O.S. Models of High-Grade Glioma in Rats: Morphology, Size, Thickness of Cerebral Cortex, and Survival. Bull. Exp. Biol. Med. 2025, 179, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Fedoseeva, V.V.; Postovalova, E.A.; Khalansky, A.S. Drug-Induced Pathomorphosis of Glioblastoma 101.8 in Wistar Rats Treated with Doxorubicin Bound to Poly(Lactide-Co-Glycolide) Nanoparticles. Mod. Technol. Med. 2018, 10, 105–110. [Google Scholar] [CrossRef]
- Giffin, K.A.; Lovelock, D.F.; Besheer, J. Toll-like receptor 3 neuroimmune signaling and behavior change: A strain comparison between Lewis and Wistar rats. Behav. Brain Res. 2023, 438, 114200. [Google Scholar] [CrossRef]
- Becker, K.J. Strain-Related Differences in the Immune Response: Relevance to Human Stroke. Transl. Stroke Res. 2016, 7, 303–312. [Google Scholar] [CrossRef]
- Bodnar, T.S.; Hill, L.A.; Taves, M.D.; Yu, W.; Soma, K.K.; Hammond, G.L.; Weinberg, J. Colony-Specific Differences in Endocrine and Immune Responses to an Inflammatory Challenge in Female Sprague Dawley Rats. Endocrinology 2015, 156, 4604–4617. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.F. Differences in Susceptibility of Rat Strains to Experimental Infection with Taenia Taeniaeformis. J. Parasitol. 1981, 67, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Idova, G.; Alperina, E.; Plyusnina, I.; Gevorgyan, M.; Zhukova, E.; Konoshenko, M.; Kozhemyakina, R.; Shui-Wu, W. Immune reactivity in rats selected for the enhancement or elimination of aggressiveness towards humans. Neurosci. Lett. 2015, 609, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Ellenbroek, B.A.; Geven, E.J.; Cools, A.R. Rat strain differences in stress sensitivity. In Handbook of Stress and the Brain, Part 2: Stress: Integrative and Clinical Aspects; Steckler, T., Kalin, N.H., Reul, J.M.H.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 15, pp. 75–87. [Google Scholar] [CrossRef]
- Sahu, U.; Barth, R.F.; Otani, Y.; McCormack, R.; Kaur, B. Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. J. Neuropathol. Exp. Neurol. 2022, 81, 312–329. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liu, S.C.; Yang, Z. Impaired hippocampal synaptic plasticity in C6 glioma-bearing rats. J. Neurooncol. 2011, 103, 469–477. [Google Scholar] [CrossRef]
- Taylor, K.R.; Barron, T.; Hui, A. Glioma synapses recruit mechanisms of adaptive plasticity. Nature 2023, 623, 366–374. [Google Scholar] [CrossRef]
- Behrens, P.; Langemann, H.; Strohschein, R. Extracellular Glutamate and Other Metabolites in and Around RG2 Rat Glioma. J. Neurooncol. 2000, 47, 11–22. [Google Scholar] [CrossRef]
- Yang, H.; Chopp, M.; Weiland, B. Sensorimotor deficits associated with brain tumor progression and tumor-induced brain plasticity mechanisms. Exp. Neurol. 2007, 207, 357–367. [Google Scholar] [CrossRef]
- Krzeminski, P.; Misiewicz, I.; Pomorski, P. Mitochondrial localization of P2Y1, P2Y2 and P2Y12 receptors in rat astrocytes and glioma C6 cells. Brain Res. Bull. 2007, 71, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, J.; Bolcaen, J.; De Meulenaere, V. Technical feasibility of [18F]FET and [18F]FAZA PET guided radiotherapy in a F98 glioblastoma rat model. Radiat. Oncol. 2019, 14, 89. [Google Scholar] [CrossRef]
