A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
Abstract
Highlights
- What are the main findings?
- A novel integrated sensing and communication (ISAC)-enabled unmanned aerial vehicle (UAV) architecture is proposed, enabling a single UAV to jointly perform uplink communication and radar sensing.
- A long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG)-based deep reinforcement learning (DRL) framework is developed to optimize UAV trajectory and uplink power control.
- The proposed approach effectively adapts to dynamic target movements, enhancing both sensing accuracy and communication reliability.
- What is the implication of the main finding?
- The framework enables energy-efficient UAV operation by minimizing movement energy consumption while maintaining sensing performance.
- The framework enables UAVs to autonomously and efficiently balance sensing and communication tasks in dynamic environments.
- The solution supports real-time adaptation to target mobility, making it suitable for practical ISAC-UAV applications such as surveillance and smart city monitoring.
Abstract
1. Introduction
1.1. Related Work and Motivation
1.2. Contribution and Outline
- We introduce a new DFRC framework that incorporates UAV-based communication into an ISAC system. The proposed architecture enables the UAV to simultaneously support uplink communication for ground users and perform radar-based sensing.
- To reflect realistic operating conditions, we incorporate a detailed UAV movement energy consumption model. This component directly addresses the constraint of limited onboard energy in UAV systems.
- The impact of target mobility and position uncertainty on matched filtering and beamforming in ISAC systems is analyzed and discussed. Accordingly, we formulate a multi-step joint optimization problem, where the UAV’s trajectory, uplink transmit power, and predicted target positions are optimized to balance communication efficiency and sensing performance.
- A novel DRL method, termed LSTM-DDPG, is proposed by embedding LSTM modules into both the actor and critic networks of DDPG. This integration facilitates the model to capture temporal correlations in historical target trajectories, enhancing prediction accuracy and enabling more effective long-term UAV control and resource allocation.
- Simulation results demonstrate that the proposed method significantly enhances communication efficiency, sensing robustness, and energy conservation. Comparative studies further highlight the framework’s ability to leverage historical target position data, leading to more efficient learning and superior performance compared to existing benchmarks.
2. System Model and Problem Formulation
2.1. Channel Model
2.2. Communication Model
2.3. Sensing Radar Model
2.4. UAV Movement Energy Consumption
3. Problem Formulation
4. LSTM-DDPG-Based Approach
4.1. Background on DDPG
4.2. Background on LSTM
4.3. Proposed LSTM-DDPG-Based Algorithm Architecture
4.4. Proposed DDPG-Based Optimization Procedure
Algorithm 1 Proposed LSTM-DDPG-based Framework to Solve (15). |
Initialization: Initialize , and using and . Set up , , , , S, and . for to do Sample a dataset . for to do Set the UAV position at time step 0 and gather ℓ historical target positions. Set the initial state . for to S do Select action . Extract . Calculate and using (11) and (12). Determine the next state based on (16). Calculate reward using (18). If constraints (15e) and (15f) violated, set . Store in . Randomly sample a mini-batch of size from . Update evaluation critic network using (21). Update evaluation actor network using (23). Update target actor and target critic networks using (24). end for end for end for |
5. Numerical Results
5.1. Simulation Setup
5.1.1. ISAC-UAV System Setup
5.1.2. LSTM-DDPG-Based Algorithm Configuration
- (1)
- DDPG-based approach: This approach employs the standard DDPG algorithm to solve problem (15), without leveraging historical target position data.
- (2)
- KF-DDPG-based approach: In this approach, the LSTM module in the DDPG-based framework is replaced with a Kalman filter (KF) to predict the target’s future position. The KF is commonly used in traditional ISAC systems due to its simplicity and effectiveness in estimating dynamic states under linear system dynamics and Gaussian noise assumptions.
- (3)
- LSTM-DDGP-based approach in 2D: This approach employs the proposed LSTM-DDPG method in a fixed-altitude (2D) UAV configuration to assess the effect of UAV altitude on system performance.
- (4)
- LSTM-DDPG-based approach in 3D: This approach corresponds to the full implementation of the proposed LSTM-DDPG framework, solving the complete 3D optimization problem defined in (15), including the UAV altitude.
