Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network
Abstract
1. Introduction
2. Related Works
3. System Model and Problem Statement
3.1. System Model
3.2. Problem Statement
4. Proposed Method
4.1. Frequency Spectrum Calculation
4.2. Frequency Domain-Modified Gramian Angular Field Transform
4.3. Multi-FDGAF Image Fusion
4.4. CNN Design
5. Experimental Results
5.1. Datasets
5.2. Visualization of Drone RF Signal
5.3. Results of Proposed FDGAF-CNN for Drone Classification
5.4. Classification Accuracy Comparison of Different Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, H.; Abeywickrama, S.; Zhang, L.; Yuen, C. Low-complexity portable passive drone surveillance via SDR-based signal processing. IEEE Commun. Mag. 2020, 56, 112–118. [Google Scholar] [CrossRef]
- Swinney, C.; Woods, J. A review of security incidents and defence techniques relating to the malicious use of small unmanned aerial systems. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 14–28. [Google Scholar] [CrossRef]
- Zhang, H.; Li, T.; Li, Y.; Li, J.; Dobre, O.; Wen, Z. RF-based drone classification under complex electromagnetic environments using deep learning. IEEE Sens. J. 2023, 23, 6099–6108. [Google Scholar] [CrossRef]
- Shi, X.; Yang, C.; Xie, W.; Liang, C.; Shi, Z.; Chen, J. Anti-drone system with multiple surveillance technologies: Architecture, implementation, and challenges. IEEE Commun. Mag. 2018, 56, 68–74. [Google Scholar] [CrossRef]
- Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N. A review of radio frequency fingerprinting techniques. IEEE J. Radio Freq. Identif. 2020, 4, 222–233. [Google Scholar] [CrossRef]
- Ezuma, M.; Erden, F.; Anjinappa, C.; Ozdemir, C.; Guvenc, I. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference. IEEE Open J. Commun. Soc. 2020, 1, 60–76. [Google Scholar] [CrossRef]
- Zhang, H.; Li, T.; Su, N.; Wei, D.; Li, Y.; Wen, Z. Drone identification based on normalized cyclic prefix correlation spectrum. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 1241–1252. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, C.; Xu, L.; Gulliver, T. A UAV detection algorithm based on an artificial neural network. IEEE Access 2018, 6, 24720–24728. [Google Scholar] [CrossRef]
- Bremnes, K.; Moen, R.; Yeduri, Y.; Yakkati, R.; Cenkeramaddi, L. Classification of UAVs utilizing fixed boundary empirical wavelet sub-bands of RF fingerprints and deep convolutional neural network. IEEE Sens. J. 2022, 22, 21248–21256. [Google Scholar] [CrossRef]
- Li, T.; Hong, Z.; Cai, Q.; Yu, L.; Wen, Z.; Yang, R. BisSiam: Bispectrum siamese network based contrastive learning for UAV anomaly detection. IEEE Trans. Knowl. Data Eng. 2023, 35, 12109–12124. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, P.; Gu, Y.; Xiao, X. Dual-source detection and identification system based on UAV radio frequency signal. IEEE Trans. Instrum. Meas. 2021, 70, 2006215. [Google Scholar] [CrossRef]
- Kunze, S.; Saha, B. Drone classification with a convolutional neural network applied to raw IQ data. In Proceedings of the 3rd URSI Atlantic Asia Pacific Radio Sci. Meeting (AT-AP-RASC), Gran Canaria, Spain, 30 May–4 June 2022; pp. 1–4. [Google Scholar]
- Soltani, N.; Reus-Muns, G.; Salehi, B.; Dy, J.; Ioannidis, S.; Chowdhury, K. RF fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms. IEEE Trans. Veh. Technol. 2020, 69, 15518–15531. [Google Scholar] [CrossRef]
- Xue, C.; Li, T.; Li, Y.; Ruan, Y.; Zhang, R.; Dobre, O.A. Radio-frequency identification for drones with nonstandard waveforms using deep learning. IEEE Trans. Instrum. Meas. 2023, 72, 5503713. [Google Scholar] [CrossRef]
- Yang, J.; Gu, H.; Hu, H.; Zhang, X.; Gui, G.; Gacanin, H. Deep complex-valued convolutional neural network for drone recognition based on RF fingerprinting. Drones 2022, 6, 374. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, W.; Guo, Z. Time series data classification based on dual path CNN-RNN cascade network. IEEE Access 2019, 7, 155304–155312. [Google Scholar] [CrossRef]
- Nie, W.; Han, C.; Zhou, M.; Xie, B.; Jiang, Q. UAV detection and identification based on WiFi signal and RF fingerprint. IEEE Sens. J. 2021, 21, 13540–13550. [Google Scholar] [CrossRef]
- Nguyen, P.; Truong, H.; Ravindranathan, M. Matthan: Drone presence detection by identifying physical signatures in the drone’s RF communication. In Proceedings of the 15th Annual International Conference ACM, Niagara Falls, NY, USA, 19–23 June 2017; pp. 211–224. [Google Scholar]
- Bisio, I.; Garibotto, C.; Lavagetto, F.; Sciarrone, A.; Zappatore, S. Blind detection: Advanced techniques for WiFi-based drone surveillance. IEEE Trans. Veh. Technol. 2019, 68, 938–946. [Google Scholar] [CrossRef]
- Alipour-Fanid, A.; Dabaghchian, M.; Wang, N.; Wang, P.; Zhao, L.; Zeng, K. Machine learning-based delay-aware UAV detection and operation mode identification over encrypted WiFi traffic. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2346–2360. [Google Scholar] [CrossRef]
