Open-Pit Mine Reclamation Monitoring and Management for a Sustainable Future Using Drone Technology: A Review
Abstract
1. Introduction
2. Research Status of Drone Applications in Open-Pit Mine Areas Based on Literature Review
2.1. Publication and Citation Analysis
2.2. Research Areas and Source Journals Analysis
3. Application of Drones and Sensors
4. Application of Drones in Open-Pit Mine Reclamation Monitoring
4.1. Monitoring of Soil and Water Pollution
4.2. Monitoring of Ecological Restoration
4.3. Monitoring of Ground Subsidence
5. Future Prospects of Drone Technology and Computer Vision for Mine Reclamation Monitoring
5.1. Data Collection
5.1.1. Image Acquisition
5.1.2. Ground Control Points
5.2. Processing of Drone Imagery Data and 3D Model Reconstruction
5.2.1. Pre-Processing of Image Data
5.2.2. Point Cloud Generation and 3D Reconstruction
5.2.3. K-Means Clustering and Multi-Model Testing
5.3. Point Cloud Data Alignment
5.4. Three-Dimensional Change Detection
6. How Is This Study Beneficial for Monitoring the Reclamation of Open-Pit Mines
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, W.; Fu, Y.; Wang, T.; Lv, X. Effects of Land Use Transitions Due to Underground Coal Mining on Ecosystem Services in High Groundwater Table Areas: A Case Study in the Yanzhou Coalfield. Land Use Policy 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Basu, D.; Mishra, S. A Comprehensive Literature Review Approach for Assessing Probable Impact of Post-Reclamation Strategies Applied to Abandoned Mines. J. Min. Environ. 2023, 14, 871–896. [Google Scholar]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of Surface Coal Mining and Land Reclamation on Soil Properties: A Review. Earth Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Cao, X. Regulating Mine Land Reclamation in Developing Countries: The Case of China. Land Use Policy 2007, 24, 472–483. [Google Scholar] [CrossRef]
- Terekhov, Y.; Litvinov, Y.; Fenenko, V.; Drebenstedt, C. Management of Land Reclamation Quality for Agricultural Use in Opencast Mining. Min. Miner. Depos. 2021, 15, 112–118. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.; Lin, C. A Landscape Approach towards Ecological Restoration and Sustainable Development of Mining Areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Mohd Daud, S.M.S.; Mohd Yusof, M.Y.P.; Heo, C.C.; Khoo, L.S.; Chainchel Singh, M.K.; Mahmood, M.S.; Nawawi, H. Applications of Drone in Disaster Management: A Scoping Review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Barnas, A.F.; Darby, B.J.; Vandeberg, G.S.; Rockwell, R.F.; Ellis-Felege, S.N. A Comparison of Drone Imagery and Ground-Based Methods for Estimating the Extent of Habitat Destruction by Lesser Snow Geese (Anser caerulescens caerulescens) in La Pérouse Bay. PLoS ONE 2019, 14, e0217049. [Google Scholar] [CrossRef] [PubMed]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Díaz-Varela, R.A.; de la Rosa, R.; León, L.; Zarco-Tejada, P.J. High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials. Remote Sens. 2015, 7, 4213–4232. [Google Scholar] [CrossRef]
- Tilburg, C. Van First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue. Wilderness Environ. Med. 2017, 28, 116–118. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A Review of UAV Monitoring in Mining Areas: Current Status and Future Perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef]
- Outay, F.; Mengash, H.A.; Adnan, M. Applications of Unmanned Aerial Vehicle (UAV) in Road Safety, Traffic and Highway Infrastructure Management: Recent Advances and Challenges. Transp. Res. Part A Policy Pract. 2020, 141, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Minh, D.T.; Dung, N.B. Applications of UAVs in Mine Industry: A Scoping Review. J. Sustain. Min. 2023, 22, 128–146. [Google Scholar] [CrossRef]
- Pavan, N.; Kumar, I.R. Unlocking the Potentiality of UAVs in Mining Industry and Its Implications. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 04, 852–855. [Google Scholar] [CrossRef]
- Shahmoradi, J.; Talebi, E.; Roghanchi, P.; Hassanalian, M. A Comprehensive Review of Applications of Drone Technology in the Mining Industry. Drones 2020, 4, 34. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals 2020, 10, 663. [Google Scholar] [CrossRef]
