Spatial Release from Masking for Small Spatial Separations Using Simulated Cochlear Implant Speech †
Abstract
:1. Introduction
2. Methods
2.1. Listeners
2.2. Stimuli
2.3. CI Simulation
2.4. Conditions
2.5. Procedure
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbogast, T.L.; Mason, C.R.; Kidd, G. The effect of spatial separation on informational masking of speech in normal-hearing and hearing-impaired listeners. J. Acoust. Soc. Am. 2005, 117, 2169–2180. [Google Scholar] [CrossRef] [PubMed]
- Freyman, R.L.; Helfer, K.S.; McCall, D.D.; Clifton, R.K. The role of perceived spatial separation in the unmasking of speech. J. Acoust. Soc. Am. 1999, 106, 3578–3588. [Google Scholar] [CrossRef] [PubMed]
- Gallun, F.J.; Diedesch, A.C.; Kampel, S.D.; Jakien, K.M. Independent impacts of age and hearing loss on spatial release in a complex auditory environment. Front. Neurosci. 2013, 7, 252. [Google Scholar] [CrossRef] [PubMed]
- Hawley, M.L.; Litovsky, R.Y.; Culling, J.F. The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. J. Acoust. Soc. Am. 2004, 115, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, N.K.; Jakien, K.M.; Gallun, F.J. Release from masking for small spatial separations: Effects of age and hearing loss. The J. Acoust. Soc. Am. 2016, 140, EL73–EL78. [Google Scholar] [CrossRef]
- Helfer, K.S. Aging and the binaural advantage in reverberation and noise. J. Speech Lang. Hear. Res. 1992, 35, 1394–1401. [Google Scholar] [CrossRef]
- Bronkhorst, A.W.; Plomp, R. Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. J. Acoust. Soc. Am. 1992, 92, 3132–3139. [Google Scholar] [CrossRef]
- Marrone, N.; Mason, C.R.; Kidd, G. Tuning in the spatial dimension: Evidence from a masked speech identification task. J. Acoust. Soc. Am. 2008, 124, 1146–1158. [Google Scholar] [CrossRef]
- Stecker, G.C.; Gallun, F. Binaural hearing, sound localization, and spatial hearing. In Translational Perspectives in Auditory Neuroscience: Normal Aspects of Hearingk; Tremblay, K., Burkard, R.F., Eds.; Plural Publishing: San Diego, CA, USA, 2012; pp. 383–433. [Google Scholar]
- Best, V.; Gallun, F.J.; Ihlefeld, A.; Shinn-Cunningham, B.G. The influence of spatial separation on divided listening. J. Acoust. Soc. Am. 2006, 120, 1506–1516. [Google Scholar] [CrossRef]
- Ihlefeld, A.; Shinn-Cunningham, B. Disentangling the effects of spatial cues on selection and formation of auditory objects. J. Acoust. Soc. Am. 2008, 124, 2224–2235. [Google Scholar] [CrossRef]
- Kidd, G.; Arbogast, T.L.; Mason, C.R.; Gallun, F.J. The advantage of knowing where to listen. J. Acoust. Soc. Am. 2005, 118, 3804–3815. [Google Scholar] [CrossRef] [PubMed]
- Litovsky, R.; Parkinson, A.; Arcaroli, J.; Sammeth, C. Simultaneous bilateral cochlear implantation in adults: A multicenter clinical study. Ear Hear. 2006, 27, 714–731. [Google Scholar] [CrossRef] [PubMed]
- Van Hoesel RJ, M. Exploring the benefits of bilateral cochlear implants. Audiol. Neurotol. 2004, 9, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.R.; Wyss, J.; Manrique, M. Worldwide trends in bilateral cochlear implantation. Laryngoscope 2010, 120, S14–S17. [Google Scholar] [CrossRef]
- Seeber, B.U.; Fastl, H. Localization cues with bilateral cochlear implants. J. Acoust. Soc. Am. 2008, 123, 1030–1042. [Google Scholar] [CrossRef]
- Van Hoesel RJ, M.; Tyler, R.S. Speech perception, localization, and lateralization with bilateral cochlear implants. J. Acoust. Soc. Am. 2003, 113, 1617–1630. [Google Scholar] [CrossRef]
- Long, C.J.; Carlyon, R.P.; Litovsky, R.Y.; Downs, D.H. Binaural Unmasking with Bilateral Cochlear Implants. J. Assoc. Res. Otolaryngol. 2006, 7, 352–360. [Google Scholar] [CrossRef]