- Reus-Muns, G.; Chowdhury, K. Classifying UAVs with proprietary waveforms via preamble feature extraction and federated learning. IEEE Trans. Veh. Technol. 2021, 70, 6279–6290. [Google Scholar] [CrossRef]
- Medaiyese, O.; Ezuma, M.; Lauf, A.; Guvenc, I. Wavelet transform analytics for RF-based UAV detection and identification system using machine learning. Pervasive Mob. Comput. 2022, 82, 101569. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Yan, X.; Wu, C.; He, L. Radio frequency-based UAV sensing using novel hybrid lightweight learning network. IEEE Sens. J. 2024, 24, 4841–4850. [Google Scholar] [CrossRef]
- Kumbasar, N.; Kilic, R.; Oral, E.; Ozbek, I. Comparison of spectrogram, persistence spectrum and percentile spectrum based image representation performances in drone detection and classification using novel HMFFNet: Hybrid Model with Feature Fusion Network. Expert Syst. Appl. 2022, 206, 117654. [Google Scholar] [CrossRef]
- Noh, D.; Jeong, S.; Hoang, H.; Pham, Q.; Huynh-The, T.; Hasegawa, M.; Sekiya, H.; Kwon, S.; Chung, S.; Hwang, W. Signal preprocessing technique with noise-tolerant for RF based UAV signal classification. IEEE Access 2022, 10, 134785–134798. [Google Scholar] [CrossRef]
- Huynh-The, T.; Pham, Q.; Nguyen, T.; Costa, D.; Kim, D. RF-UAVNet: High-performance convolutional network for RF-based drone surveillance systems. IEEE Access 2022, 10, 49696–49707. [Google Scholar] [CrossRef]
- Allahham, M.; Khattab, T.; Mohamed, A. Deep learning for RF based drone detection and identification: A multi-channel 1-D convolutional neural networks approach. In Proceedings of the IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 112–117. [Google Scholar]
- Sanjoy, B.; Sreeraj, R.; Sofie, P.; Bart, S. Combined RF-based drone detection and classification. IEEE Trans. Cognit. Commun. Netw. 2021, 8, 111–120. [Google Scholar]
- Swinney, J.; Woods, C. Unmanned aerial vehicle operating mode classification using deep residual learning feature extraction. Aerospace 2021, 8, 79. [Google Scholar] [CrossRef]
- Xiao, L.; Yan, Y. Radar emitter identification based on novel time-frequency spectrum and convolutional neural network. IEEE Commun. Lett. 2021, 25, 2634–2638. [Google Scholar] [CrossRef]
- Wang, G.; Oates, T. Imaging time-series to improve classification and imputation. In Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015; pp. 3939–3945. [Google Scholar]
- Shi, Y.; Xu, H.; Zhang, Y.; Qi, Z.; Wang, D. GAF-MAE: A self-supervised automatic modulation classification method based on Gramian Angular Field and masked autoencoder. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 94–106. [Google Scholar] [CrossRef]
- Qi, Y.; Hu, Q. Toward novel time representations for RFF identification using imperfect data sets. IEEE Internet Things J. 2023, 10, 2743–2753. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Byeon, J.; Han, S.; Myung, R.; Joung, J.; Choi, J. CNN-based UAV detection and classification using sensor fusion. IEEE Access 2023, 11, 68791–68808. [Google Scholar] [CrossRef]
- Lv, Q.; Quan, Y.; Feng, W.; Sha, M.; Dong, S.; Xing, M. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5107511. [Google Scholar] [CrossRef]
- Allahham, S.; Al-Sa’d, F.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A. DroneRF dataset: A dataset of drones for RF-based detection, classification and identification. Data Brief 2019, 26, 104313. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Mao, S.; Zhou, C.; Sun, G.; Shi, Z.; Chen, J. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones. J. Electron. Inf. Technol. 2024, 46, 1147–1156. [Google Scholar]
- Al-Sad, M.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A. RF based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Gener. Comput. Syst. 2019, 100, 86–97. [Google Scholar] [CrossRef]
- Al-Emadi, S.; Al-Senaid, F. Drone detection approach based on radio-frequency using convolutional neural network. In Proceedings of the IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 29–34. [Google Scholar]
- Kılıç, R.; Kumbasar, N.; Oral, M.; Ozbek, I. Drone classification using RF signal based spectral features. Eng. Sci. Technol. Int. J. 2022, 28, 101028. [Google Scholar] [CrossRef]
Dataset | Input Image | Accuracy (%) |
---|---|---|
DroneRF | FDGAFL | 97.67 |
FDGAFH | 94.85 | |
FDGAF | 98.72 | |
DroneRFa | FDGAFI | 97.94 |
FDGAFQ | 94.60 | |
FDGAF | 98.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; He, Z. Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network. Drones 2024, 8, 511. https://doi.org/10.3390/drones8090511
Fu Y, He Z. Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network. Drones. 2024; 8(9):511. https://doi.org/10.3390/drones8090511
Chicago/Turabian StyleFu, Yuanhua, and Zhiming He. 2024. "Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network" Drones 8, no. 9: 511. https://doi.org/10.3390/drones8090511
APA StyleFu, Y., & He, Z. (2024). Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network. Drones, 8(9), 511. https://doi.org/10.3390/drones8090511