- Zoteva, V.; De Meulenaere, V.; De Boeck, M. An improved F98 glioblastoma rat model to evaluate novel treatment strategies incorporating the standard of care. PLoS ONE 2024, 19, e0296360. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Dudley, A.C. Models and molecular mechanisms of blood vessel co-option by cancer cells. Angiogenesis 2020, 23, 17–25. [Google Scholar] [CrossRef]
- Datta, K.; Lauritzen, M.H.; Merchant, M. Reversed metabolic reprogramming as a measure of cancer treatment efficacy in rat C6 glioma model. PLoS ONE 2019, 14, e0225313. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.M.; Zhang, S.S.; Liu, X.Y.; Liu, D.X. Induction of cell cycle arrest at G1 and S phases and cAMP-dependent differentiation in C6 glioma by low concentration of cycloheximide. BMC Cancer 2010, 10, 684. [Google Scholar] [CrossRef]
- Chen, X.; Fang, J.; Wang, S. A new mosaic pattern in glioma vascularization: Exogenous endothelial progenitor cells integrating into the vessels containing tumor-derived endothelial cells. Oncotarget 2014, 5, 1955–1968. [Google Scholar] [CrossRef]
- Tian, W.; Liu, Y.; Cao, C.; Zeng, Y.; Pan, Y.; Liu, X.; Peng, Y.; Wu, F. Chronic Stress: Impacts on Tumor Microenvironment and Implications for Anti-Cancer Treatments. Front. Cell Dev. Biol. 2021, 9, 777018. [Google Scholar] [CrossRef]
- Hong, H.; Ji, M.; Lai, D. Chronic Stress Effects on Tumor: Pathway and Mechanism. Front. Oncol. 2021, 11, 738252. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Wang, K.; Qi, J.; Zhang, Y.; Wang, X.; Zhang, L.; Zhou, Y.; Gu, L.; Yu, R. Chronic stress accelerates glioblastoma progression via DRD2/ERK/β-catenin axis and Dopamine/ERK/TH positive feedback loop. J. Exp. Clin. Cancer Res. 2023, 42, 161. [Google Scholar] [CrossRef] [PubMed]
- McAllister, S.S.; Weinberg, R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 2014, 16, 717–727. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, X.; Liu, P.; Wang, Y.; Zhang, J.; Li, L.; Wu, K.; Xiao, J.; Mei, Q.; Wang, Z. The neuro-immune axis in cancer: From mechanisms to therapeutic opportunities. J. Hematol. Oncol. 2025, 18, 93. [Google Scholar] [CrossRef]
- Yi, L.; Lin, X.; She, X.; Gao, W.; Wu, M. Chronic stress as an emerging risk factor for the development and progression of glioma. Chin. Med. J. 2024, 137, 394–407. [Google Scholar] [CrossRef]
- Jeong, J.H.; Park, H.J.; Park, S.H.; Choi, Y.H.; Chi, G.Y. β2-Adrenergic Receptor Signaling Pathway Stimulates the Migration and Invasion of Cancer Cells via Src Activation. Molecules 2022, 27, 5940. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 2024, 42, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.C. Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity. Nat. Genet. 2021, 53, 1456–1468. [Google Scholar] [CrossRef]
- Ishida, Y.; Otsuka, A.; Kabashima, K. Cutaneous angiosarcoma: Update on biology and latest treatment. Curr. Opin. Oncol. 2018, 30, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guo, X.; Wang, Y.; Zhang, S.; Wang, Z. The role of acetylcholine and its receptors in tumor immune regulation: Mechanisms and potential therapeutic targets. Mol. Cancer 2025, 24, 231. [Google Scholar] [CrossRef]
- De Couck, M.; Caers, R.; Spiegel, D. The Role of the Vagus Nerve in Cancer Prognosis: A Systematic and a Comprehensive Review. J. Oncol. 2018, 2018, 1236787. [Google Scholar] [CrossRef]