- Shrivastava, A. Unmanned Aerial Vehicles (UAV) in Mining Sector: Enhancing Productivity and Safety. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2025, 09544100251352429. [Google Scholar] [CrossRef]
- Tsachouridis, S.; Pavloudakis, F.; Sachpazis, C.; Tsioukas, V. Monitoring Slope Stability: A Comprehensive Review of UAV Applications in Open-Pit Mining. Land 2025, 14, 1193. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Marcial-Pablo, M.D.J.; Enciso, J. Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS Int. J. Geoinf. 2021, 10, 285. [Google Scholar] [CrossRef]
- Mcalinden, R.; Suma, E.; Grechkin, T.; Enloe, M. Procedural Reconstruction of Simulation Terrain Using Drones. In Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC); National Training and Simulation Association: Arlington, VA, USA, 2015. [Google Scholar]
- Meivel, S.; Maheswari, S. Remote Sensing Analysis of Agricultural Drone. J. Indian Soc. Remote Sens. 2021, 49, 689–701. [Google Scholar] [CrossRef]
- Jebur, A.K. Contour Mapping Based on Photogrammetric Techniques. In Proceedings of the AIP Conference Proceedings, Baghdad, Iraq, 5–6 October 2022; American Institute of Physics: College Park, MD, USA, 2024; Volume 3105. [Google Scholar]
- Lima, F.; Blanco-Sepúlveda, R.; Gómez-Moreno, M.L.; Dorado, J.; Peña, J.M. Mapping Tillage Direction and Contour Farming by Object-Based Analysis of UAV Images. Comput. Electron. Agric. 2021, 187, 106281. [Google Scholar] [CrossRef]
- Suh, J.; Choi, Y. Mapping Hazardous Mining-Induced Sinkhole Subsidence Using Unmanned Aerial Vehicle (Drone) Photogrammetry. Environ. Earth Sci. 2017, 76, 106281. [Google Scholar] [CrossRef]
- Andresen, C.G.; Schultz-Fellenz, E.S. Change Detection Applications in the Earth Sciences Using UAS-Based Sensing: A Review and Future Opportunities. Drones 2023, 7, 258. [Google Scholar] [CrossRef]
- Cook, K.L. An Evaluation of the Effectiveness of Low-Cost UAVs and Structure from Motion for Geomorphic Change Detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Lian, X.; Ge, L.; Liu, X.; Du, Z.; Yang, W.; Wu, Y.; Hu, H.; Cai, Y. Surface Subsidence Monitoring Induced by Underground Coal Mining by Combining DInSAR and UAV Photogrammetry. Remote Sens. 2022, 14, 4711. [Google Scholar] [CrossRef]
- Xu, D.; Li, X.; Chen, J.; Li, J. Research Progress of Soil and Vegetation Restoration Technology in Open-Pit Coal Mine: A Review. Agriculture 2023, 13, 226. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, X.; Fan, X.; Zhu, C.; Yang, R. Chapter 18—Ecological Reconstruction Research and Practice in the Large Open-Pit Coal Mine of the Loess Plateau, China. In Bio-Geotechnologies for Mine Site Rehabilitation; Prasad, M.N.V., Favas, P.J.d.C., Maiti, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 323–333. ISBN 978-0-12-812986-9. [Google Scholar]
- Carabassa, V.; Montero, P.; Alcañiz, J.M.; Padró, J.C. Soil Erosion Monitoring in Quarry Restoration Using Drones. Minerals 2021, 11, 949. [Google Scholar] [CrossRef]
- Loots, M.; Grobbelaar, S.; Van Der Lingen, E. A Review of Remote-Sensing Unmanned Aerial Vehicles in the Mining Industry. J. S. Afr. Inst. Min. Metall. 2022, 122, 387–396. [Google Scholar] [CrossRef]
- Benmoshe, B.; Reuveni, Y.; Gozlan, K.; Cohen, K.; Berliner, E. Cost-Effective Platforms for Near-Space Research and Experiments. In Space Flight; Dekoulis, G., Ed.; IntechOpen: Rijeka, India, 2017; ISBN 978-1-78923-283-7. [Google Scholar]
- Lort, M.; Aguasca, A.; López-Martínez, C.; Marín, T.M. Initial Evaluation of SAR Capabilities in UAV Multicopter Platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 127–140. [Google Scholar] [CrossRef]
- Sharkey, N. The Automation and Proliferation of Military Drones and the Protection of Civilians. Law. Innov. Technol. 2011, 3, 229–240. [Google Scholar] [CrossRef]
- Quamar, M.M.; Al-Ramadan, B.; Khan, K.; Shafiullah, M.; El Ferik, S. Advancements and Applications of Drone-Integrated Geographic Information System Technology—A Review. Remote Sens. 2023, 15, 5039. [Google Scholar] [CrossRef]
- Dibs, H.; Salim, N. A Comprehensive Review on the Design and Development of Drones for Diverse Applications: Classifications, 3 Applications, and Design Challenges. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5002521 (accessed on 20 August 2025).