5.2. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.A.; Rahman, M.L.; Wu, K.; Huang, X.; Guo, Y.J.; Chen, S.; Yuan, J. Enabling joint communication and radar sensing in mobile networks—A survey. IEEE Commun. Surv. Tutor. 2021, 24, 306–345. [Google Scholar] [CrossRef]
- Zhou, Y.; Rao, B.; Wang, W. UAV swarm intelligence: Recent advances and future trends. IEEE Access 2020, 8, 183856–183878. [Google Scholar] [CrossRef]
- Wen, D.; Zhou, Y.; Li, X.; Shi, Y.; Huang, K.; Letaief, K.B. A survey on integrated sensing, communication, and computation. IEEE Commun. Surv. Tutor. 2024. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Zhai, X.; Zhu, Q.; Durrani, T.S. UAV-enabled integrated sensing, computing, and communication for Internet of things: Joint resource allocation and trajectory design. IEEE Internet Things J. 2023, 11, 12717–12727. [Google Scholar] [CrossRef]
- Meng, K.; Wu, Q.; Ma, S.; Chen, W.; Wang, K.; Li, J. Throughput maximization for UAV-enabled integrated periodic sensing and communication. IEEE Trans. Wirel. Commun. 2022, 22, 671–687. [Google Scholar] [CrossRef]
- Memisoglu, E.; Yılmaz, T.; Arslan, H. Waveform design with constellation extension for OFDM dual-functional radar-communications. IEEE Trans. Veh. Technol. 2023, 72, 14245–14254. [Google Scholar] [CrossRef]
- Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity. IEEE Trans. Signal Process. 2015, 64, 2168–2181. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Liu, Q.; Swindlehurst, A.L. Dual-functional radar-communication waveform design: A symbol-level precoding approach. IEEE J. Sel. Top. Signal Process. 2021, 15, 1316–1331. [Google Scholar] [CrossRef]
- Wang, X.; Fei, Z.; Zhang, J.A.; Huang, J.; Yuan, J. Constrained utility maximization in dual-functional radar-communication multi-UAV networks. IEEE Trans. Commun. 2020, 69, 2660–2672. [Google Scholar] [CrossRef]
- Lu, Z.; Zhai, L.; Zhou, W.; Xue, K.; Gao, X. Beamforming design and trajectory optimization for integrated sensing and communication supported By multiple UAVs based on DRL. Veh. Commun. 2025, 54, 100932. [Google Scholar] [CrossRef]
- Wang, X.; Fei, Z.; Zhang, J.A.; Xu, J. Partially-connected hybrid beamforming design for integrated sensing and communication systems. IEEE Trans. Commun. 2022, 70, 6648–6660. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S. Hybrid beamforming design for integrated sensing and communication exploiting prior information. In Proceedings of the GLOBECOM 2024-2024 IEEE Global Communications Conference, Cape Town, South Africa, 8–12 December 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 4576–4581. [Google Scholar]
- Leyva, L.; Castanheira, D.; Silva, A.; Gameiro, A. Hybrid Beamforming Design for Communication-Centric ISAC. IEEE Sens. J. 2024, 24, 21179–21190. [Google Scholar] [CrossRef]
- Hua, H.; Xu, J.; Han, T.X. Optimal transmit beamforming for integrated sensing and communication. IEEE Trans. Veh. Technol. 2023, 72, 10588–10603. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Liu, Y.; Leung, V.C.; Durrani, T.S. UAV assisted integrated sensing and communications for Internet of things: 3D trajectory optimization and resource allocation. IEEE Trans. Wirel. Commun. 2024, 23, 8654–8667. [Google Scholar] [CrossRef]
- Dang, X.T.; Nguyen, H.V.; Shin, O.S. Physical Layer Security for IRS-UAV-Assisted Cell-Free Massive MIMO Systems. IEEE Access 2024, 12, 89520–89537. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, W.; Hanzo, L. When UAVs meet ISAC: Real-time trajectory design for secure communications. IEEE Trans. Veh. Technol. 2023, 72, 16766–16771. [Google Scholar] [CrossRef]
- Yilmaz, M.B.; Xiang, L.; Klein, A. Joint beamforming and trajectory optimization for UAV-aided ISAC with dipole antenna array. In Proceedings of the 2024 27th International Workshop on Smart Antennas (WSA), Dresden, Germany, 17–19 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–7. [Google Scholar]