- Lee, J.; Jung, S.; Hwang, H. Acetylcholinesterase inhibitors and the risk of colorectal cancer: A population-based cohort study. J. Clin. Oncol. 2020, 38, 4075. [Google Scholar]
- Zahalka, A.H.; Frenette, P.S. Nerves in cancer. Nat. Rev. Cancer 2020, 20, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Harman, N.; Hydock, D.; Olson, T. Exercise intervention may play a potential therapeutic role in patients with glioblastoma multiforme (Review). World Acad. Sci. J. 2024, 6, 41. [Google Scholar] [CrossRef]
- Xie, L.; Wang, F. Physical activity and glioblastoma: A paradigm shift in neuro-oncology therapy. Front. Oncol. 2025, 15, 1638060. [Google Scholar] [CrossRef]
- Lee, S.-C.; Tsai, P.-H.; Yu, K.-H.; Chan, T.-M. Effects of Mind–Body Interventions on Immune and Neuroendocrine Functions. Healthcare 2025, 13, 952. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Liu, K.; Lin, Y. Roles and Impacts of Integrative Medical Interventions in Central Nervous System Tumor Treatment. CNS Neurosci. Ther. 2025, 31, e70516. [Google Scholar] [CrossRef] [PubMed]
- Wollet, A.R.; Rogers, J.L.; Berhanu, S. Landscape and impact of mind-body, cognitive-behavioral, and physical activity interventions in adolescent and adult brain tumor patients. Neuro-Oncol. Adv. 2024, 6, vdae134. [Google Scholar] [CrossRef]
- Bahrami, A.; Haghighi, S.; Moghani, M.M.; Khodakarim, N.; Hejazi, E. Fasting mimicking diet during neo-adjuvant chemotherapy in breast cancer patients: A randomized controlled trial study. Front. Nutr. 2024, 11, 1483707. [Google Scholar] [CrossRef]
- Liu, X.; Qi, X.; Fang, D. The impact of cognitive behavioral therapy on disease uncertainty, stressful life events, quality of life, anxiety, and depression in glioma patients undergoing chemotherapy. BMC Psychiatry 2025, 25, 272. [Google Scholar] [CrossRef]
- Orange, S.T.; Leslie, J.; Ross, M.; Mann, D.A.; Wackerhage, H. The exercise IL-6 enigma in cancer. Trends Endocrinol. Metab. 2023, 34, 749–763. [Google Scholar] [CrossRef]
- Daniel, A.G.S.; Park, K.Y.; Roland, J.L. Functional connectivity within glioblastoma impacts overall survival. Neuro Oncol. 2021, 23, 412–421. [Google Scholar] [CrossRef]
- Sternberg, E.M.; Hill, J.M.; Chrousos, G.P.; Kamilaris, T.; Listwak, S.J.; Gold, P.W.; Wilder, R.L. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc. Natl. Acad. Sci. USA 1989, 86, 2374–2378. [Google Scholar] [CrossRef] [PubMed]
- Mozhui, K.; Karlsson, R.M.; Kash, T.L. Strain differences in stress responsivity are associated with divergent amygdala gene expression and glutamate-mediated neuronal excitability. J. Neurosci. 2010, 30, 5357–5367. [Google Scholar] [CrossRef]
- Radley, J.J.; Herman, J.P. Preclinical Models of Chronic Stress: Adaptation or Pathology? Biol. Psychiatry 2023, 94, 194–202. [Google Scholar] [CrossRef]
- Webb, A.A.; Gowribai, K.; Muir, G.D. Fischer (F-344) rats have different morphology, sensorimotor and locomotor abilities compared to Lewis, Long-Evans, Sprague-Dawley and Wistar rats. Behav. Brain Res. 2003, 144, 143–156. [Google Scholar] [CrossRef]
- Bryda, E.C. The Mighty Mouse: The impact of rodents on advances in biomedical research. Mo. Med. 2013, 110, 207–211. [Google Scholar] [PubMed]