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Hardin, P.; Jensen, R. Small-Scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities. GIsci Remote Sens. 2011, 48, 99–111. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Chang, K.J.; Sofia, G.; Tarolli, P. Open-Pit Mining Geomorphic Feature Characterisation. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 76–86. [Google Scholar] [CrossRef]
- Chand, K.; Koner, R. Large Dump Critical Zone of Interest Identification and Slope Failure Prediction Using Realistic 3D Numerical Modelling. Geomat. Nat. Hazards Risk 2024, 15, 2361809. [Google Scholar] [CrossRef]
- Chand, K.; Kumar Mankar, A.; Koner, R.; Raja, A.; Sai Naresh, V. Dump Slope Change Detection and Displacement Monitoring Using UAV Close-Range Photogrammetry. Sadhana 2024, 49, 277. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SFM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing Very High Resolution UAV Imagery for Monitoring Forest Health during a Simulated Disease Outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to Assess the Rehabilitation Performance of Open Cut Coal Mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV Lidar and Hyperspectral Fusion for Forest Monitoring in the Southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [Google Scholar] [CrossRef]
- Harvey, M.C.; Rowland, J.V.; Luketina, K.M. Drone with Thermal Infrared Camera Provides High Resolution Georeferenced Imagery of the Waikite Geothermal Area, New Zealand. J. Volcanol. Geotherm. Res. 2016, 325, 61–69. [Google Scholar] [CrossRef]
- Dunnington, L.; Nakagawa, M. Fast and Safe Gas Detection from Underground Coal Fire by Drone Fly Over. Environ. Pollut. 2017, 229, 139–145. [Google Scholar] [CrossRef]
- Malaver, A.; Motta, N.; Corke, P.; Gonzalez, F. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases. Sensors 2015, 15, 4072–4096. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, M.; Gonzalez, F.; Fletcher, A.; Doshi, A. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites. Sensors 2015, 15, 19667–19687. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, J.; Sofia, G.; Tian, Y.; Tarolli, P. Open-Pit Mine Geomorphic Changes Analysis Using Multi-Temporal UAV Survey. Environ. Earth Sci. 2018, 77, 220. [Google Scholar] [CrossRef]
- Hu, Z.-Q.; Wu, X.; Wang, P.-J.; Zhao, Y.-L. Concurrent Mining and Reclamation for Underground Coal Mining. J. China Coal Soc. 2013, 38, 301–307. [Google Scholar]
- Lamb, D.; Erskine, P.D.; Fletcher, A. Widening Gap between Expectations and Practice in Australian Minesite Rehabilitation. Ecol. Manag. Restor. 2015, 16, 186–195. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, C.; Xiao, W.; Wang, X.; Gao, M. Surface Movement and Deformation Characteristics Due to High-Intensive Coal Mining in the Windy and Sandy Region. Int. J. Coal Sci. Technol. 2016, 3, 339–348. [Google Scholar] [CrossRef]
- Xiao, W.; Hu, Z.; Fu, Y. Zoning of Land Reclamation in Coal Mining Area and New Progresses for the Past 10 Years. Int. J. Coal Sci. Technol. 2014, 1, 177–183. [Google Scholar] [CrossRef]
- Whiteside, T.G.; Bartolo, R.E. A Robust Object-Based Woody Cover Extraction Technique for Monitoring Mine Site Revegetation at Scale in the Monsoonal Tropics Using Multispectral RPAS Imagery from Different Sensors. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 300–312. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Sanz-Ablanedo, E.; Suárez-Seoane, S.; Calvo, L. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges. Sensors 2018, 18, 586. [Google Scholar] [CrossRef]
