Selection and Optimization of Motor KV Values for Multi-Blade and High-Load Ratio UAVs
Abstract
1. Introduction
2. Power System Composition
- (1)
- After determining the size and number of blades, increase the motor speed to enhance the overall lift.
- (2)
- Keep the blade speed constant, increase the number of blades, and at the same time increase the motor torque to meet the load demand, thereby improving lift.
3. Motor Design
3.1. Outer Rotor
3.2. Inner Stator
4. Motor No-Load Speed and KV Value
- (1)
- Large motors with more poles will require high torque and operate at low speeds; therefore, the motors will have lower KV values.
- (2)
- Small motors with fewer poles will require high speed operation and generate relatively low torque; therefore, the motor will have high KV values.
5. Load Analysis
5.1. Blade Load Characteristics
5.2. Selection and Optimization of KV Value
6. Testing and Results
7. Conclusions
- (1)
- The method of optimizing the KV value of the motor to match the aerodynamic characteristics of the blade can maximize the lift of the power system and achieve better system efficiency.
- (2)
- The experimental results show that the multi-blade power system can enhance lift under the volume limitation of UAVs, with a load of four 29-inch blades providing 11 kg of rated lift, and that the motor efficiency can reach 85%.
- (3)
- When testing the high-speed operation of the blade, blade vibration can cause a decrease in lift. Subsequent research will consider the impact of blade shape variation on lift in CFD simulations to address the limitations of high-speed performance deviations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saeed, A.; Younes, A.; Cai, C.; Cai, G. A survey of hybrid Unmanned Aerial Vehicles. Prog. Aerosp. Sci. 2018, 98, 91–105. [Google Scholar] [CrossRef]
- Fan, B.; Li, Y.; Zhang, R.; Fu, Q. Review on the Technological Development and Application of UAV Systems. Chin. J. Electron. 2020, 29, 199–207. [Google Scholar] [CrossRef]
- Kaneko, S.; Martins, J.R.R.A. Simultaneous optimization of design and takeoff trajectory for an eVTOL aircraft. Aerosp. Sci. Technol. 2024, 155, 109617. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Yan, Y. UAV Formation Trajectory Planning Algorithms: A Review. Drones 2023, 7, 62. [Google Scholar] [CrossRef]
- Messaoudi, K.; Oubbati, O.S.; Rachedi, A.; Lakas, A.; Bendouma, T.; Chaib, N. A survey of UAV-based data collection: Challenges, solutions and future perspectives. J. Netw. Comput. Appl. 2023, 216, 103670. [Google Scholar] [CrossRef]
- Mcenroe, P.; Wang, S.; Liyanage, M. A Survey on the Convergence of Edge Computing and AI for UAVs: Opportunities and Challenges. IEEE Internet Things J. 2022, 9, 15435–15459. [Google Scholar] [CrossRef]
- Ngoc Anh, V.; Duy Khang, D.; Tuan Le, D. Electric propulsion system sizing methodology for an agriculture multicopter. Aerosp. Sci. Technol. 2019, 90, 314–326. [Google Scholar] [CrossRef]