- Ben-Ami Bartal, I. The complex affective and cognitive capacities of rats. Science 2024, 385, 1298–1305. [Google Scholar] [CrossRef]
- Brekke, T.D.; Steele, K.A.; Mulley, J.F. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies. G3 Genes Genomes Genet. 2018, 8, 679–686. [Google Scholar] [CrossRef]
- Bertrand, L.; Mukaratirwa, S.; Bradley, A. Incidence of spontaneous central nervous system tumors in CD-1 mice and Sprague-Dawley, Han-Wistar, and Wistar rats used in carcinogenicity studies. Toxicol. Pathol. 2014, 42, 1168–1173. [Google Scholar] [CrossRef]
- Yakovlenko, Y.G. Glioblastoma: The current state of the problem. Med. Her. South Russ. 2019, 10, 28–35. [Google Scholar] [CrossRef]
- Gross, L.; Dreyfuss, Y. Spontaneous tumors in Sprague-Dawley and Long-Evans rats and in their F1 hybrids. Proc. Natl. Acad. Sci. USA 1979, 76, 5910–5913. [Google Scholar] [CrossRef]
- Pastoret, P.-P. Immunology of the Rat. In Handbook of Vertebrate Immunology; Academic Press: Cambridge, MA, USA, 1998; pp. 137–222. [Google Scholar] [CrossRef]
- Bomhard, E. Frequency of spontaneous tumors in Wistar rats in 30-months studies. Exp. Toxicol. Pathol. 1992, 44, 381–392. [Google Scholar] [CrossRef]
- Calhoun, C.A.; Lattouf, C.; Lewis, V. Chronic mild stress induces differential depression-like symptoms and c-Fos and 5HT1A protein levels in high-anxiety female Long Evans rats. Behav. Brain Res. 2023, 438, 114202. [Google Scholar] [CrossRef]
- Warmink, K.; Rios, J.L.; van Valkengoed, D.R. Sprag Dowley rats show more pronounced bone loss, osteophytosis, and inflammation compared to Wistar Khan rats fed a diet high in fat and sucrose. Int. J. Mol. Sci. 2022, 23, 3725. [Google Scholar] [CrossRef] [PubMed]
- Redei, E.E.; Udell, M.E.; Solberg Woods, L.C.; Chen, H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr. Neuropharmacol. 2023, 21, 1884–1905. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, T.; Oishi, N.; Sotozono, Y. Validation of Wistar-Kyoto rats kept in solitary housing as an animal model for depression using voxel-based morphometry. Sci. Rep. 2024, 14, 3601. [Google Scholar] [CrossRef]
- Zhuravleva, Z.D.; Titova, N.A.; Mukhina, I.V.; Druzin, M.Y. Choosing the Optimal Rat Stock as a Model for Research into Pharmacological Correction of Male Sexual Dysfunction. Sovrem. Tehnol. Med. 2021, 6, 36–41. [Google Scholar] [CrossRef]
- Entlerova, M.; Lobellova, V.; Hatalova, H. Comparison of Long-Evans and Wistar rats in sensitivity to central cholinergic blockade with scopolamine in two spatial tasks. Physiol. Behav. 2013, 120, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.; Gaese, B.H.; Nowotny, M. Strain Comparison in Rats Differentiates Strain-Specific from More General Correlates of Noise-Induced Hearing Loss and Tinnitus. J. Assoc. Res. Otolaryngol. 2022, 23, 59–73. [Google Scholar] [CrossRef]
- Wang, Q.; Timberlake, M.A., II; Prall, K.; Dwivedi, Y. The recent progress in animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 77, 99–109. [Google Scholar] [CrossRef]
- Brower, M.; Grace, M.; Kotz, C.M.; Koya, V. Comparative analysis of growth characteristics of Sprague Dawley rats obtained from different sources. Lab. Anim. Res. 2015, 31, 166–173. [Google Scholar] [CrossRef]
- Prinssen, E.P.; Nicolas, L.B.; Klein, S. Imaging trait anxiety in high anxiety F344 rats: Focus on the dorsomedial prefrontal cortex. Eur. Neuropsychopharmacol. 2012, 22, 441–451. [Google Scholar] [CrossRef]
