A Group Target Tracking Method for Unmanned Ground Vehicles Based on Multi-Ellipse Shape Modeling
Abstract
Highlights
- Enhanced tracking accuracy. The proposed method achieved a remarkable reduction in orientation error, decreasing it by 86.13% compared to single-target tracking and by 54.79% relative to the shapeless modeling method.
- Robustness in complex scenarios. The algorithm maintained stable performance under severe occlusions, environmental disturbances, and dynamic changes in member composition, outperforming Gaussian process-based and single-ellipse methods.
- Paradigm shift to group tracking. The approach shifts the operating paradigm from fragile single-target following to stable group target tracking, greatly reducing mission-interrupting target losses and improving patrol and rescue efficiency.
- Flexible formation accommodation. By modeling the squad with multiple ellipses, the framework can accurately describe arbitrary and changing formations, giving squads more spatial flexibility.
Abstract
1. Introduction
- (1)
- To manage the dynamic changes in member composition, we propose a group target tracking framework based on a data selection mechanism that relies solely on positional information. This approach filters measurements via shape modeling, minimizing disturbance from non-group individuals.
- (2)
- To address the dynamic changes in collective shape and the complex geometry of SMSS-UGVs, we propose a multi-ellipse combined shape modeling approach that effectively captures the intricate distribution of the collective, enabling precise modeling.
- (3)
- We conduct experiments in simulated and real-world environments to validate the method’s effectiveness. The experimental results show that the proposed ME-CGT-UGV surpasses single-target tracking techniques by 86.13% in terms of orientation error and reduces error by 54.79% compared to the shapeless modeling method.
2. Materials and Methods
2.1. Problem Definition
2.2. Framework
2.2.1. Initialization
2.2.2. Data Selection
2.2.3. State Prediction
3. Extended Shape Modeling
3.1. Extended Shape Modeling Based on Random Matrix
3.2. Multi-Ellipse Shape Modeling
4. Simulation Experiments
4.1. Experimental Setup
4.2. Evaluation Metrics
4.3. Comparison Experiments with Tracking Methods
4.4. Comparison Experiments with Shape Modeling Methods
4.5. Robustness Experiments
4.5.1. Disturbance Experiments
4.5.2. Occlusion Experiments
4.5.3. Formation-Changing Experiments
4.5.4. Complex-Formation Experiments
4.6. Sensitivity Analysis
5. Real-World Experiments
5.1. Experimental Setup
Algorithm 1 Group Target Tracking in Real-World Conditions |
|
5.2. Straight-Movement Experiment
5.3. Double-Column Experiment
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.J.; Hong, J.; Sattar, J. Person-following by autonomous robots: A categorical overview. Int. J. Robot. Res. 2019, 38, 1581–1618. [Google Scholar] [CrossRef]
- Wang, A.; Makino, Y.; Shinoda, H. Machine learning-based human-following system: Following the predicted position of a walking human. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4502–4508. [Google Scholar]