- Konar, M.; Turkmen, A.; Oktay, T. Improvement of the thrust-torque ratio of an unmanned helicopter by using the ABC algorithm. Aircr. Eng. Aerosp. Technol. 2020, 92, 1133–1139. [Google Scholar] [CrossRef]
- Podsędkowski, M.; Konopiński, R.; Obidowski, D.; Koter, K. Variable Pitch Propeller for UAV-Experimental Tests. Energies 2020, 13, 5264. [Google Scholar] [CrossRef]
- Bolam, R.C.; Vagapov, Y.; Anuchin, A. A Review of Electrical Motor Topologies for Aircraft Propulsion. In Proceedings of the 2020 55th International Universities Power Engineering Conference, Turin, Italy, 1–4 September 2020. [Google Scholar]
- Wolnik, T.; Jarek, T.; Golec, J.; Topolewski, R.; Jastrzębski, D. High Power Density Motor for Light Electric Aircraft - Design Study and Lab Tests. In Proceedings of the 2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Newcastle upon Tyne, UK, 13–14 April 2023. [Google Scholar]
- Schiestl, M.; Marcolini, F.; Incurvati, M.; Capponi, F.G.; Starz, R.; Caricchi, F.; Rodriguez, A.S.; Wild, L. Development of a High Power Density Drive System for Unmanned Aerial Vehicles. IEEE Trans. Power Electron. 2021, 36, 3159–3171. [Google Scholar] [CrossRef]
- Urazbakhtin, R.R.; Vavilov, V.E.; Ismagilov, F.R.; Norkin, D.F. Design of Electric Motors for Unmanned Aerial Vehicles. Russ. Electr. Eng. 2023, 94, 922–924. [Google Scholar] [CrossRef]
- Carev, V.; Rohac, J.; Sipos, M.; Schmirler, M. A Multilayer Brushless DC Motor for Heavy Lift Drones. Energies 2021, 14, 2504. [Google Scholar] [CrossRef]
- Liben, M.; Ludois, D.C. Analytical Design and Experimental Testing of a Self-Cooled, Toroidally Wound Ring Motor with Integrated Propeller for Electric Rotorcraft. IEEE Trans. Ind. Appl. 2021, 57, 2342–2353. [Google Scholar] [CrossRef]
- Hwang, S.-W.; Son, D.-K.; Park, S.-H.; Lee, G.-H.; Yoon, Y.-D.; Lim, M.-S. Design and Analysis of Dual Stator PMSM with Separately Controlled Dual 3-Phase Winding for eVTOL Propulsion. IEEE Trans. Transp. Electrif. 2022, 8, 4255–4264. [Google Scholar] [CrossRef]
- Allahyari, A.; Mahmoudi, A.; Torkaman, H.; Kahourzade, S. A high-performance dual-stator permanent-magnet vernier machine for propulsion applications. Electr. Eng. 2022, 104, 3253–3263. [Google Scholar] [CrossRef]
- Talebi, D.; Gardner, M.C.; Sankarraman, S.V.; Daniar, A.; Toliyat, H.A. Electromagnetic Design Characterization of a Dual Rotor Axial Flux Motor for Electric Aircraft. IEEE Trans. Ind. Appl. 2022, 58, 7088–7098. [Google Scholar] [CrossRef]
- Dave, N.; Gerada, D.; Vakil, G.; Zhang, H.; Shi, B.; Zhang, F.; Li, J.; Gerada, C. Fast Sizing Tool and Optimization Technique for Concentrated Wound Slotless Outer Rotor Motor for eVTOL Application. In Proceedings of the 2022 International Conference on Electrical Machines, Valencia, Spain, 5–8 September 2022. [Google Scholar]