- Bao, N.; Lechner, A.; Fletcher, A.; Erskine, P.; Mulligan, D.; Bai, Z. SPOTing Long-Term Changes in Vegetation over Short-Term Variability. Int. J. Min. Reclam. Environ. 2014, 28, 2–24. [Google Scholar] [CrossRef]
- Padró, J.C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring Opencast Mine Restorations Using Unmanned Aerial System (UAS) Imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef]
- Martin, P.G.; Payton, O.D.; Fardoulis, J.S.; Richards, D.A.; Scott, T.B. The Use of Unmanned Aerial Systems for the Mapping of Legacy Uranium Mines. J. Environ. Radioact. 2015, 143, 135–140. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, Z.; Xu, L.; Wong, A.; Clausi, D.A. Estimation of Iron Concentration in Soil of a Mining Area from Uav-Based Hyperspectral Imagery. In 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS); IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Jackisch, R.; Lorenz, S.; Zimmermann, R.; Möckel, R.; Gloaguen, R. Drone-Borne Hyperspectral Monitoring of Acid Mine Drainage: An Example from the Sokolov Lignite District. Remote Sens. 2018, 10, 385. [Google Scholar] [CrossRef]
- Castendyk, D.N.; Straight, B.J.; Voorhis, J.C.; Somogyi, M.K.; Jepson, W.E.; Kucera, B.L. Using Aerial Drones to Select Sample Depths in Pit Lakes. In Proceedings of the International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, Australia, 3–5 September 2019; pp. 1113–1126. [Google Scholar]
- Lee, D.G.; Yu, Y.G.; Ru, J.H.; Lee, H.J. Change Monitoring in Ecological Restoration Area of Open-Pit Mine Using Drone Photogrammetry. J. Korean Soc. Geospat. Inf. Syst. 2016, 24, 97–104. [Google Scholar] [CrossRef]
- Urban, R.; Štroner, M.; Křemen, T.; Braun, J.; Möser, M. A Novel Approach to Estimate Systematic and Random Error of Terrain Derived from UAVs: A Case Study from a Post-Mining Site. Acta Montan. Slovaca 2018, 23, 325–336. [Google Scholar]
- Moudrý, V.; Urban, R.; Štroner, M.; Komárek, J.; Brouček, J.; Prošek, J. Comparison of a Commercial and Home-Assembled Fixed-Wing UAV for Terrain Mapping of a Post-Mining Site under Leaf-off Conditions. Int. J. Remote Sens. 2019, 40, 555–572. [Google Scholar] [CrossRef]
- Moudrý, V.; Gdulová, K.; Fogl, M.; Klápště, P.; Urban, R.; Komárek, J.; Moudrá, L.; Štroner, M.; Barták, V.; Solský, M. Comparison of Leaf-off and Leaf-on Combined UAV Imagery and Airborne LiDAR for Assessment of a Post-Mining Site Terrain and Vegetation Structure: Prospects for Monitoring Hazards and Restoration Success. Appl. Geogr. 2019, 104, 32–41. [Google Scholar] [CrossRef]
- Strohbach, B.J.; Hauptfleisch, M.L.; Green-Chituti, A.; Diener, S.M. Determining Rehabilitation Effectiveness at the Otjikoto Gold Mine, Otjozondjupa Region, Namibia, Using High-Resolution NIR Aerial Imagery. Namib. J. Environ. 2018, 2, A-146. [Google Scholar] [CrossRef]
- Rauhala, A.; Tuomela, A.; Davids, C.; Rossi, P.M. UAV Remote Sensing Surveillance of a Mine Tailings Impoundment in Sub-Arctic Conditions. Remote Sens. 2017, 9, 1318. [Google Scholar] [CrossRef]
- Zhou, D.; Qi, L.; Zhang, D.; Zhou, B.; Guo, L. Unmanned Aerial Vehicle (UaV) Photogrammetry Technology for Dynamic Mining Subsidence Monitoring and Parameter Inversion: A Case Study in China. IEEE Access 2020, 8, 16372–16386. [Google Scholar] [CrossRef]
- Padró, J.C.; Cardozo, J.; Montero, P.; Ruiz-Carulla, R.; Alcañiz, J.M.; Serra, D.; Carabassa, V. Drone-Based Identification of Erosive Processes in Open-Pit Mining Restored Areas. Land 2022, 11, 212. [Google Scholar] [CrossRef]