- Leisiazar, S.; Park, E.J.; Lim, A.; Chen, M. An MCTS-DRL based obstacle and occlusion avoidance methodology in robotic follow-ahead applications. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 221–228. [Google Scholar]
- Jiang, Q.; Susam, B.; Chao, J.J.; Isler, V. Map-Aware Human Pose Prediction for Robot Follow-Ahead. In Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 14–18 October 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 13031–13038. [Google Scholar]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C.H. Deep Learning for Person Re-Identification: A Survey and Outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2872–2893. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Wu, T.; Shi, M.; Liu, X.; Zhao, X. Multi-Modal Object Tracking with Vision-Language Adaptive Fusion and Alignment. In Proceedings of the 2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI), Hangzhou, China, 1–3 December 2023; pp. 1125–1133. [Google Scholar]
- Lin-Hai, G.; Gang, W.; Jin-Mang, L.; Song, L. An overview of group target tracking. Acta Autom. Sin. 2020, 46, 411–426. [Google Scholar]
- Chen, Y.; Wu, M.; Jiao, Y.; Ma, H.; Zhou, Y. Research progress of dense group tracking. Telecommun. Eng. 2023, 63, 589–597. [Google Scholar]
- Du, M.Y.; Bi, D.P.; Wang, S.L. Advances in key technologies of group target tracking. Electron. Opt. Control 2019, 26, 59–65+90. [Google Scholar]
- Chen, W.; Liu, H.; Hu, S.; Ning, H. Group Tracking of Flock Targets in Low-Altitude Airspace. In Proceedings of the 2011 IEEE Ninth International Symposium on Parallel and Distributed Processing with Applications Workshops, Busan, Republic of Korea, 26–28 May 2011; pp. 131–136. [Google Scholar]
- Zhang, Z.-x.; Wei, Z.; Chen, M.-y. A new method of tracking group space object. In Proceedings of the 2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, Chengdu, China, 24–25 October 2013; pp. 403–406. [Google Scholar]
- Feldmann, M.; Fränken, D.; Koch, W. Tracking of Extended Objects and Group Targets Using Random Matrices. IEEE Trans. Signal Process. 2011, 59, 1409–1420. [Google Scholar] [CrossRef]
- Granstrom, K.; Orguner, U. On spawning and combination of extended/group targets modeled with random matrices. IEEE Trans. Signal Process. 2012, 61, 678–692. [Google Scholar] [CrossRef]
- Granstrom, K.; Orguner, U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Trans. Signal Process. 2012, 60, 5657–5671. [Google Scholar] [CrossRef]
- Granström, K.; Natale, A.; Braca, P.; Ludeno, G.; Serafino, F. Gamma Gaussian Inverse Wishart Probability Hypothesis Density for Extended Target Tracking Using X-Band Marine Radar Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6617–6631. [Google Scholar] [CrossRef]
- Lan, J.; Li, X.R. Tracking of extended object or target group using random matrix: New model and approach. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2973–2989. [Google Scholar] [CrossRef]
- Tan, J.T.; Qi, G.Q.; Qi, J.J.; Yang, Y.J.; Li, Y.Y.; Sheng, A.D. Model Parameter Adaptive Approach of Extended Object Tracking Using Random Matrix and Identification. In Proceedings of the 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI), Nanjing, China, 18–21 November 2022; pp. 91–97. [Google Scholar]