- Gallicchio, G.; Nardo, M.D.; Palmieri, M.; Ilkhani, M.R.; Degano, M.; Gerada, C.; Cupertino, F. Surface Permanent Magnet Synchronous Machines: High Speed Design and Limits. IEEE Trans. Energy Convers. 2023, 38, 1311–1324. [Google Scholar] [CrossRef]
- Turanoğlu Şirin, B. A hybrid approach based on fuzzy BWM and MAIRCA for selection of engine in rotary wing unmanned aerial vehicle design. J. Intell. Fuzzy Syst. 2023, 45, 3767–3778. [Google Scholar] [CrossRef]
- Bolam, R.C.; Vagapov, Y.; Laughton, J.; Anuchin, A. Optimum Performance Determination of Single-Stage and Dual-Stage (Contra-Rotating) Rim Driven Fans for Electric Aircraft. In Proceedings of the 11th International Conference on Electrical Power Drive Systems (ICEPDS), St. Petersburg, Russia, 4–7 October 2020. [Google Scholar]
- Kafali, H.; Keskin, G. Conceptual design of a gliding UAV for bird strike prevention and observation. Aircr. Eng. Aerosp. Technol. 2021, 93, 68–75. [Google Scholar] [CrossRef]
- Swaminathan, N.; Reddy, S.R.P.; Rajashekara, K.; Haran, K.S. Flying Cars and eVTOLs-Technology Advancements, Powertrain Architectures, and Design. IEEE Trans. Transp. Electrif. 2022, 8, 4105–4117. [Google Scholar] [CrossRef]
- Xu, J.; Jin, W.; Lin, H.; Zhang, B.; Guo, H. Multi-objective Optimization Method to Maximize Power Density and Efficiency of an Electric Propulsion Motor in UAV Applications. IEEE Trans. Transp. Electrif. 2023, 10, 5484–5494. [Google Scholar] [CrossRef]
- Li, Z.; Che, S.; Zhao, H.; Zhang, L.; Wang, P.; Du, S.; Zhang, H.; Feng, Y.; Sun, H. Loss analysis of high-speed permanent magnet motor based on energy saving and emission reduction. Energy Rep. 2023, 9, 2379–2394. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.; Deng, Z.; Zhang, Y. Loss calculation, analysis and separation method of 550,000 r/min ultra-high-speed Permanent Magnet Motor. IEEE Trans. Ind. Electron. 2022, 70, 3471–3481. [Google Scholar] [CrossRef]
- Xv, H.; Zhao, L.; Wu, M.; Liu, K.; Zhang, H.; Wu, Z. Analysis of the Impact of Structural Parameter Changes on the Overall Aerodynamic Characteristics of Ducted UAVs. Drones 2023, 7, 702. [Google Scholar] [CrossRef]
Embrace = 0.7 | Embrace = 1 | |
---|---|---|
Torque | 4.71 N·m | 4.85 N·m |
Ripple | 20.29 | 19.98 |
weight | 73.1 g | 104.4 g |
Parameters | Values | Units |
---|---|---|
Rated power | 1.7 | kW |
Rated speed | 3000 | rpm |
Operating voltage | 55 | V |
Slot/pole | 36/30 | - |
Rotor outer diameter | 114 | mm |
Stator inner diameter | 88.5 | mm |
Stack length | 20 | mm |
Magnet thickness | 2 | mm |
Embrace | 0.7 | |
Moment of inertia | 1.61 × 109 | kg·mm2 |
Damping | 4.28 × 104 | N·m·s/rad |
Active mass | ~0.6 | kg |
No. | Conductors Per Slot | Wire Diameter (mm) | No-Load Speed (rpm) | KV Value |
---|---|---|---|---|
a | 10 | 1.085 | 7905 | 143.7 |
b | 12 | 1.024 | 7182 | 130.5 |
c | 14 | 0.912 | 6620 | 120.4 |
d | 16 | 0.861 | 6457 | 117.4 |
e | 18 | 0.813 | 6413 | 116.6 |
f | 20 | 0.767 | 6320 | 114.9 |
Parameters | Values | Units |
---|---|---|
Blade size | 736.6 × 221 | mm |