- Xiao, W.; Ren, H.; Sui, T.; Zhang, H.; Zhao, Y.; Hu, Z. A Drone- and Field-Based Investigation of the Land Degradation and Soil Erosion at an Opencast Coal Mine Dump after 5 Years’ Evolution of Natural Processes. Int. J. Coal Sci. Technol. 2022, 9, 42. [Google Scholar] [CrossRef]
- Türk, Y.; Balaban, B. UAVs Monitoring of Open-Pit Mining Site Rehabilitation in Mountainous Forest Areas: The Case of the Turkey-Western Black Sea Region. Cerne 2025, 31, 103473. [Google Scholar] [CrossRef]
- Duffy, J.P.; Cunliffe, A.M.; DeBell, L.; Sandbrook, C.; Wich, S.A.; Shutler, J.D.; Myers-Smith, I.H.; Varela, M.R.; Anderson, K. Location, Location, Location: Considerations When Using Lightweight Drones in Challenging Environments. Remote Sens. Ecol. Conserv. 2018, 4, 7–19. [Google Scholar] [CrossRef]
- Gao, M.; Hugenholtz, C.H.; Fox, T.A.; Kucharczyk, M.; Barchyn, T.E.; Nesbit, P.R. Weather Constraints on Global Drone Flyability. Sci. Rep. 2021, 11, 12092. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D Mapping Applications: A Review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Wang, F.; Zou, Y.; Del Rey Castillo, E.; Lim, J.B.P. Optimal UAV Image Overlap for Photogrammetric 3D Reconstruction of Bridges. Proc. IOP Conf. Ser. Earth Environ. Sci. 2022, 1101, 022052. [Google Scholar] [CrossRef]
- Eltner, A.; Schneider, D. Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images. Photogramm. Rec. 2015, 30, 279–299. [Google Scholar] [CrossRef]
- Mankar, A.K.; Koner, R. UAV Technology-Based 3D Reconstruction for Mine Dump Slope Assessment. In Proceedings of the Second International Conference on Emerging Trends in Engineering, Hyderabad, India, 28–30 April 2023; Atlantis Press: Dordrecht, The Netherlands, 2023; pp. 1277–1283. [Google Scholar]
- Lee, J.; Jo, H.; Oh, J. Application of Drone LiDAR Survey for Evaluation of a Long-Term Consolidation Settlement of Large Land Reclamation. Appl. Sci. 2023, 13, 8277. [Google Scholar] [CrossRef]
- Liu, X.; Lian, X.; Yang, W.; Wang, F.; Han, Y.; Zhang, Y. Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones 2022, 6, 30. [Google Scholar] [CrossRef]
- Oniga, V.E.; Breaban, A.I.; Pfeifer, N.; Chirila, C. Determining the Suitable Number of Ground Control Points for UAS Images Georeferencing by Varying Number and Spatial Distribution. Remote Sens. 2020, 12, 876. [Google Scholar] [CrossRef]
- Gupta, S.K.; Shukla, D.P. Application of Drone for Landslide Mapping, Dimension Estimation and Its 3D Reconstruction. J. Indian Soc. Remote Sens. 2018, 46, 903–914. [Google Scholar] [CrossRef]
- Koutsoudis, A.; Ioannakis, G.; Vidmar, B.; Arnaoutoglou, F.; Chamzas, C. Using Noise Function-Based Patterns to Enhance Photogrammetric 3D Reconstruction Performance of Featureless Surfaces. J. Cult. Herit. 2015, 16, 664–670. [Google Scholar] [CrossRef]
- Penczek, P.A. Chapter One—Fundamentals of Three-Dimensional Reconstruction from Projections. In Methods in Enzymology; Jensen, G.J., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 482, pp. 1–33. ISBN 0076-6879. [Google Scholar]
- Zhang, L.; Koch, R. Structure and Motion from Line Correspondences: Representation, Projection, Initialization and Sparse Bundle Adjustment. J. Vis. Commun. Image Represent. 2014, 25, 904–915. [Google Scholar] [CrossRef]
- Falkingham DP Free and Commercial Photogrammetry Software Review: 2020. Available online: https://peterfalkingham.com/2020/07/10/free-and-commercial-photogrammetry-software-review-2020/ (accessed on 20 August 2025).