- Fowdur, J.S.; Baum, M.; Heymann, F. An Elliptical Principal Axes-based Model for Extended Target Tracking with Marine Radar Data. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1–4 November 2021; pp. 1–8. [Google Scholar]
- Tuncer, B.; Özkan, E. Random matrix based extended target tracking with orientation: A new model and inference. IEEE Trans. Signal Process. 2021, 69, 1910–1923. [Google Scholar] [CrossRef]
- Lan, J.; Li, X.R. Tracking of Maneuvering Non-Ellipsoidal Extended Object or Target Group Using Random Matrix. IEEE Trans. Signal Process. 2014, 62, 2450–2463. [Google Scholar] [CrossRef]
- Granström, K.; Willett, P.; Bar-Shalom, Y. An extended target tracking model with multiple random matrices and unified kinematics. In Proceedings of the 2015 18th International Conference on Information Fusion (Fusion), Washington, DC, USA, 6–9 July 2015; pp. 1007–1014. [Google Scholar]
- Hu, Q.; Ji, H.; Zhang, Y. Tracking of maneuvering non-ellipsoidal extended target with varying number of sub-objects. Mech. Syst. Signal Process. 2018, 99, 262–284. [Google Scholar] [CrossRef]
- Xue, X.; Huang, S.; Wei, D. Adaptive tracking of non-ellipsoidal extended target with varying number of sub-objects based on variational Bayesian. Digit. Signal Process. 2023, 142, 104214. [Google Scholar] [CrossRef]
- Yang, D.; Guo, Y.; Qiu, B.; Chen, Y. Multiple Gaussian Processes based Extended Target Tracking with Variational Inference. In Proceedings of the 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China, 25–27 May 2024; pp. 4687–4692. [Google Scholar]
- Yang, D.; Guo, Y.; Li, X.; Chen, Y.; Shentu, H. Three-dimensional Multiple Extended Targets Tracking under occlusion using Variational Gaussian Processes. IEEE Trans. Aerosp. Electron. Syst. 2025, 1–20. [Google Scholar] [CrossRef]
- Kumru, M.; Özkan, E. Three-Dimensional Extended Object Tracking and Shape Learning Using Gaussian Processes. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2795–2814. [Google Scholar] [CrossRef]
- Kumru, M.; Özkan, E. Tracking Arbitrarily Shaped Extended Objects Using Gaussian Processes. In Proceedings of the 2024 27th International Conference on Information Fusion (FUSION), Venice, Italy, 8–11 July 2024; pp. 1–8. [Google Scholar]
- Baum, M.; Hanebeck, U.D. Extended Object Tracking with Random Hypersurface Models. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 149–159. [Google Scholar] [CrossRef]
- Yao, G.; Dani, A. Image moment-based random hypersurface model for extended object tracking. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–7. [Google Scholar]
- Sun, L.; Yu, H.; Fu, Z.; He, Z.; Zou, J. Modeling and Tracking of Maneuvering Extended Object with Random Hypersurface. IEEE Sens. J. 2021, 21, 20552–20562. [Google Scholar] [CrossRef]
- Yang, J.; Li, P.; Yang, L.; Ge, H. An improved ET-GM-PHD filter for multiple closely-spaced extended target tracking. Int. J. Control. Autom. Syst. 2017, 15, 468–472. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Cao, Z.; Jia, Y. Random Matrix-Based Group Target Tracking Using Nonlinear Measurement. In Proceedings of the 2022 IEEE 5th International Conference on Electronics Technology (ICET), Chengdu, China, 13–16 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1224–1228. [Google Scholar]