Weight | 92 | g |
Optimal speed range | 1400~3600 | rpm |
Common lift | 5.5~11 | kg |
Blade profile | NAC6309 | - |
NO. | KV Value | Speed/rpm | Torque/N·m | Power/kW | Lift/g |
---|---|---|---|---|---|
a | 143.7 | 2915 | 4.18 | 1.27 | 10,622 |
c | 120.4 | 3064 | 4.63 | 1.48 | 11,801 |
e | 116.6 | 3212 | 5.06 | 1.70 | 12,834 |
Throttle/% | Speed/rpm | Voltage/V | Current/A | Torque/N·m | Lift/g | Input Power/W | Output Power/W | Motor Efficiency/% | Blade Efficiency/g·W−1 | System Efficiency/g·W−1 |
---|---|---|---|---|---|---|---|---|---|---|
5 | 0 | 55.17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 506 | 55.07 | 0.37 | 0.101 | 206 | 20.4 | 5.4 | 26.5 | 38.2 | 10.1 |
15 | 774 | 55.01 | 0.86 | 0.244 | 472 | 47.3 | 19.8 | 41.9 | 23.8 | 10 |
20 | 1035 | 54.94 | 1.62 | 0.449 | 941 | 89.0 | 48.7 | 54.7 | 19.3 | 10.6 |
25 | 1273 | 54.84 | 2.52 | 0.652 | 1401 | 138.2 | 86.9 | 62.9 | 16.1 | 10.1 |
30 | 1508 | 54.72 | 3.90 | 0.946 | 2125 | 213.4 | 149.4 | 70.0 | 14.2 | 10 |
35 | 1730 | 54.57 | 5.58 | 1.255 | 2884 | 304.5 | 227.4 | 74.7 | 12.7 | 9.5 |
40 | 1940 | 54.42 | 7.53 | 1.572 | 3635 | 409.8 | 319.4 | 77.9 | 11.4 | 8.9 |
45 | 2161 | 54.18 | 10.28 | 1.980 | 4620 | 557.0 | 448.1 | 80.4 | 10.3 | 8.3 |
50 | 2424 | 53.90 | 13.70 | 2.399 | 5597 | 738.4 | 609.0 | 82.5 | 9.2 | 7.6 |
55 | 2665 | 53.58 | 17.71 | 2.861 | 6649 | 948.9 | 798.4 | 84.1 | 8.3 | 7 |
60 | 2884 | 53.25 | 22.67 | 3.375 | 7984 | 1207.2 | 1019.3 | 84.4 | 7.8 | 6.6 |
65 | 3088 | 52.87 | 27.58 | 3.836 | 9037 | 1458.2 | 1240.5 | 85.1 | 7.3 | 6.2 |
70 | 3286 | 52.44 | 34.20 | 4.443 | 10,449 | 1793.4 | 1528.9 | 85.3 | 6.8 | 5.8 |
75 | 3462 | 51.94 | 39.90 | 4.902 | 11,569 | 2072.4 | 1777.2 | 85.8 | 6.5 | 5.6 |
80 | 3643 | 51.32 | 47.52 | 5.493 | 12,956 | 2438.7 | 2095.5 | 85.9 | 6.2 | 5.3 |
85 | 3832 | 50.72 | 54.76 | 5.924 | 13,848 | 2777.4 | 2377.2 | 85.6 | 5.8 | 5 |
90 | 3982 | 49.97 | 64.16 | 6.587 | 15,347 | 3206.1 | 2746.7 | 85.7 | 5.6 | 4.8 |
95 | 4132 | 49.15 | 74.98 | 7.273 | 17,128 | 3685.3 | 3147.0 | 85.4 | 5.4 | 4.6 |
100 | 4256 | 48.20 | 84.16 | 7.716 | 18,124 | 4056.5 | 3438.9 | 84.8 | 5.3 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Wu, H.; Xu, Y.; Li, Q. Selection and Optimization of Motor KV Values for Multi-Blade and High-Load Ratio UAVs. Drones 2025, 9, 643. https://doi.org/10.3390/drones9090643
Huang C, Wu H, Xu Y, Li Q. Selection and Optimization of Motor KV Values for Multi-Blade and High-Load Ratio UAVs. Drones. 2025; 9(9):643. https://doi.org/10.3390/drones9090643
Chicago/Turabian StyleHuang, Cong, Huachun Wu, Yuzhe Xu, and Qiang Li. 2025. "Selection and Optimization of Motor KV Values for Multi-Blade and High-Load Ratio UAVs" Drones 9, no. 9: 643. https://doi.org/10.3390/drones9090643
APA StyleHuang, C., Wu, H., Xu, Y., & Li, Q. (2025). Selection and Optimization of Motor KV Values for Multi-Blade and High-Load Ratio UAVs. Drones, 9(9), 643. https://doi.org/10.3390/drones9090643