The Bidirectional Relationship between Sleep and Neurodegeneration: Actionability to Improve Brain Health
Abstract
:1. Introduction
2. Sleep and Circadian Rhythms in Neurodegenerative Diseases
3. Bidirectional Relationship between Sleep/Circadian Rhythms and Dementia
4. Sleep and Circadian Rhythm in Early, Prodromal, and Preclinical Neurodegeneration
5. Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kryger, M.H.; Roth, T.; Goldstein, C.A. Principles and Practice of Sleep Medicine, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1. [Google Scholar]
- Luppi, P.-H.; Fort, P. Sleep-Wake Physiology. Handb. Clin. Neurol. 2019, 160, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lv, Q.; Xie, W.; Gong, S.; Zhuang, S.; Liu, J.; Mao, C.; Liu, C. Circadian Disruption and Sleep Disorders in Neurodegeneration. Transl. Neurodegener. 2023, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Lim, A.S.; Chiang, W.-Y.; Hsieh, W.-H.; Lo, M.-T.; Schneider, J.A.; Buchman, A.S.; Bennett, D.A.; Hu, K.; Saper, C.B. Suprachiasmatic Neuron Numbers and Rest-Activity Circadian Rhythms in Older Humans. Ann. Neurol. 2015, 78, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Cermakian, N.; Lamont, E.W.; Boudreau, P.; Boivin, D.B. Circadian Clock Gene Expression in Brain Regions of Alzheimer ’s Disease Patients and Control Subjects. J. Biol. Rhythms 2011, 26, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Holth, J.; Patel, T.; Holtzman, D.M. Sleep in Alzheimer’s Disease—Beyond Amyloid. Neurobiol. Sleep. Circadian Rhythm. 2017, 2, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, S.; Sothern, R.B.; Xu, S.; Chan, P. Expression of Clock Genes Per1 and Bmal1 in Total Leukocytes in Health and Parkinson’s Disease. Eur. J. Neurol. 2010, 17, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Breen, D.P.; Vuono, R.; Nawarathna, U.; Fisher, K.; Shneerson, J.M.; Reddy, A.B.; Barker, R.A. Sleep and Circadian Rhythm Regulation in Early Parkinson Disease. JAMA Neurol. 2014, 71, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Stefani, A.; Högl, B. Sleep in Parkinson’s Disease. Neuropsychopharmacology 2020, 45, 121–128. [Google Scholar] [CrossRef]
- Fernández-Arcos, A.; Morenas-Rodríguez, E.; Santamaria, J.; Sánchez-Valle, R.; Lladó, A.; Gaig, C.; Lleó, A.; Iranzo, A. Clinical and Video-Polysomnographic Analysis of Rapid Eye Movement Sleep Behavior Disorder and Other Sleep Disturbances in Dementia with Lewy Bodies. Sleep 2019, 42, zsz086. [Google Scholar] [CrossRef]
- Videnovic, A. Management of Sleep Disorders in Parkinson’s Disease and Multiple System Atrophy. Mov. Disord. 2017, 32, 659–668. [Google Scholar] [CrossRef]
- Eckhardt, C.; Fanciulli, A.; Högl, B.; Heidbreder, A.; Eschlböck, S.; Raccagni, C.; Krismer, F.; Leys, F.; Kiechl, S.; Ransmayr, G.; et al. Analysis of Sleep, Daytime Sleepiness, and Autonomic Function in Multiple System Atrophy and Parkinson Disease: A Prospective Study. J. Clin. Sleep Med. 2023, 19, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, A. Sleep in Neurodegenerative Diseases. Sleep Med. Clin. 2016, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Herzog-Krzywoszanska, R.; Krzywoszanski, L. Sleep Disorders in Huntington’s Disease. Front. Psychiatry 2019, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Boentert, M. Sleep and Sleep Disruption in Amyotrophic Lateral Sclerosis. Curr. Neurol. Neurosci. Rep. 