- Lyu, Z.; Zhu, G.; Xu, J. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication. IEEE Trans. Commun. 2022, 22, 2424–2440. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Liu, X.; Liu, Z.; Durrani, T.S. Sensing fairness-based energy efficiency optimization for UAV enabled integrated sensing and communication. IEEE Wirel. Commun. Lett. 2023, 12, 1702–1706. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, W.; He, B.; Huangfu, W.; Huang, T.; Zhang, H.; Long, K. Radar probing optimization for joint beamforming and UAV trajectory design in UAV-enabled integrated sensing and communication. IEEE Trans. Commun. 2024, 73, 4469–4485. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, Q.; Xia, W.; Wang, Z.; Quek, T.Q.; Zhu, H. Joint placement and beamforming design in UAV enabled multi-stage ISAC system. IEEE Trans. Commun. 2025. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, X.; Hu, Y.; Yang, J.; Schmeink, A. Optimal UAV trajectory design for moving users in integrated sensing and communications networks. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15113–15130. [Google Scholar] [CrossRef]
- Pan, Y.; Li, R.; Da, X.; Hu, H.; Zhang, M.; Zhai, D.; Cumanan, K.; Dobre, O.A. Cooperative trajectory planning and resource allocation for UAV-enabled integrated sensing and communication systems. IEEE Trans. Veh. Technol. 2023, 73, 6502–6516. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, C.; Luo, H.; Gao, F.; Liu, F.; Jin, S. Networked ISAC based UAV tracking and handover towards low-altitude economy. IEEE Trans. Wirel. Commun. 2025. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Q.; Chen, W.; Meng, K. UAV-enabled integrated sensing and communication: Tracking design and optimization. IEEE Commun. Lett. 2024, 28, 1024–1028. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Q.; Chen, W.; Hui, H. Energy-aware UAV-enabled target tracking: Online optimization with location constraints. IEEE Trans. Veh. Technol. 2024, 74, 6668–6673. [Google Scholar] [CrossRef]
- Pang, X.; Guo, S.; Tang, J.; Zhao, N.; Al-Dhahir, N. Dynamic ISAC beamforming design for UAV-enabled vehicular networks. IEEE Trans. Wirel. Commun. 2024, 23, 16852–16864. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Zhao, C.; Liu, Z. Integrated sensing and communications for UAV assisted Internet of things based on deep reinforcement learning. IEEE Trans. Veh. Technol. 2025, 74, 9604–9616. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Z.; Li, X.; Huangfu, W.; Zhang, H. Deep reinforcement learning based resource allocation and trajectory planning in integrated sensing and communications UAV network. IEEE Trans. Wirel. Commun. 2023, 22, 8158–8169. [Google Scholar] [CrossRef]
- Hou, P.; Huang, Y.; Zhu, H.; Lu, Z.; Huang, S.C.; Yang, Y.; Chai, H. Distributed DRL-based integrated sensing, communication and computation in cooperative UAV-enabled intelligent transportation systems. IEEE Internet Things J. 2024, 12, 5792–5806. [Google Scholar] [CrossRef]
- Ye, X.; Mao, Y.; Yu, X.; Sun, S.; Fu, L.; Xu, J. Integrated sensing and communications for low-altitude economy: A deep reinforcement learning approach. IEEE Trans. Wirel. Commun. 2025. [Google Scholar] [CrossRef]
- Smida, B.; Wichman, R.; Kolodziej, K.E.; Suraweera, H.A.; Riihonen, T.; Sabharwal, A. In-Band Full-Duplex: The Physical Layer. Proc. IEEE 2024, 112, 433–462. [Google Scholar] [CrossRef]
- Chiriyath, A.R.; Paul, B.; Jacyna, G.M.; Bliss, D.W. Inner bounds on performance of radar and communications co-existence. IEEE Trans. Signal Process. 2016, 64, 464–474. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Li, Z.; Wei, Z. Design and performance evaluation of joint sensing and communication integrated system for 5G mmWave enabled CAVs. IEEE J. Sel. Top. Signal Process. 2021, 15, 1500–1514. [Google Scholar] [CrossRef]
