Marine Unmanned Surface Vehicle Measurements of Solar Irradiance Under Typhoon Conditions
Abstract
:1. Introduction
2. Related Works
3. Experiment and Data
3.1. Typhoon Process
3.2. Radiation Data from the SUSV
3.3. Radiation Data from Himawari-8
4. Results
4.1. Continuous Observation by the SUSV Under Typhoon Conditions
4.2. Comparison of Radiation from the SUSV and Himawari-8
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USV | Unmanned surface vehicles |
SWDR | Shortwave downward radiation |
IAP/CAS | Institute of Atmospheric Physics, Chinese Academy of Sciences |
WCRP | World Climate Research Programme |
BSRN | Background Surface Radiation Network |
CMA | China Meteorological Administration |
CERN | Chinese Ecosystem Research Network |
USSV | Diesel-powered semi-submersible |
SUSV | Solar-powered USV |
AWS | Automatic weather station |
SC | Solar constant |
μ | Cosine of the solar zenith angle |
AHI | Advanced Himawari Imager |
CARE | Cloud Remote Sensing, Atmospheric Radiation and Renewal Energy Application |
RMSE | Root mean square errors |
IBTrACS | International Best Track Archive for Climate Stewardship |
MBE | Mean bias error |
References
- Rogers, R.; Aberson, S.; Aksoy, A.; Annane, B.; Black, M.; Cione, J.; Dorst, N.; Dunion, J.; Gamache, J.; Goldenberg, S.; et al. NOAA’S hurricane intensity forecasting experiment: A progress report. Bull. Am. Meteorol. Soc. 2013, 94, 859–882. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Stepaniak, D.P. The flow of energy through the Earth’s climate system. Q. J. R. Meteorol. Soc. 2004, 130, 2677–2701. [Google Scholar] [CrossRef]
- Sen, Z. Solar Energy Fundamentals and Modeling Techniques: Atmosphere, Environment, Climate Change and Renewable Energy; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kumar, V.; Shrivastava, R.; Untawale, S. Solar energy: Review of potential green & clean energy for coastal and offshore applications. Aquat. Procedia 2015, 4, 473–480. [Google Scholar] [CrossRef]
- Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S. The effect of sea ice on the solar energy budget in the atmosphere-sea ice-ocean system: A model study. J. Geophys. Res. Oceans 1994, 99, 25281–25294. [Google Scholar] [CrossRef]
- McArthur, L.J.B. Baseline Surface Radiation Network (BSRN)-Operation Manual Version 2.1; WMO/TD: Geneva, Switzerland, 2005; p. 1274. [Google Scholar]
- Lee, S.; Lee, J.; Kim, H.; Park, J.; Baek, S.; Song, Y.; Seo, J.-M.; Kim, S. In-situ remotely controllable ocean radiation monitoring system. J. Instrum. 2020, 15, P06027. [Google Scholar] [CrossRef]
- Bishop, J.K.B.; Rossow, W.B. Spatial and temporal variability of global surface solar irradiance. J. Geophys. Res. Oceans 1991, 96, 16839–16858. [Google Scholar] [CrossRef]
- Kato, S.; Rutan, D.A.; Rose, F.G.; Caldwell, T.E.; Ham, S.-H.; Radkevich, A.; Thorsen, T.J.; Viudez-Mora, A.; Fillmore, D.; Huang, X. Uncertainty in satellite-derived surface irradiances and challenges in producing surface radiation budget climate data record. Remote Sens. 2020, 12, 1950. [Google Scholar] [CrossRef]
- Tedetti, M.; Sempéré, R. Penetration of ultraviolet radiation in the marine environment. A review. Photochem. Photobiol. 2006, 82, 389–397. [Google Scholar] [CrossRef]
- Black, P.G.; D’Asaro, E.A.; Drennan, W.M.; French, J.R.; Niiler, P.P.; Sanford, T.B.; Terrill, E.J.; Walsh, E.J.; Zhang, J.A. Air–Sea Exchange in Hurricanes: Synthesis of Observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Am. Meteorol. Soc. 2007, 88, 357–374. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef]