- Zhou, H.; Liu, Y. Accurate Integration of Multi-View Range Images Using k-Means Clustering. Pattern Recognit. 2008, 41, 152–175. [Google Scholar] [CrossRef]
- Gujski, L.M.; Di Filippo, A.; Limongiello, M. Machine Learning Clustering for Point Clouds Optimisation Via Feature Analysis in Cultural Heritage. Proc. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 46, 245–251. [Google Scholar] [CrossRef]
- Callow, J.N.; May, S.M.; Leopold, M. Drone Photogrammetry and KMeans Point Cloud Filtering to Create High Resolution Topographic and Inundation Models of Coastal Sediment Archives. Earth Surf. Process. Landf. 2018, 43, 2603–2615. [Google Scholar] [CrossRef]
- Zhang, Z. Iterative Closest Point (ICP). In Computer Vision: A Reference Guide; Ikeuchi, K., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 718–720. ISBN 978-3-030-63416-2. [Google Scholar]
- Choi, Y.; Park, S.; Kim, S. GCP-Based Automated Fine Alignment Method for Improving the Accuracy of Coordinate Information on UAV Point Cloud Data. Sensors 2022, 22, 8735. [Google Scholar] [CrossRef]
- Liang, H.; Yeoh, J.K.W.; Chua, D.K.H. Robust Alignment of UGV Perspectives with BIM for Inspection in Indoor Environments. J. Comput. Civ. Eng. 2024, 38, 04024018. [Google Scholar] [CrossRef]
- Zhang, H.; Aldana-Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Van Oost, K. Evaluating the Potential of Post-Processing Kinematic (PPK) Georeferencing for UAV-Based Structure-from-Motion (SfM) Photogrammetry and Surface Change Detection. Earth Surf. Dyn. 2019, 7, 807–827. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Wang, Q.; Zhang, X.; Li, F. Research on Monitoring Methods of Landslide Surface Deformation Based on Laser Point Cloud. In Proceedings of the Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022), Changchun, China, 4–6 November 2022; SPIE—International Society for Optics and Photonics: Bellingham, WA, USA, 2023; p. 19. [Google Scholar]
- Ma, J.; Zhao, Y.; Li, S.; Wei, J.; Wang, S.; Chen, M. 3D Surface Change Detection of Slope Using 3D Point Cloud Based on Construction of Double Surface. Measurement 2024, 240, 115539. [Google Scholar] [CrossRef]
- Shafaat, O.B. Change Detection of Urban Vegetation from Terrestrial Laser Scanning and Drone Photogrammetry. Master’s Thesis, Aalto University, Espoo, Finland, 2023. [Google Scholar]
- Song, H.; Zhang, J.; Zuo, J.; Liang, X.; Han, W.; Ge, J. Subsidence Detection for Urban Roads Using Mobile Laser Scanner Data. Remote Sens. 2022, 14, 2240. [Google Scholar] [CrossRef]
- Stothard, P.; Shirani Faradonbeh, R. Application of UAVs in the Mining Industry and towards an Integrated UAV-AI-MR Technology for Mine Rehabilitation Surveillance. Min. Technol. Trans. Inst. Min. Metall. 2023, 132, 65–88. [Google Scholar] [CrossRef]
- Samaei, M.; Stothard, P.; Shirani Faradonbeh, R.; Topal, E.; Jang, H. Mine Closure Surveillance and Feasibility of UAV–AI–MR Technology: A Review Study. Minerals 2024, 14, 110. [Google Scholar] [CrossRef]
- Abrash, M. Creating the Future: Augmented Reality, the next Human-Machine Interface. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 1–11. [Google Scholar]
- Stothard, P.; Squelch, A.; Stone, R.; Van Wyk, E. Towards Sustainable Mixed Reality Simulation for the Mining Industry. Min. Technol. Trans. Inst. Min. Metall. 2019, 128, 246–254. [Google Scholar] [CrossRef]
- Tan, J.; Melkoumian, N.; Harvey, D.; Akmeliawati, R. Nature-Inspired Solutions for Sustainable Mining: Applications of NIAs, Swarm Robotics, and Other Biomimicry-Based Technologies. Biomimetics 2025, 10, 181. [Google Scholar] [CrossRef]