- Cêtre, C.; Pierrot, C.; Cocude, C.; Lafitte, S.; Capron, A.; Capron, M.; Khalife, J. Profiles of Th1 and Th2 cytokines after primary and secondary infection by Schistosoma mansoni in the semipermissive rat host. Infect. Immun. 1999, 67, 2713–2719. [Google Scholar] [CrossRef]
- Mac Kenzie, W.; Garner, F. Comparison of Neoplasms in Six Sources of Rats. J. Natl. Cancer Inst. 1973, 50, 1243–1257. [Google Scholar] [CrossRef]
- Barth, R.F.; Kaur, B. Rat brain tumor models in experimental neuro-oncology: The C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J. Neurooncol. 2009, 94, 299–312. [Google Scholar] [CrossRef]
- Lanman, T.A.; Gonzalez Castro, L.N. Targeting of Mutant Isocitrate Dehydrogenase in Glioma: A Systematic Review. Cancers 2025, 17, 2630. [Google Scholar] [CrossRef]
- Drummond, K.J.; Spiteri, M.; Cain, S.A. Perioperative IDH inhibition in treatment-naive IDH-mutant glioma: A pilot trial. Nat. Med. 2025, 31, 3451–3463. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, S. Epidermal Growth Factor Receptor Inhibitors in Glioblastoma: Current Status and Future Possibilities. Int. J. Mol. Sci. 2024, 25, 2316. [Google Scholar] [CrossRef]
- Yesilkanal, A.E.; Johnson, G.L.; Ramos, A.F.; Rosner, M.R. New strategies for targeting kinase networks in cancer. J. Biol. Chem. 2021, 297, 101128. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Dey, D.; Barik, D. Glioblastoma at the crossroads: Current understanding and future therapeutic horizons. Signal Transduct. Target. Ther. 2025, 10, 213. [Google Scholar] [CrossRef]
- Weber, K.; Garman, R.H.; Germann, P.-G. Classification of Neural Tumors in Laboratory Rodents, Emphasizing the Rat. Toxicol. Pathol. 2011, 39, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Vince, G.H.; Bendszus, M.; Schweitzer, T. Spontaneous regression of experimental gliomas--an immunohistochemical and MRI study of the C6 glioma spheroid implantation model. Exp. Neurol. 2004, 190, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Lampson, M.A.; Lampson, L.A. Effects of Gamma-Interferon on Major Histocompatibility Complex Antigen Expression and Lymphocytic Infiltration in the 9L Gliosarcoma Brain Tumor Model. J. Neuroimmunol. 1992, 36, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Graeber, M.B. The molecular profile of microglia under the influence of glioma. Neuro Oncol. 2012, 14, 958–978. [Google Scholar] [CrossRef] [PubMed]
- Reuss, A.M.; Groos, D.; Ghoochani, A.; Buchfelder, M.; Savaskan, N. MCT4 Promotes Tumor Malignancy in F98 Glioma Cells. J. Oncol. 2021, 2021, 6655529. [Google Scholar] [CrossRef]
- Asai, A.; Miyagi, Y.; Sugiyama, A. Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. Implication of the tumor suppressor genes for gene therapy. J. Neurooncol. 1994, 19, 259–268. [Google Scholar] [CrossRef]
- Heldin, C.H. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun. Signal 2013, 11, 97. [Google Scholar] [CrossRef]
- Kudelkina, V.V.; Gulyaev, M.V.; Khalansky, A.S.; Miroshnichenko, E.A.; Makarova, O.V.; Fatkhutdinov, T.K.; Kosyreva, A.M. The original mouse models of glioblastoma: Analysis of pathophysiological characteristics of transplanted tumor tissue. Sovrem. Tehnol. Med. 2025, 17, 50. [Google Scholar] [CrossRef]