- Emanuel, K. 100 years of progress in tropical cyclone research. Meteorol. Monogr. 2018, 59, 15.1–15.68. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F.; Nolan, D.S.; Marks, F.D. On the characteristic height scales of the hurricane boundary layer. Mon. Weather Rev. 2011, 139, 2523–2535. [Google Scholar] [CrossRef]
- Hammer, A.; Heinemann, D.; Hoyer, C.; Kuhlemann, R.; Lorenz, E.; Müller, R.; Beyer, H.G. Solar energy assessment using remote sensing technologies. Remote Sens. Environ. 2003, 86, 423–432. [Google Scholar] [CrossRef]
- Jia, D.; Yang, L.; Gao, X.; Li, K. Assessment of a new solar radiation nowcasting method based on FY-4A satellite imagery, the McClear model and SHapley additive explanations (SHAP). Remote Sens. 2023, 15, 2245. [Google Scholar] [CrossRef]
- Omali, T.U. Review of Climate Change Assessment Using Solar Radiation Data from Satellite Remote Sensing. Int. J. Sci. Res. Multidiscip. Stud. 2023, 9, 1–10. [Google Scholar]
- Zhou, Y.; Liu, Y.; Wang, D.; Liu, X.; Wang, Y. A review on global solar radiation prediction with machine learning models in a comprehensive perspective. Energy Convers. Manag. 2021, 235, 113960. [Google Scholar] [CrossRef]
- Ohmura, A.; Dutton, E.G.; Forgan, B.; Frohlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; König-Langlo, G.; McArthur, B.; Muller, G.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [Google Scholar] [CrossRef]
- Du, Y.; Shi, H.; Zhang, J.; Xia, X.; Yao, Z.; Fu, D.; Hu, B.; Huang, C. Evaluation of MERRA-2 hourly surface solar radiation across China. Sol. Energy 2022, 234, 103–110. [Google Scholar] [CrossRef]
- Shi, H.; Yang, D.; Wang, W.; Fu, D.; Gao, L.; Zhang, J.; Hu, B.; Shan, Y.; Zhang, Y.; Bian, Y.; et al. First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning. Renew. Sustain. Energy Rev. 2023, 184, 113549. [Google Scholar] [CrossRef]
- Xiang, C.; Qian, C. Application of ocean-based observation data on improving tropical cyclone intensity analysis over the South China Sea. J. Mar. Meteorol. 2018, 38, 20–27. [Google Scholar]
- Yuan, S.; Li, Y.; Bao, F.; Xu, H.; Yang, Y.; Yan, Q.; Zhong, S.; Yin, H.; Xu, J.; Huang, Z.; et al. Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects. Sci. Total. Environ. 2022, 858, 159741. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.; Høyer, J.L.; et al. Observational needs of sea surface temperature. Front. Mar. Sci. 2019, 6, 00420. [Google Scholar] [CrossRef]
- García-Sánchez, G.; Mancho, A.M.; Ramos, A.G.; Coca, J.; Pérez-Gómez, B.; Álvarez-Fanjul, E.; Sotillo, M.G.; García-León, M.; García-Garrido, V.J.; Wiggins, S. Very high resolution tools for the monitoring and assessment of environmental hazards in coastal areas. Front. Mar. Sci. 2021, 7, 605804. [Google Scholar] [CrossRef]
- Ding, M.; Zou, X.; Sun, Q.; Yang, D.; Zhang, W.; Bian, L.; Lu, C.; Allison, I.; Heil, P.; Xiao, C. The PANDA automatic weather station network between the coast and Dome A, East Antarctica. Earth Syst. Sci. Data 2022, 14, 5019–5035. [Google Scholar] [CrossRef]
- Kao, S.-L.; Chang, K.-Y.; Hsu, T.-W. A marine GIS-based alert system to prevent vessels collision with offshore platforms. J. Mar. Sci. Technol. 2021, 29, 597–608. [Google Scholar] [CrossRef]
- Ma, J.; Bai, R.; Shen, H.; Ding, J.; Wang, H.; Sun, Q. Design and Application of Buoy-Based Automatic Weather Station for Arctic. In Proceedings of the 2024 Academic Conference of China Instrument and Control Society (ACCIS), Chengdu, China, 28–31 July 2024; pp. 262–266. [Google Scholar]
- Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D. Wind and waves in extreme hurricanes. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Lenan, L.; Melville, W.K. Autonomous surface vehicle measurements of the ocean’s response to tropical cyclone Freda. J. Atmos. Ocean. Technol. 2014, 31, 2169–2190. [Google Scholar] [CrossRef]
- Rosa, T.L.; Piecho-Santos, A.M.; Vettor, R.; Soares, C.G. Review and prospects for autonomous observing systems in vessels of opportunity. J. Mar. Sci. Eng. 2021, 9, 366. [Google Scholar] [CrossRef]
- Johnson, G.; Dykstra, K.; Ordell, S.; Tetreault, B.; Kohlmann, K. Improving Meteorological Models Using Ships’ Weather Data Communicated via AIS. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 485–501. [Google Scholar]
- Yang, L.; Wang, D.; Huang, J.; Wang, X.; Zeng, L.; Shi, R.; He, Y.; Xie, Q.; Wang, S.; Chen, R.; et al. Toward a Mesoscale Hydrological and Marine Meteorological Observation Network in the South China Sea. Bull. Am. Meteorol. Soc. 2015, 96, 1117–1135. [Google Scholar] [CrossRef]
- Xiaotu, L.; Xuefen, Z.; Wansuo, D.; Hong, L.; Zhiqiu, G.; Chuanhai, Q.; Bingke, Z.; Jie, T. Experiment on coordinated observation of offshore typhoon in China. Adv. Earth Sci. 2019, 34, 671–678. [Google Scholar]
- Wu, J.; Li, R.; Li, J.; Zou, M.; Huang, Z. Cooperative unmanned surface vehicles and unmanned aerial vehicles platform as a tool for coastal monitoring activities. Ocean Coast. Manag. 2022, 232, 106421. [Google Scholar] [CrossRef]
- Yaakob, O.; Mohamed, Z.; Hanafiah, M.S.; Suprayogi, D.; Abdul Ghani, M.; Adnan, F.; Mukti, M.; Din, J. Development of unmanned surface vehicle (USV) for sea patrol and environmental monitoring. In Proceedings of the International Conference on Marine Technology, Harbin, China, 25–28 June 2012; pp. 20–22. [Google Scholar]
- Kum, B.-C.; Shin, D.-H.; Lee, J.H.; Moh, T.; Jang, S.; Lee, S.Y.; Cho, J.H. Monitoring applications for multifunctional unmanned surface vehicles in marine coastal environments. J. Coast. Res. 2018, 85, 1381–1385. [Google Scholar] [CrossRef]
- Jorge, V.A.M.; Granada, R.; Maidana, R.G.; Jurak, D.A.; Heck, G.; Negreiros, A.P.F.; dos Santos, D.H.; Gonçalves, L.M.G.; Amory, A.M. A survey on unmanned surface vehicles for disaster robotics: Main challenges and directions. Sensors 2019, 19, 702. [Google Scholar] [CrossRef] [PubMed]
- Bae, I.; Hong, J. Survey on the developments of unmanned marine vehicles: Intelligence and cooperation. Sensors 2023, 23, 4643. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Lin, J.; Yan, X.; Lu, G.; Wu, S.; Peng, W. Vibration Energy Harvesting from an Unmanned Surface Vehicle: Concept Design and Open Sea Tests. SSRN Electron. J. 2023, 222, 119895. [Google Scholar] [CrossRef]
- Wang, L.; Peng, W.; Huang, D.; Lin, J.; Huang, T. Data-Driven Modelling On Power Generation Of Wave-Powered USV. Ocean Eng. 2023, 291, 116477. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Xuan, Y.; Huang, X.; Zhu, W.; Zhu, K.; Shao, W. First Rocketsonde Launched from an Unmanned Semi-submersible Vehicle. Adv. Atmospheric Sci. 2019, 36, 339–345. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Ma, S.; Hu, S. Progress of the marine meteorological observation technologies. Sci. Tech. Rev. 2019, 37, 91–97. [Google Scholar]