- Kaplas, J. Review of Automation and Remote Control Technologies for Forest Industries. Master’s Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2017. [Google Scholar]
- Siebert, S.; Teizer, J. Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
Monitoring Methods | Monitoring Information | Data Process | Price | Period | Working Conditions |
---|---|---|---|---|---|
GPS | Point/line | Fast | High | Shorter | All weather conditions |
Satellite remote sensing | Point/line/space | Fast | High/lower | Shorter | Depends on weather |
InSAR | Point/line/space | Fast | Lower | Shorter | All weather conditions |
Drones | Point/line/space | Fast | Lower | Shorter | Depends on weather |
GBSAR | Point/line/space | Fast | High | Real time | All weather conditions |
Tachometry | Point | Fast | Lower | From seconds (robotic) to periodic | Depends on weather |
TLS | Point/line/space | Slow | Moderate | Hours to days | Depends on weather |
Sensor Type | Pixel Resolution | Purpose |
---|---|---|
Digital Camera (Sony A5000, SonyQX100 and Canon IXUS 125HS) | 54,569 × 3632 54,729 × 3648 46,089 × 3456 | Drones with digital cameras are utilized in order to obtain high-resolution photographs of mining sites. They capture color images in the RGB spectrum from visible light (400–760 nm). This method is cost-effective and provides high-resolution imagery. With progress in computer vision, techniques like Structure-from-Motion (SfM) algorithms can reconstruct terrain [43]. |
Spectral Imaging Camera (Senop Rikola, MicaSense RedEdge and Parrot Sequoia) | 10,109 × 1010 12,809 × 960 12,809 × 960 | Commonly utilized multispectral sensors, including the Parrot Sequoia (4 channels: Red, Green, Near-Infrared, RedEdge) and MicaSense RedEdge (5 channels: Red, Green, Blue, Near-Infrared, RedEdge), employ individual lenses and filters for various wavelengths. These prove to be efficient in precision farming and vegetation analysis, and demonstrate significant potential in crop disease identification and land-use classification [44,45]. |
LiDAR (Zenmuse L1 and L2) | Able to obtain high-density 3D point cloud information in real time. This provides advantages over conventional ground-based surveying and photogrammetry, especially in isolated or mountainous landscapes where ground control points are restricted [46]. | |
Thermal Infrared Camera (FLIR Tau2 324 and ICI thermal camera) | 3249 × 25 | Thermal imaging is useful for earth surface observation, heat assessment, and monitoring crop stress, lodging, and disease. In geological surveys, it can provide temperature mapping over large areas [47] (e.g., km2), making it suitable for challenging environments such as volcanoes and geothermal zones, and enabling accurate heat flow analysis [47]. This sensor will be useful for thermal mapping of open-pit coal mine slopes due to their spontaneous heating. |
Gas Sensor | This is used to monitor air quality, particularly in areas affected by mine blasting, haze, and photochemical smog. Mainly used for dust. Sensors can detect and simulate the behaviour of pollutants such as PM10, CH4, and CO2 to study their distribution, diffusion, and transmission characteristics, supporting environmental protection efforts [48,49,50,51]. | |
Ultrasonic Sensor | This sensor is useful for obstacle detection in the mine by radiating high-frequency sound waves and collecting reflected waves. | |
Laser Range Finders | This is an expensive sensor that is generally used for obstacle detection. | |