- Zhang, X.; Chen, S.; Qi, G.; Li, Y.; Sheng, A. The Algorithm of Group Target Tracking Based on Bearing-only Measurements. In Proceedings of the 2024 43rd Chinese Control Conference (CCC), Kunming, China, 28–31 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 4121–4128. [Google Scholar]
- Tuncer, B.; Orguner, U.; Özkan, E. Multi-ellipsoidal extended target tracking with variational Bayes inference. IEEE Trans. Signal Process. 2022, 70, 3921–3934. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, Y.; Wu, M.; Ma, H.; Lu, Z. Group Target Tracking for Highly Maneuverable Unmanned Aerial Vehicles Swarms: A Perspective. Sensors 2023, 23, 4465. [Google Scholar] [CrossRef]
- Ferreira, D.; Basiri, M. Dynamic Target Tracking and Following with UAVs Using Multi-Target Information: Leveraging YOLOv8 and MOT Algorithms. Drones 2024, 8, 488. [Google Scholar] [CrossRef]
- Wu, P.; Li, Y.; Xue, D. Multi-Target Tracking with Multiple Unmanned Aerial Vehicles Based on Information Fusion. Drones 2024, 8, 704. [Google Scholar] [CrossRef]
- Zhou, S.; He, Z.; Chen, X.; Chang, W. An Anomaly Detection Method for UAV Based on Wavelet Decomposition and Stacked Denoising Autoencoder. Aerospace 2024, 11, 393. [Google Scholar] [CrossRef]
- Xiao, J.; Ren, Y.; Du, J.; Zhao, Y.; Kumari, S.; Alenazi, M.J.F.; Yu, H. CALRA: Practical Conditional Anonymous and Leakage-Resilient Authentication Scheme for Vehicular Crowdsensing Communication. IEEE Trans. Intell. Transp. Syst. 2025, 26, 1273–1285. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, C.; Song, C.; Pan, X.; Chang, W.; Yang, L. Short-term traffic flow prediction of the smart city using 5G internet of vehicles based on edge computing. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2229–2238. [Google Scholar] [CrossRef]
- Le Cam, L.M.; Neyman, J. (Eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II: Probability Theory, 1st ed.; University of California Press: Berkeley, CA, USA, 1967. [Google Scholar]
- Simoudis, E.; Han, J.; Fayyad, U. (Eds.) KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining; AAAI Press: Washington, DC, USA, 1996. [Google Scholar]
- Wahlström, N.; Özkan, E. Extended Target Tracking Using Gaussian Processes. IEEE Trans. Signal Process. 2015, 63, 4165–4178. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, F. FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter. IEEE Robot. Autom. Lett. 2021, 6, 3317–3324. [Google Scholar] [CrossRef]
Method | RMSE | OE | Lat-STD |
---|---|---|---|
SOT | 3.534 | 29.491 | 3.531 |
MOT | 1.295 | 6.711 | 0.554 |
CGT-Mean | 2.714 | 76.830 | 2.303 |
ME-CGT-UGV(Ours) | 0.966 | 4.088 | 0.473 |
Method | RMSE | OE | Lat-STD |
---|---|---|---|
CGT-UGV | 1.567 | 8.591 | 0.858 |
GP-CGT-UGV | 2.497 | 4.042 | 1.752 |
MGP-CGT-UGV | 4.298 | 6.649 | 0.833 |
RM-CGT-UGV | 1.060 | 6.598 | 0.755 |
ME-CGT-UGV(Ours) | 0.984 | 3.884 | 0.423 |
Disturbance Experiments | Occlusion Experiments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Numbers | Method | RMSE | OE | Lat-STD | Angle | Method | RMSE | OE | Lat-STD | Occlusion Rate |
CGT-UGV | 1.226 | 7.019 | 0.576 | ° | CGT-UGV | 1.275 | 7.545 | 0.821 | 0.05 | |
GP-CGT-UGV | 2.643 | 3.682 | 1.771 | GP-CGT-UGV | 1.818 | 3.653 | 1.166 | 0.06 | ||