- Bramwell, A.R.S.; Balmford, D.; Done, G. Bramwell’s Helicopter Dynamics; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Filippone, A. Flight Performance of Fixed and Rotary Wing Aircraft; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Wang, J.; Zhang, H.; Zhou, X.; Liu, W.; Yuan, D. Joint resource allocation and trajectory design for energy-efficient UAV assisted networks with user fairness guarantee. IEEE Internet Things J. 2024, 11, 23835–23849. [Google Scholar] [CrossRef]
- Dai, X.; Duo, B.; Yuan, X.; Di Renzo, M. Energy-efficient UAV communications with directional antennas: Tilting effect modeling and trajectory optimization. IEEE Trans. Veh. Technol. 2025, 74, 11194–11206. [Google Scholar] [CrossRef]
- Pan, H.; Liu, Y.; Sun, G.; Wu, Q.; Gong, T.; Wang, P.; Niyato, D.; Yuen, C. Cooperative UAV-mounted RISs-assisted energy-efficient communications. IEEE Trans. Mobile Comput. 2025, 1–18. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, J.; Zhang, R. Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wirel. Commun. 2019, 18, 2329–2345. [Google Scholar] [CrossRef]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference on Machine Learning (ICML), Beijing, China, 21–26 June 2014; Volume 32, pp. 387–395. [Google Scholar]
- Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596. [Google Scholar]
- De Maio, A.; De Nicola, S.; Huang, Y.; Zhang, S.; Farina, A. Code design to optimize radar detection performance under accuracy and similarity constraints. IEEE Trans. Signal Process. 2008, 56, 5618–5629. [Google Scholar] [CrossRef]
- He, Z.; Xu, W.; Shen, H.; Ng, D.W.K.; Eldar, Y.C.; You, X. Full-duplex communication for ISAC: Joint beamforming and power optimization. IEEE J. Sel. Areas Commun. 2023, 41, 2920–2936. [Google Scholar] [CrossRef]
- Mbam, C.J. Fixed-Wing UAV Tracking of Evasive Targets in 3-Dimensional Space. Ph.D. Thesis, University of Leeds, Leeds, UK, 2024. [Google Scholar]
- de Froissard de Broissia, A.; Sigaud, O. Actor-critic versus direct policy search: A comparison based on sample complexity. arXiv 2016, arXiv:1606.09152. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Tip speed of rotor blade () | 120 m/s |
Fuselage equivalent flat plate area () | |
Fuselage drag ratio () | |
Air density () | |
Rotor solidity () | |
Rotor disc area | |
Weight of UAV ( | 20 Newton |
Profile drag coefficient | |
Blade angular velocity () | 300 |
Blade or aerofoil chord length () | 0.0157 |
Number of blades () | 4 |
Rotor radius | |
Incremental correction factor () | 0.1 |
Mean rotor-induced velocity in hover () |
Parameter | Value |
---|---|
Path loss at reference distance | |
The path loss exponent | 2 |
Noise power | |
Maximum flight speed of UAV () | |
Target velocity () | |
Time step duration | |
Required QoS threshold () | |
Power budget at UL UEs () | |
Power budget at DL UAVs () | |
Radar SINR threshold () |
Method | Latency (ms) |
---|---|
DDPG approach | |
KF-DDPG approach | |
LSTM-DDPG approach in 2D | |
LSTM-DDPG approach in 3D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, X.-T.; Eom, J.-S.; Vu, B.-M.; Shin, O.-S. A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication. Drones 2025, 9, 548. https://doi.org/10.3390/drones9080548
Dang X-T, Eom J-S, Vu B-M, Shin O-S. A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication. Drones. 2025; 9(8):548. https://doi.org/10.3390/drones9080548
Chicago/Turabian StyleDang, Xuan-Toan, Joon-Soo Eom, Binh-Minh Vu, and Oh-Soon Shin. 2025. "A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication" Drones 9, no. 8: 548. https://doi.org/10.3390/drones9080548
APA StyleDang, X.-T., Eom, J.-S., Vu, B.-M., & Shin, O.-S. (2025). A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication. Drones, 9(8), 548. https://doi.org/10.3390/drones9080548