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, U.; Ripperger, J.A. Circadian Clocks and Sleep: Impact of Rhythmic Metabolism and Waste Clearance on the Brain. Trends Neurosci. 2018, 41, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Artiushin, G.; Sehgal, A. The Glial Perspective on Sleep and Circadian Rhythms. Annu. Rev. Neurosci. 2020, 43, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between Circadian Rhythms and Neurodegenerative Diseases. Lancet Neurol. 2019, 18, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Karasek, M. Melatonin, Human Aging, and Age-Related Diseases. Exp. Gerontol. 2004, 39, 1723–1729. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Cucielo, M.S.; Tan, D.X.; Rosales-Corral, S.; Gancitano, G.; de Almeida Chuffa, L.G. Brain Washing and Neural Health: Role of Age, Sleep, and the Cerebrospinal Fluid Melatonin Rhythm. Cell. Mol. Life Sci. 2023, 80, 88. [Google Scholar] [CrossRef]
- Li, P.; Gao, L.; Yu, L.; Zheng, X.; Ulsa, M.C.; Yang, H.-W.; Gaba, A.; Yaffe, K.; Bennett, D.A.; Buchman, A.S.; et al. Daytime Napping and Alzheimer’s Dementia: A Potential Bidirectional Relationship. Alzheimer’s Dement. 2023, 19, 158–168. [Google Scholar] [CrossRef]
- Wilckens, K.A.; Tudorascu, D.L.; Snitz, B.E.; Price, J.C.; Aizenstein, H.J.; Lopez, O.L.; Erickson, K.I.; Lopresti, B.J.; Laymon, C.M.; Minhas, D.; et al. Sleep Moderates the Relationship between Amyloid Beta and Memory Recall. Neurobiol. Aging 2018, 71, 142–148. [Google Scholar] [CrossRef]
- Targa, A.; Dakterzada, F.; Benítez, I.; López, R.; Pujol, M.; Dalmases, M.; Arias, A.; Sánchez-de-la-Torre, M.; Zetterberg, H.; Blennow, K.; et al. Decrease in Sleep Depth Is Associated with Higher Cerebrospinal Fluid Neurofilament Light Levels in Patients with Alzheimer’s Disease. Sleep 2021, 44, zsaa147. [Google Scholar] [CrossRef]
- Kimoff, R.J. Sleep Fragmentation in Obstructive Sleep Apnea. Sleep 1996, 19, S61–S66. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Wang, Z.; Huang, H.-C. Roles of ApoE4 on the Pathogenesis in Alzheimer’s Disease and the Potential Therapeutic Approaches. Cell. Mol. Neurobiol. 2023, 43, 3115–3136. [Google Scholar] [CrossRef]
- Ju, Y.-E.S.; McLeland, J.S.; Toedebusch, C.D.; Xiong, C.; Fagan, A.M.; Duntley, S.P.; Morris, J.C.; Holtzman, D.M. Sleep Quality and Preclinical Alzheimer Disease. JAMA Neurol. 2013, 70, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-L.; Sun, B.-L.; Chen, D.-W.; Chen, Y.; Li, W.-W.; Xu, M.-Y.; Shen, Y.-Y.; Xu, Z.-Q.; Wang, Y.-J.; Bu, X.-L. Plasma α-Synuclein Levels Are Increased in Patients with Obstructive Sleep Apnea Syndrome. Ann. Clin. Transl. Neurol. 2019, 6, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.-H.; Hwang, Y.S.; Oh, S.-Y.; Shin, B.-S.; Kang, M.G.; Lee, M.G.; Yeom, S.W.; Lee, J.H.; Kang, H.G.; Kim, J.S. Bidirectional Association between Parkinson’s Disease and Obstructive Sleep Apnea: A Cohort Study. J. Clin. Sleep Med. 2023, 19, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.R.; Gibbons, A.J. Neuroinflammation, Sleep, and Circadian Rhythms. Front. Cell. Infect. Microbiol. 2022, 12, 853096. [Google Scholar] [CrossRef] [PubMed]