- Chen, H.; Li, J.; He, W.; Ma, S.; Wei, Y.; Pan, J.; Zhao, Y.; Zhang, X.; Hu, S. IAP’s Solar-Powered Unmanned Surface Vehicle Actively Passes through the Center of typhoon Sinlaku (2020). Adv. Atmospheric Sci. 2021, 38, 538–545. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Yang, R.; Guo, R.; Sun, X.; Luo, J.; Chen, H.; Liu, D.; Tang, K.; Peng, W.; et al. Comprehensive Marine Observing Experiment Based on High-Altitude Large Unmanned Aerial Vehicle (South China Sea Experiment 2020 of the “Petrel Project”). Adv. Atmospheric Sci. 2021, 38, 531–537. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Zhu, L.; Liu, K.; Zong, C.; Wei, N.; Li, D. Enhanced impacts evaluation of Typhoon Sinlaku (2020) on atmospheric microplastics in South China Sea during the East Asian Summer Monsoon. Sci. Total. Environ. 2022, 806, 150767. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Han, Y.; Xia, Y.; Guo, Q.; Gao, W.; Guo, J. Investigation of atmospheric dynamic and thermodynamic structures of typhoon sinlaku (2020) from high-resolution dropsonde and two-way rawinsonde measurements. Remote Sens. 2022, 14, 2704. [Google Scholar] [CrossRef]
- Zhang, C.; Foltz, G.R.; Chiodi, A.M.; Mordy, C.W.; Edwards, C.R.; Meinig, C.; Zhang, D.; Mazza, E.; Cokelet, E.D.; Burger, E.F.; et al. Hurricane Observations by Uncrewed Systems. Bull. Am. Meteorol. Soc. 2023, 104, E1893–E1917. [Google Scholar] [CrossRef]
- Allotta, B.; Bartolini, F.; Caiti, A.; Costanzi, R.; Di Corato, F.; Fenucci, D.; Gelli, J.; Guerrini, P.; Monni, N.; Munafò, A.; et al. Typhoon at CommsNet 2013: Ex-perimental Experience on AUV Navigation and Localization. IFAC Proc. Vol. 2014, 47, 3370–3375. [Google Scholar] [CrossRef]
- Specht, M.; Specht, C.; Lasota, H.; Cywiński, P. Assessment of the Steering Precision of a Hydrographic Unmanned Surface Vessel (USV) along Sounding Profiles Using a Low-Cost Multi-Global Navigation Satellite System (GNSS) Receiver Supported Autopilot. Sensors 2019, 19, 3939. [Google Scholar] [CrossRef]
- Riihimaki, L.D.; Cronin, M.F.; Acharya, R.; Anderson, N.; Augustine, J.A.; Balmes, K.A.; Berk, P.; Bozzano, R.; Bucholtz, A.; Connell, K.J.; et al. Ocean surface radiation measurement best practices. Front. Mar. Sci. 2024, 11, 1359149. [Google Scholar] [CrossRef]
- Long, C.N.; Shi, Y. An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos. Sci. J. 2008, 2, 23–37. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy 2016, 128, 1–30. [Google Scholar] [CrossRef]
- García, R.D.; Cuevas, E.; Ramos, R.; Cachorro, V.E.; Redondas, A.; Moreno-Ruiz, J.A. Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): Measurements and quality control/assurance procedures. Geosci. Instrum. Methods Data Syst. 2019, 8, 77–96. [Google Scholar] [CrossRef]
- Da, C. Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens. Lett. 2015, 6, 637–646. [Google Scholar] [CrossRef]
- Okuyama, A.; Andou, A.; Date, K.; Hoasaka, K.; Mori, N.; Murata, H.; Tabata, T.; Takahashi, M.; Yoshino, R.; Bessho, K. Preliminary validation of Himawari-8/AHI navigation and calibration. Proc. SPIE 2015, 9607, 663–672. [Google Scholar]
- Zhu, Z.; Gu, J.; Xu, B.; Shi, C. Characterization of Himawari-8/AHI to Himawari-9/AHI infrared observations continuity. Int. J. Remote Sens. 2023, 45, 121–142. [Google Scholar] [CrossRef]
- Letu, H.; Ma, R.; Nakajima, T.Y.; Shi, C.; Hashimoto, M.; Nagao, T.M.; Baran, A.J.; Nakajima, T.; Xu, J.; Wang, T.; et al. Surface Solar Radiation Compositions Observed from Himawari-8/9 and Fengyun-4 Series. Bull. Amer. Meteor. Soc. 2023, 104, E1772–E1789. [Google Scholar] [CrossRef]