Ultra-Wideband Radar | This sensor has several special features that make it reliable and suitable for use in harsh environmental conditions, such as fog, smoke, dust, rain, and gas. This sensor is used for precise obstacle detection using electromagnetic waves. |
Drone Type | Objective | Year | Data Acquired | Reference |
---|---|---|---|---|
Rotary wing | Charting gamma radiation using a drone-mounted compact gamma-ray detector | 2015 | Gamma spectrum data | Martin et al. [60] |
Rotary wing | Tracking alterations in environmental rehabilitation using drone photogrammetry | 2016 | Digital camera image | Lee et al. [64] |
Rotary wing | Development of a settlement catalog chart using drone photogrammetry | 2017 | Digital camera image | Suh and Choi [25] |
Fixed wing | Surveillance potential settlement of tailings | 2017 | Digital camera image | Rauhala et al. [69] |
Fixed wing | Evaluation of plant establishment through near-infrared airborne imagery | 2018 | Multispectral image | Strohbach et al. [68] |
Fixed wing | Analysis of airborne survey findings using two different drones | 2018 | Digital camera image | Urban et al. [65] |
Rotary and fixed wing | Examination of pyrite and weathering byproducts in mining waste | 2018 | Hyperspectral image | Jackisch et al. [62] |
Rotary wing | Ideal water sampling depth through temperature and specific conductance | 2019 | Water temperature data, Water sample | Castendyk et al. [63] |
Fixed wing | DTM creation related to vegetation cover and drone system evaluation | 2019 | Digital camera image | Moudrý et al. [66] |
Fixed wing | Evaluation of aerial photogrammetry point clouds using LiDAR | 2019 | Digital camera image | Moudrý et al. [67] |
Rotary wing | Monitoring mine restoration activities using UAS multispectral imaging | 2019 | Multispectral image | Padró et al. [59] |
Unknown | Quantifying iron levels in sediment via hyperspectral analysis and regression modelling | 2019 | Hyperspectral image | Fang et al. [61] |
Fixed wing | Monitoring dynamic subsidence caused by underground mining | 2020 | Digital camera image | Dawei et al. [70] |
Rotary wing | Identifying areas eroded by surface runoff | 2022 | Digital camera image | Padró et al. [71] |
Rotary wing | Open-pit mine soil erosion and land degradation monitoring | 2022 | Digital camera image | Xiao et al. [72] |
Rotary wing | Landform (slope geometries) measurements and boundary checks were conducted using the drone-based PPK method | 2025 | Digital camera image | Türk et al. [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chand, K.; Bhat, M.F.; Koner, R.; Fissha, Y.; Cheepurupalli, N.R.; Saidani, T.; Ikeda, H. Open-Pit Mine Reclamation Monitoring and Management for a Sustainable Future Using Drone Technology: A Review. Drones 2025, 9, 601. https://doi.org/10.3390/drones9090601
Chand K, Bhat MF, Koner R, Fissha Y, Cheepurupalli NR, Saidani T, Ikeda H. Open-Pit Mine Reclamation Monitoring and Management for a Sustainable Future Using Drone Technology: A Review. Drones. 2025; 9(9):601. https://doi.org/10.3390/drones9090601
Chicago/Turabian StyleChand, Kapoor, Mohmmad Farooq Bhat, Radhakanta Koner, Yewuhalashet Fissha, N. Rao Cheepurupalli, Taoufik Saidani, and Hajime Ikeda. 2025. "Open-Pit Mine Reclamation Monitoring and Management for a Sustainable Future Using Drone Technology: A Review" Drones 9, no. 9: 601. https://doi.org/10.3390/drones9090601
APA StyleChand, K., Bhat, M. F., Koner, R., Fissha, Y., Cheepurupalli, N. R., Saidani, T., & Ikeda, H. (2025). Open-Pit Mine Reclamation Monitoring and Management for a Sustainable Future Using Drone Technology: A Review. Drones, 9(9), 601. https://doi.org/10.3390/drones9090601