- Gargano, A.; Olabiyi, B.F.; Palmisano, M.; Zimmer, A.; Bilkei-Gorzo, A. Possible Role of Locus Coeruleus Neuronal Loss in Age-Related Memory and Attention Deficits. Front. Neurosci. 2023, 17, 1264253. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Santoyo, A.O.; Ruiz-Rodríguez, V.M.; Mares-Barbosa, T.B.; Patrón-Soberano, A.; Howe, A.G.; Portales-Pérez, D.P.; Miquelajáuregui Graf, A.; Estrada-Sánchez, A.M. Revealing the Contribution of Astrocytes to Glutamatergic Neuronal Transmission. Front. Cell. Neurosci. 2023, 16, 1037641. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.E.; Zhu, Y.; Fenik, P.; Zhan, G.; Bell, P.; Liu, C.; Veasey, S. Late-in-Life Neurodegeneration after Chronic Sleep Loss in Young Adult Mice. Sleep 2021, 44, zsab057. [Google Scholar] [CrossRef]
- Lahtinen, A.; Puttonen, S.; Vanttola, P.; Viitasalo, K.; Sulkava, S.; Pervjakova, N.; Joensuu, A.; Salo, P.; Toivola, A.; Härmä, M.; et al. A Distinctive DNA Methylation Pattern in Insufficient Sleep. Sci. Rep. 2019, 9, 1193. [Google Scholar] [CrossRef]
- Fenton, L.; Isenberg, A.L.; Aslanyan, V.; Albrecht, D.; Contreras, J.A.; Stradford, J.; Monreal, T.; Pa, J. Variability in Objective Sleep Is Associated with Alzheimer’s Pathology and Cognition. Brain Commun. 2023, 5, fcad031. [Google Scholar] [CrossRef]
- Zamore, Z.; Veasey, S.C. Neural Consequences of Chronic Sleep Disruption. Trends Neurosci. 2022, 45, 678–691. [Google Scholar] [CrossRef]
- Liu, H.; Barthélemy, N.R.; Ovod, V.; Bollinger, J.G.; He, Y.; Chahin, S.L.; Androff, B.; Bateman, R.J.; Lucey, B.P. Acute Sleep Loss Decreases CSF-to-Blood Clearance of Alzheimer’s Disease Biomarkers. Alzheimer’s Dement. 2023, 19, 3055–3064. [Google Scholar] [CrossRef]
- Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The Glymphatic System: A Beginner’s Guide. Neurochem. Res. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [PubMed]
- Ahnaou, A.; Drinkenburg, W.H.I.M. Sleep, Neuronal Hyperexcitability, Inflammation and Neurodegeneration: Does Early Chronic Short Sleep Trigger and Is It the Key to Overcoming Alzheimer’s Disease? Neurosci. Biobehav. Rev. 2021, 129, 157–179. [Google Scholar] [CrossRef] [PubMed]
- Scott-Massey, A.; Boag, M.K.; Magnier, A.; Bispo, D.P.C.F.; Khoo, T.K.; Pountney, D.L. Glymphatic System Dysfunction and Sleep Disturbance May Contribute to the Pathogenesis and Progression of Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 12928. [Google Scholar] [CrossRef] [PubMed]
- Kopeć, K.; Szleszkowski, S.; Koziorowski, D.; Szlufik, S. Glymphatic System and Mitochondrial Dysfunction as Two Crucial Players in Pathophysiology of Neurodegenerative Disorders. Int. J. Mol. Sci. 2023, 24, 10366. [Google Scholar] [CrossRef] [PubMed]
- Rigat, L.; Ouk, K.; Kramer, A.; Priller, J. Dysfunction of Circadian and Sleep Rhythms in the Early Stages of Alzheimer’s Disease. Acta Physiol. 2023, 238, e13970. [Google Scholar] [CrossRef] [PubMed]