MGP-CGT-UGV | 3.530 | 5.277 | 1.722 | MGP-CGT-UGV | 3.993 | 7.030 | 1.166 | 0.06 | ||
RM-CGT-UGV | 1.106 | 6.938 | 0.809 | RM-CGT-UGV | 0.895 | 6.870 | 0.723 | 0.04 | ||
ME-CGT-UGV | 0.999 | 3.869 | 0.437 | ME-CGT-UGV | 0.962 | 4.028 | 0.600 | 0.05 | ||
CGT-UGV | 1.567 | 8.591 | 0.858 | ° | CGT-UGV | 1.567 | 8.591 | 0.858 | 0.28 | |
GP-CGT-UGV | 2.497 | 4.042 | 1.752 | GP-CGT-UGV | 2.497 | 4.042 | 1.752 | 0.22 | ||
MGP-CGT-UGV | 4.298 | 6.649 | 0.833 | MGP-CGT-UGV | 4.298 | 6.649 | 0.833 | 0.30 | ||
RM-CGT-UGV | 1.060 | 6.598 | 0.755 | RM-CGT-UGV | 1.060 | 6.598 | 0.755 | 0.25 | ||
ME-CGT-UGV | 0.984 | 3.884 | 0.423 | ME-CGT-UGV | 0.984 | 3.884 | 0.423 | 0.25 | ||
CGT-UGV | 2.331 | 10.908 | 1.569 | ° | CGT-UGV | 2.294 | 10.283 | 1.301 | 0.42 | |
GP-CGT-UGV | 2.090 | 3.402 | 1.189 | GP-CGT-UGV | 3.897 | 4.055 | 1.355 | 0.35 | ||
MGP-CGT-UGV | 3.431 | 3.541 | 1.264 | MGP-CGT-UGV | 7.457 | 9.158 | 2.498 | 0.42 | ||
RM-CGT-UGV | 1.223 | 7.716 | 0.870 | RM-CGT-UGV | 1.208 | 8.668 | 1.081 | 0.38 | ||
ME-CGT-UGV | 1.289 | 4.082 | 0.708 | ME-CGT-UGV | 2.067 | 6.473 | 1.490 | 0.33 | ||
CGT-UGV | 2.263 | 9.648 | 0.963 | ° | CGT-UGV | 2.342 | 9.440 | 1.154 | 0.49 | |
GP-CGT-UGV | 2.598 | 6.499 | 1.679 | GP-CGT-UGV | 4.509 | 5.036 | 1.554 | 0.42 | ||
MGP-CGT-UGV | 4.766 | 8.067 | 3.229 | MGP-CGT-UGV | 8.699 | 8.944 | 3.952 | 0.51 | ||
RM-CGT-UGV | 1.236 | 7.777 | 0.874 | RM-CGT-UGV | 1.430 | 7.666 | 1.267 | 0.43 | ||
ME-CGT-UGV | 1.297 | 4.093 | 0.704 | ME-CGT-UGV | 1.885 | 3.946 | 0.698 | 0.47 | ||
CGT-UGV | 3.082 | 9.630 | 1.354 | ° | CGT-UGV | 2.896 | 9.143 | 1.264 | 0.56 | |
GP-CGT-UGV | 2.541 | 6.495 | 1.633 | GP-CGT-UGV | 5.599 | 5.059 | 2.049 | 0.49 | ||
MGP-CGT-UGV | 5.456 | 7.623 | 3.656 | MGP-CGT-UGV | 4.957 | 6.675 | 1.486 | 0.48 | ||
RM-CGT-UGV | 1.217 | 7.764 | 0.860 | RM-CGT-UGV | 2.533 | 9.4344 | 2.432 | 0.50 | ||
ME-CGT-UGV | 1.306 | 4.197 | 0.660 | ME-CGT-UGV | 1.619 | 3.8457 | 0.582 | 0.53 |
Scenario | Method | RMSE | OE | Lat-STD |
---|---|---|---|---|
Straight | CGT-UGV | 4.078 | 8.632 | 0.164 |
GP-CGT-UGV | 8.397 | 12.901 | 0.417 | |
MGP-CGT-UGV | 6.695 | 12.236 | 0.513 | |
RM-CGT-UGV | 4.087 | 5.213 | 0.085 | |
ME-CGT-UGV(Ours) | 3.953 | 3.722 | 0.127 | |
Double-column | CGT-UGV | 5.156 | 19.640 | 0.161 |
GP-CGT-UGV | 8.205 | 16.432 | 0.485 | |
MGP-CGT-UGV | 4.813 | 10.551 | 0.394 | |
RM-CGT-UGV | 5.029 | 20.845 | 0.255 | |
ME-CGT-UGV(Ours) | 4.767 | 5.864 | 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, J.; Wu, T. A Group Target Tracking Method for Unmanned Ground Vehicles Based on Multi-Ellipse Shape Modeling. Drones 2025, 9, 620. https://doi.org/10.3390/drones9090620
Yu Y, Li J, Wu T. A Group Target Tracking Method for Unmanned Ground Vehicles Based on Multi-Ellipse Shape Modeling. Drones. 2025; 9(9):620. https://doi.org/10.3390/drones9090620
Chicago/Turabian StyleYu, Youjin, Junxiang Li, and Tao Wu. 2025. "A Group Target Tracking Method for Unmanned Ground Vehicles Based on Multi-Ellipse Shape Modeling" Drones 9, no. 9: 620. https://doi.org/10.3390/drones9090620
APA StyleYu, Y., Li, J., & Wu, T. (2025). A Group Target Tracking Method for Unmanned Ground Vehicles Based on Multi-Ellipse Shape Modeling. Drones, 9(9), 620. https://doi.org/10.3390/drones9090620