- Letu, H.; Nakajima, T.Y.; Wang, T.; Shang, H.; Ma, R.; Yang, K.; Baran, A.J.; Riedi, J.; Ishimoto, H.; Yoshida, M.; et al. A New Benchmark for Surface Radiation Products over the East Asia-Pacific Region Retrieved from the Himawari-8/AHI Next-Generation Geostationary Satellite. Bull. Amer. Meteor. Soc. 2022, 103, 1–40. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Schreck, C.J.; Knapp, K.R.; Kossin, J.P. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Weather. Rev. 2014, 142, 3881–3899. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, J.; Zhang, G.; Ye, Y.; Zhao, H.; Chen, H. Global tropical cyclone size and intensity reconstruction dataset for 1959–2022 based on IBTrACS and ERA5 data. Earth Syst. Sci. Data 2024, 16, 5753–5766. [Google Scholar] [CrossRef]
- Levinson, D.H.; Knapp, K.; Kruk, M.C.; Kossin, J.P. The international best track archive for climate stewardship (IBTrACS) project: Overview of methods and indian ocean statistics. In Indian Ocean Tropical Cyclones and Climate Change; Charabi, Y., Ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Nordin, M.H.; Sharma, S.; Khan, A.; Gianni, M.; Rajendran, S.; Sutton, R. Collaborative Unmanned Vehicles for Inspection, Maintenance, and Repairs of Offshore Wind Turbines. Drones 2022, 6, 137. [Google Scholar] [CrossRef]
- Barreto, J.; Cajaíba, L.; Teixeira, J.B.; Nascimento, L.; Giacomo, A.; Barcelos, N.; Fettermann, T.; Martins, A. Drone-monitoring: Improving the detectability of threatened marine megafauna. Drones 2021, 5, 14. [Google Scholar] [CrossRef]
Platforms | Sensors | Measured Variables | Weather Conditions | Advantages/Limitations |
---|---|---|---|---|
Solar power USV from this paper [44] | Pyranometer, automatic weather station | Radiation, temperature, humidity, etc. | Typhoon | Tilts need be corrected |
Saildrone [48] | 3D ultrasonic, GNSS, et al. | Temperature, humidity, flux, etc. | Hurricane | Tilts need be corrected |
Autonomous underwater vehicle [49] | Acoustic USBL systems | Acoustic | Typhoon | Space limited |
USV [50] | GNSS | Humidity | Clear sky | Power limited |
Fixed towers [51] | Pyranometer, automatic weather station | Radiation, temperature, humidity, etc. | All conditions | Near shore |
Buoys [51] | Automatic weather station | Temperature, humidity, etc. | All conditions | Fixed location |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Shi, H.; Chen, H.; Letu, H.; Li, J.; He, W.; Fan, X.; Chen, Y.; Ma, S.; Zhang, X. Marine Unmanned Surface Vehicle Measurements of Solar Irradiance Under Typhoon Conditions. Drones 2025, 9, 395. https://doi.org/10.3390/drones9060395
Xu K, Shi H, Chen H, Letu H, Li J, He W, Fan X, Chen Y, Ma S, Zhang X. Marine Unmanned Surface Vehicle Measurements of Solar Irradiance Under Typhoon Conditions. Drones. 2025; 9(6):395. https://doi.org/10.3390/drones9060395
Chicago/Turabian StyleXu, Ke, Hongrong Shi, Hongbin Chen, Husi Letu, Jun Li, Wenying He, Xuehua Fan, Yaojiang Chen, Shuqing Ma, and Xuefen Zhang. 2025. "Marine Unmanned Surface Vehicle Measurements of Solar Irradiance Under Typhoon Conditions" Drones 9, no. 6: 395. https://doi.org/10.3390/drones9060395
APA StyleXu, K., Shi, H., Chen, H., Letu, H., Li, J., He, W., Fan, X., Chen, Y., Ma, S., & Zhang, X. (2025). Marine Unmanned Surface Vehicle Measurements of Solar Irradiance Under Typhoon Conditions. Drones, 9(6), 395. https://doi.org/10.3390/drones9060395