- Högl, B.; Stefani, A.; Videnovic, A. Idiopathic REM Sleep Behaviour Disorder and Neurodegeneration—An Update. Nat. Rev. Neurol. 2018, 14, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Heidbreder, A.; St Louis, E.K.; Sixel-Döring, F.; Bliwise, D.L.; Baldelli, L.; Bes, F.; Fantini, M.L.; Iranzo, A.; Knudsen-Heier, S.; et al. Video-Polysomnography Procedures for Diagnosis of Rapid Eye Movement Sleep Behavior Disorder (RBD) and the Identification of Its Prodromal Stages: Guidelines from the International RBD Study Group. Sleep 2022, 43, zsab257. [Google Scholar] [CrossRef] [PubMed]
- Kunz, D.; Oster, H.; Rawashdeh, O.; Neumann, W.-J.; Münte, T.; Berg, D. Sleep and Circadian Rhythms in α-Synucleinopathies-Perspectives for Disease Modification. Acta Physiol. 2023, 238, e13966. [Google Scholar] [CrossRef] [PubMed]
- Weissová, K.; Škrabalová, J.; Skálová, K.; Červená, K.; Bendová, Z.; Miletínová, E.; Kopřivová, J.; Šonka, K.; Dudysová, D.; Bartoš, A.; et al. Circadian Rhythms of Melatonin and Peripheral Clock Gene Expression in Idiopathic REM Sleep Behavior Disorder. Sleep Med. 2018, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bokenberger, K.; Ström, P.; Dahl Aslan, A.K.; Johansson, A.L.V.; Gatz, M.; Pedersen, N.L.; Åkerstedt, T. Association Between Sleep Characteristics and Incident Dementia Accounting for Baseline Cognitive Status: A Prospective Population-Based Study. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Bokenberger, K.; Sjölander, A.; Dahl Aslan, A.K.; Karlsson, I.K.; Åkerstedt, T.; Pedersen, N.L. Shift Work and Risk of Incident Dementia: A Study of Two Population-Based Cohorts. Eur. J. Epidemiol. 2018, 33, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Tranah, G.J.; Blackwell, T.; Stone, K.L.; Ancoli-Israel, S.; Paudel, M.L.; Ensrud, K.E.; Cauley, J.A.; Redline, S.; Hillier, T.A.; Cummings, S.R.; et al. Circadian Activity Rhythms and Risk of Incident Dementia and Mild Cognitive Impairment in Older Women. Ann. Neurol. 2011, 70, 722–732. [Google Scholar] [CrossRef]
- Walsh, C.M.; Blackwell, T.; Tranah, G.J.; Stone, K.L.; Ancoli-Israel, S.; Redline, S.; Paudel, M.; Kramer, J.H.; Yaffe, K. Weaker Circadian Activity Rhythms Are Associated with Poorer Executive Function in Older Women. Sleep 2014, 37, 2009–2016. [Google Scholar] [CrossRef]
- Li, P.; Gao, L.; Gaba, A.; Yu, L.; Cui, L.; Fan, W.; Lim, A.S.P.; Bennett, D.A.; Buchman, A.S.; Hu, K. Circadian Disturbances in Alzheimer’s Disease Progression: A Prospective Observational Cohort Study of Community-Based Older Adults. Lancet Healthy Longev. 2020, 1, e96–e105. [Google Scholar] [CrossRef]
- Van Someren, E.J.W.; Oosterman, J.M.; Van Harten, B.; Vogels, R.L.; Gouw, A.A.; Weinstein, H.C.; Poggesi, A.; Scheltens, P.; Scherder, E.J.A. Medial Temporal Lobe Atrophy Relates More Strongly to Sleep-Wake Rhythm Fragmentation than to Age or Any Other Known Risk. Neurobiol. Learn. Mem. 2019, 160, 132–138. [Google Scholar] [CrossRef]