- Lu, T.; Litovsky, R.; Zeng, F. Binaural masking level differences in actual and simulated bilateral cochlear implant listeners. J. Acoust. Soc. Am. 2010, 127, 1479–1490. [Google Scholar] [CrossRef]
- Carlyon, R.P.; Long, C.J.; Deeks, J.M.; McKay, C.M. Concurrent sound segregation in electric and acoustic hearing. J. Assoc. Res. Otolaryngol. 2007, 8, 119–133. [Google Scholar] [CrossRef]
- Garadat, S.N.; Litovsky, R.Y.; Yu, G.; Zeng, F. Effects of simulated spectral holes on speech intelligibility and spatial release from masking under binaural and monaural listening. J. Acoust. Soc. Am. 2010, 127, 977–989. [Google Scholar] [CrossRef]
- Kerber, S.; Seeber, B.U. Sound localization in noise by Normal-Hearing listeners and Cochlear implant users. Ear Hear. 2012, 33, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.G.W.; Goupell, M.J.; Schuchman, G.I.; Rivera, A.L.; Brungart, D.S. Having two ears facilitates the perceptual separation of concurrent talkers for bilateral and Single-Sided deaf cochlear implantees. Ear Hear. 2016, 37, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Buss, E.; Pillsbury, H.C.; Buchman, C.A.; Pillsbury, C.H.; Clark, M.S.; Haynes, D.S.; Labadie, R.F.; Amberg, S.; Roland, P.S.; Kruger, P.; et al. Multicenter U.S. Bilateral MED-EL Cochlear Implantation Study: Speech Perception over the First Year of Use. Ear Hear. 2008, 29, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Goupell, M.J.; Kan, A.; Litovsky, R.Y. Spatial attention in bilateral cochlear-implant users. J. Acoust. Soc. Am. 2016, 140, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Loizou, P.C.; Hu, Y.; Litovsky, R.; Yu, G.; Peters, R.; Lake, J.; Roland, P. Speech recognition by bilateral cochlear implant users in a cocktail-party setting. J. Acoust. Soc. Am. 2009, 125, 372–383. [Google Scholar] [CrossRef]
- Van Hoesel, R.; Böhm, M.; Pesch, J.; Vandali, A.; Battmer, R.D.; Lenarz, T. Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies. J. Acoust. Soc. Am. 2008, 123, 2249–2263. [Google Scholar] [CrossRef]
- Garadat, S.N.; Litovsky, R.Y.; Yu, G.; Zeng, F. Role of binaural hearing in speech intelligibility and spatial release from masking using vocoded speech. J. Acoust. Soc. Am. 2009, 126, 2522–2535. [Google Scholar] [CrossRef]
- Bolia, R.S.; Nelson, W.T.; Ericson, M.A.; Simpson, B.D. A speech corpus for multitalker communications research. J. Acoust. Soc. Am. 2000, 107, 1065–1066. [Google Scholar] [CrossRef]
- Shannon, R.V.; Zeng, F.; Kamath, V.; Wygonski, J.; Ekelid, M. Speech Recognition with Primarily Temporal Cues. Science 1995, 270, 303–304. [Google Scholar] [CrossRef]
- Friesen, L.M.; Shannon, R.V.; Baskent, D.; Wang, X. Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 2001, 110, 1150–1163. [Google Scholar] [CrossRef]
- Fu, Q.; Nogaki, G. Noise Susceptibility of Cochlear Implant Users: The role of Spectral Resolution and Smearing. J. Assoc. Res. Otolaryngol. 2005, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.D. A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am. 1990, 87, 2592–2605. [Google Scholar] [CrossRef] [PubMed]
- Zahorik, P. Perceptually relevant parameters for virtual listening simulation of small room acoustics. J. Acoust. Soc. Am. 2009, 126, 776–791. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.B.; Berkley, D.A. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 1979, 65, 943–950. [Google Scholar] [CrossRef]
- Levitt, H. Transformed Up-Down Methods in Psychoacoustics. J. Acoust. Soc. Am. 1971, 49, 467–477. [Google Scholar] [CrossRef]
- Brungart, D.S. Informational and energetic masking effects in the perception of two simultaneous talkers. J. Acoust. Soc. Am. 2001, 109, 1101–1109. [Google Scholar] [CrossRef]