- Beutler, A.S.; Banck, M.S.; Wedekind, D. Tumor Gene Therapy Made Easy: Allogeneic Major Histocompatibility Complex in the C6 Rat Glioma Model. Hum. Gene Ther. 1999, 10, 95–101. [Google Scholar] [CrossRef]
| Strain | Genetic Identity | HPA Axis/ Stress Status | Immune Status | Spontaneous CNS Tumor Rate |
|---|---|---|---|---|
| Wistar [91,94,95] | Outbred | Normoreactive; Intermediate anxiety | Adaptive immune competence on a C4-deficient background | High |
| Long- Evans [29,87,96] | Outbred | Hyperreactive; High basal ACTH/Cort; Low stress resistance | Lower thymus weight (immune implication) | High |
| Sprague–Dawley [45,87,97] | Outbred | Normoreactive; Moderate stress resistance | Prone to obesity/metabolic shifts; high incidence of malignant glioma | High |
| Fischer [30,87] | Inbred | Hyperreactive; High anxiety | Anti-inflammatory cytokine bias; resistant to carcinogens. | Low |
| Lewis [43,84,94] | Inbred | Hyporeactive | Th1-type bias (pro-inflammatory/autoimmune prone); Host for CNS-1 model. | Low |
| Wistar Kyoto [98,99] | Inbred | Hyperreactive; Depressive phenotype | High glucocorticoid background; low background pathology. | Very Low |
| Model/Origin | Host Strain (In-/Outbred) | Induction/ Cell Dose | Immuno-Genicity | Latency (months) | Growth/BBB | Key Molecular Markers | Hormones/ Receptors | Metabolic Profile/Neurotransmitters |
|---|---|---|---|---|---|---|---|---|
| HUMAN | ||||||||
| Glioblastoma [1,2,3,4,5,7,10,12,92,115,116] | - | - | Spontaneous/Immuno-suppressive TME | - | Infiltrative/partially disrupted or altered | EGFR-amp/mut, PTEN-, TERT+, IDH1-wt, +7/−10; ↑ PDGFR, IGF-1 | IGF, INS, EPO, GH, Test, E2, T3; BKR, ER | ↑ Gln/Glu, AcyICn, NADPH, BET/ACh; Glu, GABA; DA, 5-HT, NE; SP, NPY; ATP; NO |
| RAT MODELS | ||||||||
| High grade glioma cell line | ||||||||
| C6 [36,50,58,108,120] | Wistar-Furth | MNU 104–105 | High | 1 | Circumscribed/ partially disrupted | Trp53-wt (p53 status variable (Wild-type origin, prone to mutation during passaging), ↑ Pdgfra, Igf1, Egfr, Erbb3; Gfap- Idh1/2-wt | GR, Test; 5-HT2A; DA; AR, ER | ↓ tCr, Tau, hTau, Ala, Ace, GSH, Gln, NAA, Asp; ↑ Gly, Gln, Lip1.3 |
| 9L [108,120] | Fischer 344 | MNU 104 | High | 0.5 | Circumscribed/ Markedly disrupted | Idh1/2-wt, Mut Trp53, ↑ Egfr; ↓ Pten, Fgfr-1, Pdgfrβ | 5-HT2A | ↑ Gln, ↓ mIns |
| F98 [36,55,56,108] | Fischer 344 | ENU 102–105 | Low | 0.5–1 | Infiltrative/Markedly disrupted | Mut Trp53; ↑ Pdgfrb, Ras, Egfr; Gfap+, Vim+ | ER | ↑ Gln, Gly, tCho/tCr, Lac; ↓ tCr, NAA, Gua, mIns, Glu, GABA/SP/NPY alterations |
| RG2 [52,108] | Fischer 344 | ENU 102–105 | Non | 0.5–1 | Infiltrative/Markedly disrupted | Trp53-wt, ↑ Pdgfrb, Igf2, Erbb3, Idh1/2-wt | - | ↑ PCho, GPCho; ↓ NAA, Glu, Gln, tCr |
| High grade glioma tissue | ||||||||
| GB 101.8 [40,41,42] | Wistar | DMBA 105–106 | Low/ Non | 0.5 | Infiltrative/Markedly disrupted | ↑ Cdkn2b, Pdgfra, Gja1, Vim, Ncam1; ↓ Pten, Egfr, Gfap-; Idh1/2-wt | TfR, ER, GR | |
| GB 15/47 (unpublished data) | Wistar | ENU 105–106 | Low/ Non | 1 | Infiltrative/Markedly disrupted | CD133-; Olig2+ VEGF+ Vim+, ↑ Cdkn2a, Pik3ca, Trp53, Vegfa, Hif1a, Pdgfra | GR- | |
| Model | Syngeneic Host | Immunogenicity/ MHC Expression | Growth Pattern | Recommended Application |