- Carvalho, D.Z.; St Louis, E.K.; Boeve, B.F.; Mielke, M.M.; Przybelski, S.A.; Knopman, D.S.; Machulda, M.M.; Roberts, R.O.; Geda, Y.E.; Petersen, R.C.; et al. Excessive Daytime Sleepiness and Fatigue May Indicate Accelerated Brain Aging in Cognitively Normal Late Middle-Aged and Older Adults. Sleep Med. 2017, 32, 236–243. [Google Scholar] [CrossRef]
- Carvalho, D.Z.; St Louis, E.K.; Knopman, D.S.; Boeve, B.F.; Lowe, V.J.; Roberts, R.O.; Mielke, M.M.; Przybelski, S.A.; Machulda, M.M.; Petersen, R.C.; et al. Association of Excessive Daytime Sleepiness with Longitudinal β-Amyloid Accumulation in Elderly Persons Without Dementia. JAMA Neurol. 2018, 75, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, L.; Xia, K.; Zhuang, Z.; Huang, T.; Fan, D. Daytime Sleepiness Might Increase the Risk of ALS: A 2-Sample Mendelian Randomization Study. J. Neurol. 2021, 268, 4332–4339. [Google Scholar] [CrossRef] [PubMed]
- Cullell, N.; Cárcel-Márquez, J.; Gallego-Fábrega, C.; Muiño, E.; Llucià-Carol, L.; Lledós, M.; Amaut, K.E.U.; Krupinski, J.; Fernández-Cadenas, I. Sleep/Wake Cycle Alterations as a Cause of Neurodegenerative Diseases: A Mendelian Randomization Study. Neurobiol. Aging 2021, 106, 320.e1–320.e12. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Cesari, M.; Heidbreder, A.; Defrancesco, M.; Brandauer, E.; Seppi, K.; Kiechl, S.; Högl, B.; Stefani, A. Sleep Features and Long-Term Incident Neurodegeneration: A Polysomnographic Study. Sleep 2023, zsad304. [Google Scholar] [CrossRef] [PubMed]
- Adra, N.; Sun, H.; Ganglberger, W.; Ye, E.M.; Dümmer, L.W.; Tesh, R.A.; Westmeijer, M.; Cardoso, M.D.S.; Kitchener, E.; Ouyang, A.; et al. Optimal Spindle Detection Parameters for Predicting Cognitive Performance. Sleep 2022, 45, zsac001. [Google Scholar] [CrossRef] [PubMed]
- Zavecz, Z.; Shah, V.D.; Murillo, O.G.; Vallat, R.; Mander, B.A.; Winer, J.R.; Jagust, W.J.; Walker, M.P. NREM Sleep as a Novel Protective Cognitive Reserve Factor in the Face of Alzheimer’s Disease Pathology. BMC Med. 2023, 21, 156. [Google Scholar] [CrossRef] [PubMed]
- Azami, H.; Moguilner, S.; Penagos, H.; Sarkis, R.A.; Arnold, S.E.; Gomperts, S.N.; Lam, A.D. EEG Entropy in REM Sleep as a Physiologic Biomarker in Early Clinical Stages of Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 91, 1557–1572. [Google Scholar] [CrossRef]
- André, C.; Champetier, P.; Rehel, S.; Kuhn, E.; Touron, E.; Ourry, V.; Landeau, B.; Le Du, G.; Mézenge, F.; Segobin, S.; et al. Rapid Eye Movement Sleep, Neurodegeneration, and Amyloid Deposition in Aging. Ann. Neurol. 2023, 93, 979–990. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Y.; Zhang, G.; Wang, H.; Chen, Y.-C.; Liu, Y.; Tarolli, C.G.; Crepeau, D.; Bukartyk, J.; Junna, M.R.; et al. Artificial Intelligence-Enabled Detection and Assessment of Parkinson’s Disease Using Nocturnal Breathing Signals. Nat. Med. 2022, 28, 2207–2215. [Google Scholar] [CrossRef]
- Barthélemy, N.R.; Liu, H.; Lu, W.; Kotzbauer, P.T.; Bateman, R.J.; Lucey, B.P. Sleep Deprivation Affects Tau Phosphorylation in Human Cerebrospinal Fluid. Ann. Neurol. 2020, 87, 700–709. [Google Scholar] [CrossRef]