- Eddins, D.A.; Liu, C. Psychometric properties of the coordinate response measure corpus with various types of background interference. The J. Acoust. Soc. Am. 2012, 131, EL177–EL183. [Google Scholar] [CrossRef]
- Srinivasan, N.K.; Holtz, A.; Gallun, F.J. Comparing spatial release from masking using traditional methods and portable automated rapid testing iPad app. Am. J. Audiol. 2020, 29, 907–915. [Google Scholar] [CrossRef]
- Srinivasan, N.; Patro, C.; Kansangra, R.; Trotman, A. Comparison of psychometric functions measured using remote testing and laboratory testing. Audiol. Res. 2024, 14, 469–478. [Google Scholar] [CrossRef]
- Jakien, K.M.; Kampel, S.D.; Gordon, S.Y.; Gallun, F.J. The benefits of increased sensation level and bandwidth for spatial release from masking. Ear Hear. 2017, 38, e13–e21. [Google Scholar] [CrossRef]
- Qin, M.K.; Oxenham, A.J. Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers. J. Acoust. Soc. Am. 2003, 114, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.; Souza, P.; Ekelund, C.; Majeed, A.A. Listening to speech in a background of other talkers: Effects of talker number and noise vocoding. J. Acoust. Soc. Am. 2013, 133, 2431–2443. [Google Scholar] [CrossRef] [PubMed]
- Stickney, G.S.; Zeng, F.; Litovsky, R.; Assmann, P. Cochlear implant speech recognition with speech maskers. J. Acoust. Soc. Am. 2004, 116, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Schoof, T.; Green, T.; Faulkner, A.; Rosen, S. Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing. J. Acoust. Soc. Am. 2013, 133, 1017–1030. [Google Scholar] [CrossRef]
- Freyman, R.L.; Balakrishnan, U.; Helfer, K.S. Spatial release from informational masking in speech recognition. J. Acoust. Soc. Am. 2001, 109, 2112–2122. [Google Scholar] [CrossRef]
- Rubinstein, J.T.; Hong, R. Signal coding in cochlear implants: Exploiting stochastic effects of electrical stimulation. Ann. Otol. Rhinol. Laryngol. 2003, 112, 14–19. [Google Scholar] [CrossRef]
- Smith, Z.M.; Delgutte, B.; Oxenham, A.J. Chimaeric sounds reveal dichotomies in auditory perception. Nature 2002, 416, 87–90. [Google Scholar] [CrossRef]
- Stickney, G.S.; Assmann, P.F.; Chang, J.; Zeng, F. Effects of cochlear implant processing and fundamental frequency on the intelligibility of competing sentences. J. Acoust. Soc. Am. 2007, 122, 1069–1078. [Google Scholar] [CrossRef]
- Wilson, B.S.; Schatzer, R.; Lopez-Poveda, E.A.; Sun, X.; Lawson, D.T.; Wolford, R.D. Two new directions in speech processor design for cochlear implants. Ear Hear. 2005, 26, 73S–81S. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasan, N.; McCannon, S.; Patro, C. Spatial Release from Masking for Small Spatial Separations Using Simulated Cochlear Implant Speech. J. Otorhinolaryngol. Hear. Balance Med. 2024, 5, 18. https://doi.org/10.3390/ohbm5020018
Srinivasan N, McCannon S, Patro C. Spatial Release from Masking for Small Spatial Separations Using Simulated Cochlear Implant Speech. Journal of Otorhinolaryngology, Hearing and Balance Medicine. 2024; 5(2):18. https://doi.org/10.3390/ohbm5020018
Chicago/Turabian StyleSrinivasan, Nirmal, SaraGrace McCannon, and Chhayakant Patro. 2024. "Spatial Release from Masking for Small Spatial Separations Using Simulated Cochlear Implant Speech" Journal of Otorhinolaryngology, Hearing and Balance Medicine 5, no. 2: 18. https://doi.org/10.3390/ohbm5020018
APA StyleSrinivasan, N., McCannon, S., & Patro, C. (2024). Spatial Release from Masking for Small Spatial Separations Using Simulated Cochlear Implant Speech. Journal of Otorhinolaryngology, Hearing and Balance Medicine, 5(2), 18. https://doi.org/10.3390/ohbm5020018