|---|---|---|---|---|
| C6 | Wistar-Furth [49,108] | Intermediate/High. RT1u (ortholog of human MHC-I); triggers strong humoral/cellular immunity [109,110]. C4 complement deficiency in Wistar [53]. Microglia/macrophages in the TME can express ortholog of human MHC-II, but their function is suppressed in vivo. | Strain-dependent: Focal invasion in Wistar rats; circumscribed in SD/LE rats [123]. Extra-cranial or extra-axial growth. | Metabolic/Imaging studies. Avoid for immunotherapy or survival studies due to rejection artifacts. |
| 9L | Fischer 344 [49,108] | Intermediate/High. Immunogenic in syngeneic hosts with consistent ortholog of human MHC-I expression [54,107]. | Minimally invasive. Sharp borders, sarcomatous morphology [54]. Extra-cranial or extra-axial growth. | Reproducibility control. Good for preliminary drug toxicity screening; poor for invasion/immunology. |
| F98 | Fischer 344 [49,108] | Low. Weakly or non-immunogenic; low ortholog of human MHC-I expression [54]. It expresses tumor antigens, but ortholog of human MHC-I expression is poorly characterized and may decrease during invasion; the model is known for its immunosuppressive TME. | Highly invasive with satellite islands, perivascular clustering, and vascular co-option [54]. Extra-cranial or extra-axial growth. | Therapy Resistance. Modeling radio-resistance and invasion-targeting drugs. |
| RG2 | Fischer 344 [108] | Low. It lacks expression of ortholog of human MHC-II and B7.1, leading to minimal lymphocytic infiltration [50]. | Highly invasive. It displays clear borders but extensive local spread [50]. Extra-cranial or extra-axial growth. | Immuno-oncology. Best cell line for studying “cold” tumors and BBB permeability. |
| GB 101.8 | Wistar [40,41,42] | Low (Mechanistic Evasion). Defective B2m assembly (ortholog of human MHC-I loss) + CD80 overexpression (“Immune Trap”). | Diffusely Infiltrative. Mimics human GB dissemination; No extracranial growth [40,42]. | Translational Neuro-oncology. Ideal for studying invasion, TME interactions, and heterogeneity without cell-line artifacts. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudelkina, V.V.; Bulava, A.I.; Gorkin, A.G.; Venerina, Y.A.; Alexandrov, Y.I. Comparative Characterization of High-Grade Glioma Models in Rats: Its Importance for Neurobiology. Clin. Transl. Neurosci. 2025, 9, 58. https://doi.org/10.3390/ctn9040058
Kudelkina VV, Bulava AI, Gorkin AG, Venerina YA, Alexandrov YI. Comparative Characterization of High-Grade Glioma Models in Rats: Its Importance for Neurobiology. Clinical and Translational Neuroscience. 2025; 9(4):58. https://doi.org/10.3390/ctn9040058
Chicago/Turabian StyleKudelkina, Vera Vladimirovna, Alexandra Igorevna Bulava, Alexander Georgievich Gorkin, Yana Andreevna Venerina, and Yuri Iosifovich Alexandrov. 2025. "Comparative Characterization of High-Grade Glioma Models in Rats: Its Importance for Neurobiology" Clinical and Translational Neuroscience 9, no. 4: 58. https://doi.org/10.3390/ctn9040058
APA StyleKudelkina, V. V., Bulava, A. I., Gorkin, A. G., Venerina, Y. A., & Alexandrov, Y. I. (2025). Comparative Characterization of High-Grade Glioma Models in Rats: Its Importance for Neurobiology. Clinical and Translational Neuroscience, 9(4), 58. https://doi.org/10.3390/ctn9040058