- Ju, Y.-E.S.; Ooms, S.J.; Sutphen, C.; Macauley, S.L.; Zangrilli, M.A.; Jerome, G.; Fagan, A.M.; Mignot, E.; Zempel, J.M.; Claassen, J.A.H.R.; et al. Slow Wave Sleep Disruption Increases Cerebrospinal Fluid Amyloid-β Levels. Brain 2017, 140, 2104–2111. [Google Scholar] [CrossRef] [PubMed]
- Ramar, K.; Malhotra, R.K.; Carden, K.A.; Martin, J.L.; Abbasi-Feinberg, F.; Aurora, R.N.; Kapur, V.K.; Olson, E.J.; Rosen, C.L.; Rowley, J.A.; et al. Sleep Is Essential to Health: An American Academy of Sleep Medicine Position Statement. J. Clin. Sleep Med. 2021, 17, 2115–2119. [Google Scholar] [CrossRef]
- Van den Bulcke, L.; Peeters, A.-M.; Heremans, E.; Davidoff, H.; Borzée, P.; De Vos, M.; Emsell, L.; Van den Stock, J.; De Roo, M.; Tournoy, J.; et al. Acoustic Stimulation as a Promising Technique to Enhance Slow-Wave Sleep in Alzheimer’s Disease: Results of a Pilot Study. J. Clin. Sleep Med. 2023, 19, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Mander, B.A.; Winer, J.R.; Jagust, W.J.; Walker, M.P. Sleep: A Novel Mechanistic Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer’s Disease? Trends Neurosci. 2016, 39, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Shieu, M.M.; Zaheed, A.; Shannon, C.; Chervin, R.D.; Conceicao, A.; Paulson, H.L.; Braley, T.J.; Dunietz, G.L. Positive Airway Pressure and Cognitive Disorders in Adults With Obstructive Sleep Apnea: A Systematic Review of the Literature. Neurology 2022, 99, e334–e346. [Google Scholar] [CrossRef] [PubMed]
- Dunietz, G.L.; Chervin, R.D.; Burke, J.F.; Conceicao, A.S.; Braley, T.J. Obstructive Sleep Apnea Treatment and Dementia Risk in Older Adults. Sleep 2021, 44, zsab076. [Google Scholar] [CrossRef]
- Sakurai, T. The Role of Orexin in Motivated Behaviours. Nat. Rev. Neurosci. 2014, 15, 719–731. [Google Scholar] [CrossRef]
- Mieda, M.; Sakurai, T. Orexin (Hypocretin) Receptor Agonists and Antagonists for Treatment of Sleep Disorders. CNS Drugs 2013, 27, 83–90. [Google Scholar] [CrossRef]
- Ten-Blanco, M.; Flores, Á.; Cristino, L.; Pereda-Pérez, I.; Berrendero, F. Targeting the Orexin/Hypocretin System for the Treatment of Neuropsychiatric and Neurodegenerative Diseases: From Animal to Clinical Studies. Front. Neuroendocrinol. 2023, 69, 101066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.; Högl, B.; Stefani, A. The Bidirectional Relationship between Sleep and Neurodegeneration: Actionability to Improve Brain Health. Clin. Transl. Neurosci. 2024, 8, 11. https://doi.org/10.3390/ctn8010011
Ibrahim A, Högl B, Stefani A. The Bidirectional Relationship between Sleep and Neurodegeneration: Actionability to Improve Brain Health. Clinical and Translational Neuroscience. 2024; 8(1):11. https://doi.org/10.3390/ctn8010011
Chicago/Turabian StyleIbrahim, Abubaker, Birgit Högl, and Ambra Stefani. 2024. "The Bidirectional Relationship between Sleep and Neurodegeneration: Actionability to Improve Brain Health" Clinical and Translational Neuroscience 8, no. 1: 11. https://doi.org/10.3390/ctn8010011
APA StyleIbrahim, A., Högl, B., & Stefani, A. (2024). The Bidirectional Relationship between Sleep and Neurodegeneration: Actionability to Improve Brain Health. Clinical and Translational Neuroscience, 8(1), 11. https://doi.org/10.3390/ctn8010011